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Earth Currents Near a Top-Loaded Monopole Antenna With
Special Regard to Electrically Small L- and T-Antennas

H. Lottrup Knudsen

An investigation has been made of the ground currents near a top-loaded monopole with
nonazimuthal symmetry. Formulas have been developed for the surface current density
produced by an inclined, straight wire over a horizontal ground plane for an arbitrary current
distribution on the antenna. Working formulas have been developed and numerical calcula-
tions of the surface current density on the ground plane have been carried out for the case of
a small antenna with a linear current distribution. These results have been used for the
calculation of the contribution to the surface current density due to the top loading in the
case of an L-antenna and in the case of a T-antenna. In each case both the absolute value of
the surface current density arising from the top loading and the relative value of its ¢-com-
ponent have been plotted, as it may be expected that this component under certain cir-
cumstances may be important in calculating the ground losses in the case of a system of

radial ground wires.

1. Introduction

Low-frequency and very-low-frequency antennas
often consist of a vertical wire with a top loading
of inclined, or in a special case, horizontal, wires
radiating from the top of the vertical member as
shown in figure la. In order to reduce the losses in
the ground around the antenna, caused by the cur-
rents induced in the earth, a system of ground wires
is generally used. As the ground currents have
essentially a radial direction, it is a common practice
to let the ground wires point radially outwards from
the base of the antenna.

In the far zone field of the antenna the main con-
tribution to the field comes from the vertical wire.
If the top loading is horizontal, the ratio of the con-

1J. R. Wait, Earth currents near a monopole antenna with symmetrical top
loading, J. Research NBS 62, (1959) RP2959.
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Ficure 1. a, Top-loaded antenna. b, Assumed current dis-

tribution on this antenna.

tribution to the field coming from the horizontal
wires to the contribution coming from the vertical
wire tends toward zero, as the distance from the
antenna goes toward infinity. Also in calculating the
ground currents and the ground losses, i.e., in calcu-
lating the field at the ground near the antenna, it has
generally been assumed without proof, that the con-

tribution from the top loading is insignificant. Re-
cently Wait ! has investigated this question. In his

investigation he assumes that the top loading may be
replaced by a cone, or, in the special case of a hori-
zontal top loading, by a disk; i.e., he assumes perfect
rotational symmetry. In his investigation, Wait
arrives at the result that under usually existing cir-
cumstances the top loading contributes only to a
small extent to the currents and losses in the ground.

However, as has been pointed out by Wait, when
the number of wires in the top loading is very small,
say one, as in the case of the L-antenna, or two, as
in the case of the T-antenna, the top loading may
furnish a circumferential component of the ground
current, which, although small, may contribute con-
siderably to the ground losses, as it is perpendicular
to the radial ground wires. It seems, therefore,
justified to carry out an investigation of the ground
current excited by a top loading consisting of only a
few wires and to compare it with the contribution
from the vertical wire. This is the object of the
present paper. Whereas formulas for the ground
current have been worked out for the general case,
working formulas and numerical calculations are
given only for the case where the antenna is small
compared to the wavelength.

The theory has been developed under the assump-
tion that the current distribution on the antenna
including that on top loading is known. For an-
tennas that are short compared to the wavelength,
we may make the following statements: If the num-
ber of wires in the top loading is large, the current
distribution will probably be very near quadratic
as was assumed by Wait in his investigation of a
disk-loaded antenna. On the other hand, if the
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number of top-loading wires is small, say one or two,
as we shall assume here, the current distribution
will probably be linear, to a good approximation.
This is shown in figure 1b, where A denotes the
length of the vertical wire, a, the length of the radial
wires, (these being assumed to be of equal length),
and 7, the antenna current. A part of the following
theory has been derived for an arbitrary current dis-
tribution on the antenna. However, in those parts
of the investigation where a specific choice of the cur-
rent distribution has been made, as e.g., in the nu-
merical calculations, the linear current distribution
has been chosen.

List of Principal Symbols

a=Ilength of radial wires in top loading,
A=vector potential of current on inclined
wire,
A, =coeflicient in power series expansion for
current distribution function ¢ (o),
b=height over ground plane of one end of
inclined wire,

= —g sin « cos (d;—ﬂ)——% cos a,

c=length of inclined wire,

2 2
()
¢ @
d=reference distance (arbitrary),
f(s)=current distribution function for inclined
wire in terms of s,
¢(a)=current distribution function for inclined
wire in terms of o,
h=length of vertical member of antenna,
I(s)=-current on inclined wire,
I,=reference current (arbitrary),
I’ =current in one top-loading wire at con-
nection point with vertical wire,
I,=current in vertical member at ground,
I,=current in vertical member at connection
_ point with top loading,
7=normalized surface current density on
ground plane: %—K,
[
j"=normalized surface current density on
ground plane excited by one horizontal
_ wire,

7¥=normalized surface current density on
ground plane excited by horizontal

_ members of T-antenna,

j T=normalized surface current density on
ground plane excited by horizontal
members of antenna with four top-

_ loading wires,

7°=normalized surface current density on
ground plane excited by vertical mem-
ber of antenna with top loading,

c ikr
J=the integralf i@:— ds,
0

K—surface current density on ground plane,
n=number of wires in top loading,

N=C—B,

p=moment of Hertz dipole,

5 1 c\® . c\2
pn="the mtegralf I:(Tf> -—@k(,'(ﬁ) ]Umda’
0
17/ ~\3 2
P—the integralﬁ [(—k) —@',kc(l%> ]g(aﬁ)eidea.,

r=distance from point of antenna (&, », ¢) to
field point (p, ¢, 2),
R=distance from point of antenna (&, 5, ¢) to
point of ground plane (p, ¢, 0),
s=coordinate along inclined wire,
§=unit vector pointing in positive direction
of inclined wire,
§;, §s=unit vectors pointing in the two directions
of horizontal members of T-antenna,
S=point of penetration of inclined wire
through ground plane,
Z etc.=unit vector in z-direction etc.,

x=(Y),
C

X,=C4+2B+1,
a=angle between downward vertical direction
(negative z-axis) and positive direction
(8) of inclined wire,
B=azimuth of inclined wire,
p=any one of the coordinates p, ¢ or z,
p, ¢, z=cylindrical coordinates of field point,
c=normalized coordinate s/¢ along inclined
wire,
£ n, t=rectangular coordinates of point of inclined
wire.

2. Earth Currents Excited by Inclined Wire

In this section the earth current excited by the
current in an inclined straight wire will be calculated,
with special reference to the case where the length
of the wire, as well as its height over the ground
plane, is small compared to the wavelength.

The ground plane is taken as the (z, ) plane in
an (z, vy, z) coordinate system. A wire of the length
¢ with one of its ends situated on the z-axis at the
height b over the (z, y) plane forms the angle «
with this axis as shown in figure 2. A coordinate
s along the wire is introduced, s=0 corresponding to
the point of the z-axis. The wire is assumed to
carry a current [I(s)=1,/(s) where [, is an arbi-
trarily chosen reference current. In this section no
particular choice of 7, is made.

The normalized coordinate o=s/¢ and the function
g(a)=g(s/c)=f(s) are introduced. The antenna may
be described m parametric form in the rectangular
coordinate system (z, ¥y, z) as follows:

£=s sin a cos B,
n=s sIin «a sin 3, N=s=c

{=b—s cos a, (1)
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Ficure 2.

Inclined wire above ground plane.

With the time factor e=*¢* the rectangular coordinates
of the vector potential A are expressed by

ul,
A= 47
A,,:%% sin e sin 8 J,
Az:—%{” cos a o, 2)
where
c Q ikr
J— f T )
0
with

7=[(s sin a cos f—p cos ¢)2+ (s sin « sin B
—p sin ¢)%-+ (b—s cos a—2) %%, (1)
where (p, ¢, z) denote the cylindrical coordinates

of the field point. The coordinates of the vector
potential A in the eylindrical coordinate system are

A,=A, cos ¢-+A, sin ¢>— (@—8) J

Ay=—A,sin ¢+ A4, cos ¢_— ul, sin a sin (¢—p) o/,

A,=— Z{: cos a.J. (5)

The magnetic field intensity 71 may now be obtained
from

y: L vXA.
"

Until now, the effect of the ground plane has not
been considered. Assuming this to have infinite
conductivity, this may be done by adding the field
of the image. Since we are interested only in the
tangential magnetic field at the ground plane, this is
twice the tangential component of the magnetic
field calculated above.

For the current density K in the ground Jplane,
then,
(6)

It is convenient to define a dimensionless, normalized
surface current density

E:Q(é Xﬁ)z:o-

@

"\I

= d
Jj'

where d is an arbitrarily chosen reference distance.
With the above definition of j it is found that

=2 (Hy).mo,

0

2d
—7; (Hp>z:()- (8>
Defining

P=[,[G)—te(®) Joorraes 0

with

= (1) .—o=[(s sin @ cos B—p cos ¢)*+ (s sin a sin B
—p sin ¢)24- (s cos a—b)?*

2
= |:<cr Sin a ¢os ,8—:% cos ¢> +<a sin « sin 3

27] %
——-Ce sin ¢>2 +<0 oS a-—-?) :]; (10)

we finally obtain after some manipulation

=

|:—— sin « cos (¢p— ﬁH— cos a |P, (lla)

21rc

Jo= i LZ é sin a sin(p—p) P.

5 ¢ (11b)

The first term in the square bracket in the expression
for P corresponds to the induction field, whereas the
last term corresponds to the radiation field.

It is easily verified, from the above expressions for

the components of 7 as well as by physical considera-
tions, that 7, is an even function of ¢— 3, whereas 74
is an odd function of ¢—g.

As a partial check of the formulas developed here,
these formulas may be applied to a short vertical
wire with a constant current I, as considered by
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Wait (seefootnote 1).

This may be done, for example,
by setting

HE=(
a=m,
g(0)=1,
e*E o gike, (12)
Then
I,. 1, p Ie”‘"p
Kp:‘d'.]p:{)f - CcOS «a, P— f [1?'—*1§2]d9
(13)
Kd,:(),
where

R=|[p*+s*’*

This expression checks with formula (7) in the above
mentioned paper by Wait (except for the sign; a dif-
ferent sign convention seems to have been used by
Wait).

Whereas it is necessary to evaluate the integral P
in order to obtain the normalized surface current
density 7, the direction of y may be obtamed without
carrying out any integration. The reason for this is
that all the current elements of the wire give con-
tributions to j pointing in the same direction. The
direction of the current is expressed by the angle u
which it forms with the p-axis, as shown in figure 3.

A
y
é j
A
p
u
N
M
¢ S
B projection of antenna 5
0
Frcure 3. Swurface current density.

The surface current density j points radially outward from (or toward) the point
of pentration S through the ground plane of the antenna or its prolongation.

It is found that

' b sin asin (¢—
u=tan—12°—tan! Sin a sin ($—F)

Je —b sin « cos (¢—p) +p cos o

(14)

It will be shown that this expression exactly expresses

that the surface current density:} at every point of
the ground plane points radially outward from

(or toward) the point S in which the inclined wire
or its prolongation penetrates the ground plane.
Referring again to figure 3, it is found that the
distance from the origin O to the point S is b tan «.
Introduecing the perpendicular SM from S to the line
from the origin O to the field point N, if the current
at N points radially outward from S, it follows that

i==linnmt %ztan‘1

b tan a sin (¢—p)
p—>b tan « cos (p—p)

(15)

As this expression is equal to the expression for «
derived above, it is concluded that the surface
current density points radially outward from (or
toward) the point where the linear antenna or its
prolongation penetrates the ground plane. This
result, which was arrived at as a detail in a more
comprehensive investigation, may of course be de-
rived in a more straightforward manner. In figure
4a is shown an antenna that penetrates the ground
plane at S, and lines that are everywhere parallel
to the surface current density. They are not field
lines in a strict sense, as their mutual distance is
not proportional to the magnitude of the surface
current density. In the case where the antenna is
parallel to the ground plane, i.e., where the point of
penetration is at infinity, the surface current density
will be everywhere parallel to the wire. This 1s
illustrated in figure 4h.

Y y

anten

S

< b
FicureE 4. Lines showing direction of the surface current
density on the ground plane due to a linear antenna.

a, The antenna is not parallel to the ground plane; S denotes the point of
penetration of the antenna through the ground plane. b, The antenna is parallel
to the ground plane, i.e., the point of penetration is at infinity.

Returning to the calculation of the magnitude of
the surface current density, the expression P must
be evaluated. In the general case the integral by
which P is defined can apparently not be expressed
by known functions. In the general case, therefore,
numerical or graphical methods must be applied to
evaluate /. This can be done in any specified case
without a prohibitive amount of labor.

A case which has a great practical importance and
in which the analysis is greatly simplified is the one
where both the height b and the length ¢ of the an-
tenna are small compared to the wavelength or more

exactly where
k(b+c)<<1.
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A similar approximation was used by Wait (see
footnote 1) in the case of a vertical antenna. For
an inclined wire, as is considered here, this approxi-
mation will, for the directions perpendicular to the
wire, be just as good as for the vertical wire. How-
ever, in the directions of the projection of the wire
on the ground plane, the approximation will be worse
than in the above mentioned case. Or otherwise ex-
pressed, for the directions not perpendicular to the
wire, k¢ must be smaller than for a vertical wire in
order that we shall obtain the same approximation.

The rest of this report will be concerned exclusively
with this case. Under the above assumption, any
case will be included in at least one of the following
four situations:

1o kp << 1,

2. Neither kp << 1 nor b+c¢ << p,
3. b+c << pbut not 1 << kp,
4.1 << k.

When k(b+e¢) is not much smaller than 1, say
k(b+¢)=0.2, situation 2 may apply for some values
of p. On the other hand, if k(b+e¢) << < 1, situa-
tions 1 and 3 may apply simultaneously for some
values of p. The above discussion is illustrated in
figures 5a and 5b applying respectively to the situa-
tion where k(b+c) 1s relatively large (although con-
forming to the inequality k(b+c¢) << 1) and to the
situation where k(b+c¢) is extremely small, k(b+4c)

<<=l

k(b+c)<<I
Neither kp<<I btc<<p
kp<<l nor btc<<p but not I <«<kp I<<kp
| | | T — —- —
— ’ ¢ - u ke
o | i
k (btc)
a
k(b+c)<<<|
ka«l btc<<p
|,— but not I<kp I<<kp
ir : - - kp
0 |
k (b+c)

Ficure 5.
eters in
apply.

a, k(b+¢)<< 1, but not extremely small; b, k(b+4c) <<<1.

Relative position of the various regions of param-
which various approzimations to the integral P

ke < <1

] 3
P J (%) [1—ikR) [1+ik1?+£lrl”‘)@'-2]g<v>do
v

[ G T+ 2 o )

“terms containing (ka)?, (kh)%, (kp)?, etc. (16)
In using the last approximation the radiation field
term, as well as the retardation, is neglected.

Neither kp< <1 nor b4c¢< < p

It turns out that the last one of the approximate
formulas worked out for the case of kp<<1 is a
special case of the approximate formula in the case of
b+c << p. Probably, the last formula may there-
fore be applied with a fair approximation in the
present case, too.

b+c<<p but not 1<<<kp

3 "o\ 2
R=p l:l—? Z sin a cos (¢—~6)+(¥5~> —28 Q oS «
P P, pp
D\ .
—}—(;) ~p—s sina cos (p—pf)

. . s\? s b b\? .
+terms containing p (=), p~ = p( =) ete. (17)
P pp p

1 3
Pt J ({) [1— ik R][1—dkeo sin @ cosp—8)]g (o) do
0 /

. ‘c\* b /c\?
+terms containing ke (—) s ke — (-) ete.  (18)
P P \p,

Though this integral may be expressed by known
functions for some current distribution functions
g(a), those functions which will be used later
in this report will, except in the case of g(o)=
constant, require rather complicated computations.
As ke<Z<1 has been assumed, the term in the last
bracket, containing ke, may be neglected with a fair
approximation. Thus,

P gito LIE/e\8 . c\?
~¢ ) i —ke » g(o)do
3
-+terms containing ke (%) etc. (19)

When using this approximation, the retardation
along the antenna is neglected (but not from the
antenna to the field point).
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1< <kp

Here,
kR>>1,

from which
1 2
P~— e”‘f’ikcf (%) [1—ikco sin a cos (¢—pB)]g(a)da
o \R

+terms containing (kR)~! ete.  (20)
Using this approximation means to neglect the induc-
tion field term. Also in this case it will generally
involve too cumbersome calculations to include the
second term in the square bracket; as in the case
considered above, with a fair approximation this
term may be omitted. This means neglecting the
retardation along the antenna itself. Then,

1 2
P gk L <1i1> 9(0)do.

In what follows, eq (16), (19), and (21) will be
used as working formulas. The first and the third
formulas are both special cases of the second formula.
Therefore, the following work will be based upon
formula (19), and specializations to the two other
cases will be made only at the end of this section.

As was done by Wait (see footnote 1) in treating
a disk-loaded monopole, it may profitably be assumed
here that the distribution function g(s) of the antenna
current is expressed by the series

(21)

©
0)=2 Ao
m=0

Inserting the above series expression for the cur-
rent distribution function ¢(s) in the integral
expressing P,

P:eikp Z Am_pm;
m=0
where

(22)

pm=fol [(%)3-—@'/&0 (%,)2] ado.

This integral may be expressed by known functions
for any integral value of m. The coefficients p,,
necessary for dealing with a linear current distribu-
tion, i.e., po and p,, will be evaluated here.

In order to carry out the integrations, X= (R/C)?
is put into the standard form,

X=C+2Bo+ a2,

where

B:—B sin a cos (¢p— ,8)—é cos a,

() +(C)’

In carrying out the integrations it is important to
know the sign of N=C—/5?2. 1t is found that

N=(2)+(1) - (r2+s2)

where
y=sin « cos (¢—p),
0=1CO0S «.
As
PR I,

1t may easily be verified that

N=0.
Further defining

Xi=(X)ee1=C+2B+1
the following is obtained:

> Bil B:]-—ﬂic tan ! B—H—tan" —B~
A\ VX, JCJ] VN

AT 2T P

Vi V4

(23)

1)1=%[—B+(Y+f]—zkc|: T == Xl

N 1Y1
-]
VN

—E: <tan‘1 E)’j;—l—tal
VN vN

These expressions are sufficient for calculating the
contributions to the surface current density corre-
sponding to the terms containing ¢° and ¢' in the
series expression for the current distribution g¢(o)
of the wire. The terms ps, ps, ete. corresponding to
the higher order terms in the series expression for
g(c) may be found for example by using partial
integration, but the calculation is tedious. In the
following sections there is a use only for the terms p,
and p;, corresponding to a linear current distribution.
The calculation of p,, p,, ete., is therefore omitted.

Following the discussion given earlier, simplified
expressions will be given here for p, and p; applying
when p is respectively very small and very large
compared to the wavelength.

kp<<1
e i (258)
N \/Xl —\/"0
B+C .
Nl:'_' ‘Xl +'\ 0] (20b)
1<kp
Ppo=—1ke <§>_2 (26a)
__@< ) B (26h)
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3. Vertical Wire

¥ The main purpose of this paper is to calculate the
earth current excited by a top loading consisting of
one or more inclined or, as a special case, horizontal
wires. However, a comparison of the contribution
to the earth current from the top loading with the
contribution from the vertical member of the an-
tenna is desired. The formulas for calculating this
contribution may be obtained as a special case of
the formulas developed above.

Considering an antenna of the height & and with a
few top-loading wires of the length @, and assuming
therefore a linear current distribution, the current /
in the vertical member of the antenna may be ex-

pressed by
s

where [, is the current at the bottom of the vertical
wire, and where s=z. In this section and the follow-
ing sections [, will be used as the reference current 7,
and the height % of the antenna as the reference dis-
tance d occurring in the above formulas. In using
these formulas on the vertical member it 1s further
set that

HE=(
E=lf
a—T.

The distribution function g(e) for the current on the
vertical wire is then expressed by

g(0'>_] (l+[l

The following expression for the normalized earth
current 7° due to the vertical wire is hereby obtained:

- Lp,
]P:_—Q—"rﬁl )
J=0,
where
P=(Aopo+Aip,)et*
with
A=1,
i
Al—‘—‘ a} (27&)
e

Lw I—kah tan~!

(27b)

-

=
>io
S
$
+
e
=~
SSES
o =

Js=0-

(%)

1 1 zk/z

T W

As the main purpose of this report is to investigate
the ground current induced by the top loading,
whereas the ground current induced by the vertical
member is only calculated for comparison, it may be
assumed, for the sake of simplicity, that the vertical
wire carries a constant current /, equal to the mean
value of the actual current distribution, i.e.,

(27¢)

S0 [ S |
L=1, |1 ‘3(1+Z>

l): 11(,/)(..

(28)

We then have

where
|

‘)<1+h>

and where p, is expressed as above. The final ex-
pressions for the components of ° then become

otkp
.I.'}::“( o [* . ——,— tkh tan™! ) 1—@"'1—“* )
- P 9 =
/i +<7;> i 2 <l+/1,>
(29)

A=1—

Ly

These expressions are equivalent to formula (7) in
the paper by Wait (see footnote 1) referred to above.

In figure 6 |75 has been plotted for kh=0 as a
function of p/h and with a/h as a parameter. In this
case, the last term in the first square bracket in the
formula expressing 7. drops out. In the case of very
large distances p, however, this last term may be-
come significant and even dominant. Figure 7
shows a similar plot of |j5| for kh=0.1. This value
of kh corresponds approximately to the antenna for
the planned U.S. Navy vlf radio station, Cutler,
Maine (approximate data: f=~15 ke, h=~800 ft).

4. Top Loading

The ground current excited by an umbrella type
of top loading may be calculated by adding vectori-
ally the currents excited by the single wires. In this
section an expression is given for the surface current
density 7 induced by a single wire of the top loading.
Letting ¢=0 correspond to that end of the wire
under consideration which is connected to the verti-
cal member of the antenna and ¢=1 to the outer end
of the wire, the fact that the current at the end of the
antenna is zero is expressed by

g(1)=0
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Ficure 6. Normalized surface current density '],ﬁl at the ground plane due to the current in
the vertical member of a top-loaded antenna as a function of the normalized distance p/h
from the base of the antenna and with the normalized length a/h of the top-loading wires as

a parameter.

It is assumed that the height h of the antenna is infinitely small compared to the wavelength, i.e., kh=0.

Using the series expression introduced above for the
carrent in the antenna, it 1s found that

SVA,—0.
m=0

The current at ¢=0 is denoted by I’. As in the last
section, the current I, at the bottom of the vertical
wire will be used as the references current, 7,. Thus,

I/
g(0) =1

In what follows, it will be assumed that the top load-
ing consists of n equiangularly spaced wires. KEach
wire will then carry the same current and conse-
quently,

15
g(o)_n Ib}

where 7, is the current at the top of the vertical wire.
Using the series expansion for g(o),

_L1

AO—’n Ib.

In the case of a top loading consisting of one wire
(if the wire 1s horizontal, an L-antenna), or of two
wires (if the wires are horizontal, a T-antenna), the
current on these wires will probably, to a good

approximation, be linear. Then,
w
*h

and all other coefficients 4,, equal to zero.

On the other hand, if the top loading is of the
umbrella type, i.e., if it consists of several equiangu-
larly spaced wires, the current on the wires will prob-
ably be better approximated by a quadratic function.
In this case,

lbl@

0

nl

Ay=—A,=

+
EalRS

and all other coefficients A,, equal to zero. The
remaining part of this report will be concerned
mainly with the cases of a top loading consisting of
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Ficure 7. Normalized surface current density ’j,’,! at the ground
plane due to the current in the vertical member of a top-loaded
antenna as a function of the normalized distance p/h from
the base of the antenna and with the normalized length a/h
of the top-loading wires as a parameter, the height h of the
antenna being given bykh=0.1.

one (n=1) or two (n=2) wires and the current
distribution will consequently be assumed to be
linear.

As in the last section, 4 will be used as the reference
distance d in caleulating the mnormalized surface
current density. Further setting

b="h
=1

the following is obtained from the formulas developed
above

r ‘);gl:-—Aqma(os (p— B)+ Cos a]]’ (30a)
.1 [\ . . . >
]¢=2ﬂ—_ (5) sin a sin (¢—pB)/f (30b)
where
(L a
le pl)e”"——l— h {lv[\/X—l B
n _*“ n 1+ N O
i e[ X BHC (oo BH1
—y (/:]—Hkh h [2 In s N (tan N

—tan~! Ij\v):l}e’*", (31)
3

B———g sin a cos (¢—p) —f; Cos «,

o~(5)+()
N=(C—B,
X,=0+2B+1.

For numerical calculations, it is of practical im-
portance to have simplified expressions for £ valid
when p is very small and very large compared to the
wavelength respectively. Making use of the dis-
cussion given earlier, the following is obtained

kp<l<1
@
pLl k1 [ o (] (32)
111+ai\ V<1 @ o
h
1<<kp
a a
1 A I: 1 ] 1} I:a 3
P=— " | = —ika = |et*r~ -\ %
2,  al O . a <k')
I+, ey

5. Horizontal Top Loading

In practice a horizontal or nearly horizontal top
loading is often used. In this section the simplifica-
tion which may be obtained in the formulas derived
in the last section, as applied to the case of one or
two wires when these wires are horizontal, will be
considered, and a numerical calculation of the surface
current will be carried out.

Setting a==/2 the following expressions are ob-
tained for the components of the normalized surface

current density j* induced by the horizontal wire

a1 (R ) ‘
J,,:~27<a cos (0—8) ] (34a)

""=l<@>zsin (o—RB),P (34b)
Je=a, a e

From these formulas it i1s seen, as has also been
shown before, that j* is parallel to the horizontal
wire. Therefore, j"=;! § may be set, where § is a
unit vector pointing in the positive direction of the
wire. It is found that

b (ﬁ)zp
T\
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The factor P is expressed by the quantities B, O, N,
and X asin the last section. However, in the present
case the expression for B reduces to

oS
l

cos (p—p).

SRS

The quantity = |77| has been plotted in figures Sa
and 8b for kA =0 and in figures 9a and 9b for kh=0.1,
and in both cases for ¢—=0° and 180° as a function
of p/h and with a/h as a parameter. From these
curves and from similar curves for other values of
¢—B, the p and the ¢ components of nj* by multi-
plying with cos (¢—8) and sin (¢—fg), respectively,
are obtained.

ol ?

Ficure 8. Normalized surface current density |J§'| at the
ground plane due to the current in the horizontal member of
an antenna with one horizontal top-loading wire as a function
of the normalized distance p/h from the base of the antenna
and with the normalized length a/h of the top-loading wire
as a parameter.

It is assumed that the height h of the antenna is infinitely small compared to
he wavelength, i.e, kh=0. a, ¢—B8=0°; b, ¢—B=180°.

6. L-Antenna

An L-antenna of the height A and its horizontal
member having the length @ as shown in figure 10
are considered. As in this case the number n of
wires in the top loading is equal to 1, the contribu-
tion 7" to the normalized surface current density
coming from the horizontal top loading may be ob-
tained directly from figures 8 and 9 in the last section.

i)

10 16" | 10 1°

p/h

F1GurE 9. Normalized surface current density l]ﬂ at the ground
plane due to the current in the horizontal member of an antenna
with one horizontal top-loading wire as a function of the
normalized distance p/h from the base of the antenna and
with the normalized lengih a/h of the top-loading wire as a
parameter, the height h of the antenna being given by kh=0.1.

TR TR TR TR TR TR TR VAR LA 7T A

Ficure 10. L-antenna.

The contribution j” obtained from these curves should

be compared with the contribution j° originating
from the vertical member of the antenna as shown
in figures 6 and 7. A comparison of these figures
shows that, compared to the radial component 7, of
the normalized surface current density induced by
the vertical wire, the radial component 5% of the
normalized surface current density induced by the
horizontal wire is small also in the vicinity of the
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antenna, and becomes insignificant at large distances.
This was the same conclusion that was arrived at by
Wait (see footnote 1) in his investigation of a disk-
loaded monopole. A similar statement may be made
regarding the azimuthal component j; of the nor-
malized surface current density induced by the hori-
zontal wire. However, if the ground wires are
placed radially around the antenna, as is usually
the case, the ground losses induced by the azimuthal
component, jg may be s1gn1ﬁcant compared to the
losses induced by 7, even if 7% is considerably smaller
than 7%.

In order to facilitate a comparison of 7} with 77,
the quotient

2_3 __lgt sin (9—B)]
¥ |51

has been plotted in figures 11a and 11b for kh=0
and for ¢—B=45° and 135°. In the cases of p—p=
0° and 180° respectively, the quotient is zero.
Curves have not been given for the case of kh=0.1
treated earlier, as these curves would deviate only
slightly from the curves in the case of kA=0 over
the significant range of values of p/h.

7. T-Antenna

A T-antenna of the height A and with its hori-
zontal member having the length 2¢ as shown in
figure 12 is considered. Letting =g, denote the
angular position of one of the two horizontal wires
of which the top loading consists, we have for the

M 16 | ‘
iz | |

p/h

Ficure 11. Ratio between the azimuthal component Ijﬂ of
the surface current density due to the current in the horizontal
member of an L-antenna and the surface current density
|]pl due lo the vertical member of the same antenna,

"~ It is assumed that the height & of the antenna is mﬁmtely small compared to
the wavelength, i.e., kh=0; a, ¢—B=45°. b, ¢—B=13

angular position =g, of the other radial wire
By=B1+m. Utilizing the symmetry properties of the
normalized surface current density j* induced by
one radial wire it is then found that the following
expressions for the normalized surface current
density 77 of the total top loading by adding the con-
tributions from each of the two wires,

37 (6—B)=7" (6—B)+5" (9—B:)=51j% (6—By)

+8275(@—Bi—m), (36)
where §; and $, denote unit vectors in the positive
directions of the two top-loading wires, respectively,
as shown in figure 12, and where 77 () is the function
introduced in the section on a general, horizontal top

loading. Utilizing

and

it 1s found that

7 (6—B) =41 % (6—By), (37)
where
i (6—B)=3" (6—B1)—j" (x—(¢—B)).  (38)
!4— a —+— a —-1
EE— 7
Sy S
h
P NN YNNI N, VNS0l YUY ST/S

Ficure 12. T-antenna.

As the number of wires in the top loading is equal to
2, the function

Js (6—B1)
may be obtained as one-half the value given by the
curves in figure 8 or 9.

It is easily verified that j7(¢—pB) satisfies the fol-
lowing symmetry relations,

(¢_Bl)]_.7$1(¢ B,
(6—B1)]=Js; (6—By)-

Faliss (39a)

A — (39b)
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It follows from the above expression for ;¥ that

3H<i’2—')=0.

Because of the symmetry relations mentioned above,
1t 1s necessary only to calculate the normalized
surface current density for ¢— @, being in the interval
0 to /2.

The quantity [§§(¢—B) | has been plotted in

figure 13 for kh=0 and for ¢—pB,=0° as a function
of p/h and with a/h as a parameter. This diagram
giving the contributions to the normalized surface
current density arising from the horizontal wire
should be compared to the contributions from the
vertical member shown in figures 6 and 7. This
comparison leads to the same qualitative statements
regarding the significance of the relative contribu-
tions from the horizontal wire as were arrived at in
the case of the L-antenna.

H
|

Ficure 13. Normalized surface current demsity Ijs_lHI at the

ground plane due to the current in the horizontal members of
a T-antenna as a function of the mormalized distance p/h
from the base of the antenna and with the normalized length
a/h of the top-loading wires as a parameter.

It is assumed that the height h of the antenna is infinitely small compared to
the wavelength, i.e., kh=0; ¢—B=0°.

In order to be better able to survey the situation,
in figure 14 the following quotient is plotted,

f{
I

for kh=0 and for $=45° as a function of p/h and with
a/h as a parameter. For ¢=0° and 90° the quotient
is zero. Paying attention to this fact and comparing
figure 14 with figures 11a and 11b, it can probably
be said that in general the azimuthal component of
the surface current density induced by the top
loading is smaller for a T-antenna with a horizontal
wire of the length 2 than for an L-antenna of the same
height and with a horizontal wire of the length a.

p/h

Ficure 14. Ratio between the azimuthal component [le of the
surface current density due to the current in the horizontal
members of a T-antenna and the surface current density

13;1 due to the vertical member of the same antenna.

It is assumed that the height k of the antenna is infinitely small compared to
the wavelength, i.e., kh=0. ¢—B=45°.

On the other hand, the radial component will at
some points be larger, at some points smaller for the
T-antenna than for the corresponding L-antenna.
For an antenna with a radial ground wire system it
is essential to keep the azimuthal component of the
surface current density as small as possible in order
to make the total ground losses the smallest possible.
In this respect a T-antenna is probably in general
preferable to an L-antenna.

8. Antenna with Four Horizontal
Top-Loading Wires

The theory developed above for the surface cur-
rent induced on the ground plane by a straight wire
with a linear current distribution will be used also
for finding the earth currents induced by a top-
loaded antenna with four equiangularly spaced
wires in the top loading. Although in the present
case the assumption of a linear current distribution,
as was mentioned before, probably does not approx-
imate the actual current distribution so well as in
the case of an L- or a T-antenna, it is desirable to
include the case of an antenna with four horizontal
top-loading wires, as this case is very close to the
case of a disk-loaded antenna; on the basis of the
results obtained in this section it should therefore
be possible to make a comparison between the
theory developed in this report and the theory
developed for a disk-loaded monopole. However,
it should be kept in mind that whereas the formulas
and numerical results obtained in this report are
based on the assumption of a linear current distribu-
tion on the top loading, Wait in his investigation of
a disk-loaded antenna assumes a quadratic current
distribution on the disk.

The length of the vertical member of the antenna
is denoted by A and the length of the top-loading
wires by a as indicated in figure 15. Further, the
azimuth of the top-loading wires is denoted by 8,
B,, Bs, and B, respectively, and the unit vectors
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Frcure 15, Antenna with four horizontal, top-loading wires.

pomtmw mn the positive direction of these wires by

S1, 8,5, $3, and §,. Then,
B ™
Bo=P1+5>
,83:#31'\’*‘71'5

,34: /31 +i27‘r’

and

@>
@

7>

Sy

Making use of the symmetry properties of the nor-

malized s\uffl(o current density 7" induced by one
radial wire it is found that the fol]ow ng o\plosslom

for the normalized surface current density 7 of the
total top loading:

JT(6—B) =813 (6 — 1)+ 825" (0 —By)
+8378(p—PBs) +8,72(o—Bs)

=38175,(¢—B1) + 8255, (6—By), (40)
where
./'xt(¢_Bl):.j.:l(¢—51)_./.1'1(77—(d’*Bl))y (41a)
jie—o=it (3—6—8 )7t (s—s45)  (a1h)

It may be verified that j—”“(d:—ﬂl) satisfies the follow-
ing symmetry relations:

FH—(6—B)) =87 (6—B) —&25i.(6—B1),  (42a)
(5~ @—8) )= 6— B0 +8uji(6— ), (42b)
FHar— (@ —B)=—481ji (6—B) + 824 (6—By).  (42¢)

It follows from the above expression for j© that

FT0)=8[52(0)—j2(m)]=p[j2(0) —j" (m)],

- ()4
oA} o

where 4 denotes a unit vector pointing in the radial
direction. As the number n of wires in the top load-
ing is equal to 4, the function

7s (¢—8)

may be obtained as one-fourth the value given by
the curves in figure 8 or 9.

Because of the above relations the whole current
field will be known, if it has been calculated in the
angular space

(43a)

0=<¢—p<f

Using the symmetry relations stated above it is
found that ;" (¢—8,) 1s purely radial for

5 —pT,
¢_:81*1)4
where p is an integer. For these angles the radial
component .
75 (6—81)
is given by
Js (6—B1)
s - 3\
JHO) —ji(x) for 6—Bi=q3 |

- >
1\#5[ s G)—jé’ (?) for ¢—ﬁ1:£+q gJ

where ¢ is an integer. (44)

The quantity |j, (¢—B:)| has been plotted in figure
16 for kh~0 and for ¢—p,=0° as a function of p/h
and with a/h as a parameter. These curves should
be compared with the curves given in Wait’s report
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(see footnote 1) on the earth currents induced by the
disk in a disk-loaded monopole. It is seen that the
currents in figure 16 have the same trend and the
same order of magnitude as the curves computed by
Wait.

L+
]‘P

plh

Ficure 16. Radial component ]j;rl of mormalized surface cur-
rent density due to the current in the horizontal members of
an antenna with four horizontal, top-loading wires as a func-
tion of the normalized distance p/h from the base of the antenna
and with the normalized length a/h of the top-loading wires
as a parameter.

It is assumed that the height of the antenna is infinitely small compared to
the wavelength, i.e., kh=0; ¢—B=0°

9. Conclusion

Based on a formula for and numerical calculations
of the surface current density on a ground plane
above which is placed a straight piece of wire with
a length that is small compared to the wavelength
and with a linear current distribution, the contribu-
tion to the ground current of the top loading of
L- and T-antennas that are small compared to the
wavelength has been found and plotted. Whereas
the contribution from the top-loading to the radial
component of the surface current density, as was
shown earlier by Wait, in general may be neglected,
as it is insignificant compared to the contribution
from the vertical wire, the azimuthal component of
the surface current density produced by the top
loading may be important in calculating the ground
losses in the case of a system of radial ground wires,
as it is perpendicular to these wires. The formulas
and numerical results in this report form a basis for
calculating the ground losses due to this azimuthal
component.

This investigation was carried out while the author
was temporarily employed as a consultant at the
National Bureau of Standards in Boulder. He
thanks the Bureau for the opportunity to do this
work. He also thanks James R. Wait for suggesting
the problem and Maxine W. Clark for making the
numerical calculations.

Bourper, Coro., January 27, 1959.
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