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Earth Currents Near a Monopole Antenna With
Symmetrical Top Loading
James R. Wait

Expressions for the fields are developed for a vertical ground-based monopole with a cone or disk located
at the top of the antenna to simulate umbrella top loading. The current distribution on the structure is
assumed. Using spherical-wave functions, the magnetic-field distribution on the ground plane near the base
of the antenna is computed and illustrated by graphs. For the case where the antenna is electrically small,
the currents flowing on the cone or disk are shown to contribute only slightly to the total field.

1. Introduction

Transmitting antennas at low radiofrequencies usually take the form of a vertical current-
carrying wire loaded by extensive overhead wires which sometimes take the shape of an um-
brella. At the risk of oversimplification, a model for field calculations might be a vertical
monopole with the umbrella being represented by a continuous cone. In other words, any
asymmetry about the vertical axis is neglected. 1t is the purpose of the present note to inves-
tigate the expected influence of the umbrella or cone loading on the fields produced by the
antenna with an assumed current distribution.

2. List of Principal Symbols

71, 0y, and ¢;=spherical coordinates of a variable point on the conical sheet.
a=distance from the apex to the rim of the cone.
I,=-current at the base of the vertical member.
F(z)=current distribution along the vertical member.
h=height of the antenna or length of the vertical member.
;=2 component of the Hertz vector of the currents on the vertical member.
K=the slope of the current distribution on the vertical member (assumed
constant).
f(ry)=the current distribution along a generator of the cone.
A,=-coeflicient for the power series expansion of f(r,).
z’=a variable point on the vertical member (the integration variable).
p, ¢, z=cylindrical coordinates of the observation point 7.
H}=tangential magnetic field on the ground plane resulting from the currents
on the vertical member.
115 and IIf=the p and z components of the Hertz vector of the currents on the cone.
R=distance from the variable point ¢ on the cone to the observation
point .
7, 8, z=spherical coordinates of the point /.
P2 (cos ) =associated Legendre polynomial of argument cos 6 and orders n and m.
gn(kr)=spherical Bessel function of the first type of argument /7 and argument n.
hi? (kr)=spherical Hankel function of the second kind of argument &r and order n.
T,.(ry, v)=gn(kr) hP (kr).
H¢=tangential magnetic field on the ground plane resulting from the currents
on the disk or the cone of angle 6,=90°.
A, (ry), B(ry), C,(ry) =coeflicients for the spherical-harmonic expansion of 71¢.
ro and f,=spherical coordinates of a variable point on the ground plane for the
origin at O in figure 1, 7,= (p*>-+Ah?*) and 6,=arctan (p/h).
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J’=—aH}/I, . . .=earth current (dimensionless) on the ground plane resulting from the
currents on the vertical member.
ji=—aH?/I, . . .=earth current (dimensionless) on the ground plane resulting from the
currents on the disk.
7, § =new spherical coordinates for describing the radiation pattern (see
fig. 3).
Jo(S), J1(S), and J,(S) are eylindrical Bessel functions of the first type of orders 1, 2, and 3 of
the argument S.
3. Some Preliminary Considerations

The top-loaded antenna in its idealized form is shown in figure 1. It consists of a vertical
current-carrying wire extending from the point O, at z=0, along the axis of a cylindrical
coordinate system to the ground surface at z=h. The point O is also the apex of a cone
which is generated by a line of length, @, at an angle 6, to the z axis.  With respect to a spherical
coordinate system with the origin at O, the coordinates of the bottom rim of the cone are («,
6;, ¢) and those of a variable point ) on the cone are (7, 6,, ¢;). The upward current on the
central wire filament is taken to be /,F(z) where 7, is the current at the apex, i.e., F(0)=1,
and /,F(h) is the current at the base. The outward current on an element dride, on the
conical surface is then (/o/27)d,f(r;) where f(0)=1 and f(a)=0. Because of symmetry the
current on the conical sheet has only a component in the direction of increasing 7.

0

S S /- P
IS = L
-
Q —/’d)l .
h fom==""0 TR S\
R
Io P
—Ground Plane (z=h)
//”__ _}_—\\

Cone Image )

N I'\e/
\| /

Ficure 1. Coordinate system for monopole with cone lcadings
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The current distributions, characterized by the functions #(z) and f(r,), in general, have
a very complicated dependence on the antenna dimensions. In the absence of a top loading
and where the vertical member can be approximated by a circular cylinder, current distribu-
tions can be expressed in terms of an expansion parameter which is proportional to log (h/2w¢)
where ¢ is the radius of the conductor [1].* When /£ is less than one-half wavelength, the
distribution is very close to being sinusoidal so long as A is greater than about 100 ¢. In fact,
at very low frequencies where & becomes small compared with the wavelength, the current is
then almost a linear function of height. It would not be expected that the cone would modify
this conclusion. Therefore

F()=1,(1—-K z/h), (1)

where A is a constant which depends on the extent of the top loading. For example, in the
unloaded case, K=1, and in the ideally loaded case, K=0, corresponding to a constant current
on the vertical member. In most applications where top loading is employed it is known
on experimental grounds [3] that K=0. This is particularly so for high-power installations
at low radiofrequencies where the effective dimension of @ is comparable to or greater than
h, and 6, is near 90°.

Information regarding the current distribution function f(r,) for the conical sheet is
apparently not available in the literature. However, if each individual wire making up the
cone acts independently, it could be expected that the total current flowing towards the rim
of the cone would vary in a linear manner with 7, if @ is small compared to the wavelength.
On the other hand, when the cone degenerates into a disk (i.e., 6,=90°) and, if A is somewhat
smaller than a, it can be expected the total current flowing towards the rim will vary with
the square of ;. This conclusion is based on the idea that the shunt displacement current
density between the circular disk and the ground is a constant if fringing effects at the edges
are neglected. A plausible assumed distribution would be

A )
e =3(2) 4, o
where the summation could be over ¢=0 and 1 and A,=1, A,=—1 for the linear current
approximation; whereas ¢=0 and 2 with 4,=1 and A,=—1 for the squared current approxima-

tion. It would be possible to employ more elaborate forms of f(r,) by utilizing more than two
values of ¢. A prime requirement is always

2.4,~=0, (3)
q
since f(a)=0.
4. Field of the Vertical Member

=
The Hertz vector 117 at the point P(p, 0, z) due to the current flowing only on the vertical
-

member is given by 1I*= (0, 0, II;), where

=y {f exp [—ik[(z—2")%1p? /Z]F 2")dz’ +f exp [—ik[(2h—2"—2) 2+ o] F(y)d:’},
7I'?/w€0

(7__2/)2_}_,)2]1/ (2h——2 _Z)2+p2]/2

)
when k=2r/wavelength and ¢=8.854X107**. The fields are then given by
2772
E=20, <k2 o )n Snal %I;— )

1 Figures in brackets indicate the literature references at the end of this paper.
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The second integral in eq (4) can be identified with the image of the vertical member below
the plane z=Ah. It can be verified that £,=0 at z=Ah, which is the required boundary condi-
tion for the ideally conducting ground.

The tangential magnetic field, 77, on the ground plane is then explicitly given by

I, 0 ("F(2') exp {—k[(z’—h)*+p**} de"
27 9p Jo [(&"—h)*+p?%

(6)

Considering the important case where gh<<1 and F(z’)=1, it follows that

v _ _6 mpPI()
~ J'[ T u—zﬂ]dz

;’:)Io I:(p2+h2)/—{—'ﬂ{:p tan~ ( >:| 7)

This can be expanded in a power series in (h/p), so that

e IO[(h> (14-kp) —(h>< +3 kp)—l— . terms containing (%)5; (%)7) etc:l' ®)

The first term of this expansion corresponds to the field of a hertzian dipole radiator. The
additional terms can be regarded corrections to account for the finite value of the antenna
height and can be called multipole terms. Sufficiently close to the base, such that kp<l<1,
the following expression will suffice

I h
2 p ("D

which is a quasi-static approximation. A check on this result is obtained by noting that

lim Hi——_0
p—0 Qﬂ-p

Hi~— )

)
which could be predicted from Ampere’s law.

5. Field of the Conical Currents

From an argument based on symmetry, it can be seen that the Hertz vector ﬁ“ at P, due to
the currents flowing in the cone, has a vanishing ¢ component. The p and z components,
however, are, in general, nonvanishing. These can be expressed as an integration over the
area of the cone, such that,

1,/27) sin 6 e "
0= %f d¢‘f dry c0s 1 - R o
and
a2 0 "
= Qd_‘l:%:sz_g_lf d@f drl f(rl)r (11)

where R2=72472—2rr, cos @ and cos 2=cos 6 cos 6;-sin 6 sin 6, cos ¢;. Now the factor 1/R is a
solution of Laplace’s equation and can be written in terms of spherical harmonics, as is well

known [2],
© n 7 [pn+1.
ng X_‘, G EZ+ m;‘ P (cos 6) P? (cos 6;) cos m ¢, {rl/r T2 (12)

TS 3

where =1, ¢,=2 if (m0), and where the P} are associated Legendre polynomials. The factor
e~ /R on the other hand, is a solution of the wave equation and an expansion for it in terms
of spherical wave functions can be expected. Such an expansion does not seem to be available;
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it can be obtained, somewhat heuristically, by noting that it should reduce to eq (12) for kr
and k7, small, and should give rise to outgoing wave at infinity. Such an expansion is

e—sz = (n— an(kr) B2 (kr); »>1
om m : 1
= 33 35, on (g1 @rD P eos )P (eos ) cos m‘“{jn(kr)hmn);m>r, £

where jn(kr) is a spherical Bessel function and 4.’ (kr) is a spherical Hankel function of the
second kind. These are defined by

jn(x):(—l)"m"(r u> (S‘“ ’) (14)
h‘”(w)—z(—l)”(rd{) <_> (15)

The integration, with respect to ¢;, in eq (10) and (11) requires the evaluation of

and

1 2w e-—-ikR
1,(r,0) =*f 5— €08 ¢y (16)
2 ), R
and
1 o e—ikR ] lr-r
Lo =g [ 5 da a7)
which can now be rewritten
(2ﬂ+1) | 1 (71, r);r>n
I,(r0)=—1k Z ) Pl (cos 0)PL(cos 6,) B (18)
and
L, 0)——zk'2 @n4-1)P! (cos 6) P! (cos 9){ w0, 7); 7> (19)
" T,(r, 7]) T
where T, (r. 7)=jn(kr )b (kr).
The circumferential field 27} due to the conical currents is given by
g OIl; OII; :
Hi=1ew I: 5 —a;:l (20)
.. [omy oM . . OHf_. . Ol -
Hi=1epw [W cos 6 790 sin 6 > sin o0 cos 0]: (21)
where
jeqIls= 1“ I f o) L(r,0)dry, (22)
and
'iEQOJH§=’m f f(l’l)Ig(l',G)(]h. (23)
47 0

To satisfy the boundary conditions at the ground plane, z=#h, the fields of the mirror image of
the cone must be added to H;. For these fields 7,(r,§) must be replaced by —7,(",6’) and
L(r,0) by +I,(",0’) where 0’ =M—0, 7’ =[(2h—2)2+p?]}, and cos M=[(r)2+ ()2 —4h?]/2rr".
The preceding equations, along with eq (7) and (8), constitute the complete formal solution
for the fields of a cone-loaded monopole for a specified current distribution on the structure.

6. Disk-Loaded Monopole

When the angle 6, approaches 90°, the cone degenerates into a disk. It is this case that
will be considered in some detail here. Of particular interest is the behavior of the currents
excited on the ground plane in the vicinity of the disk. In fact, for vlf antennas these near-
zone currents have, associated with them, considerable ohmic losses due to the imperfect conduc-
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tivity of the soil [4]. The surface current density is by definition numerically equal to the
tangential magnetic field /7 on the ground plane. For the case kr< <1, it follows that

Hi= Z (A, (ro) P11 (cos 6o) + B, (ro) P, 1 (cos 65) 17 (0) for ry<a (24)
and
—_—257‘; 3= Cu(0) Py (cos @)PEO) for ry>a, @5)
where
Anry=— [ " L ar, 26)
B ( 0) " f(;;,:)n:(.)l 17 (27)
O, (r) =— % dry, (28)
and 7= (p>-+h? " and §,=arc tan (p/h).
Setting
f(ry) :;Aq(rl/@) % (29)
it is a simple matter to arrive at
P e O (30)

To g (‘n‘}‘l)(n‘f'Q‘{‘l)’

- -0

1 @yl

CLm)= e 32

== Gt Dt (52)

Setting Ay=1, A;=—1 and the other A,s equal to zero, the squared current distribution,
f(r)=1—(ri/a?), is attained. Numerical values of the normalized current, j¢=—all}/I,
and j°=—akH;/l, are shown plotted in figure 2 as a function of p/a for the squared current

distribution on the disk and a constant current on the vertical member. The values of the
ratio h/a are shown on the curves. The resultant current ;7 on the ground plane which is
radially directed is given simply by j%+;” in the near-zone region where p is small compared
to the wavelength.

It is of interest to examine the radiation field such that »>>>wavelength. The spherical
Hankel functions can then be well approximated by the first term of their asymptotic expan-
sion. The radiation field 7] of the disk by itself is then given by

0~1lr 2 1 . \
Hy~ R0 con 0 33 SED Phcos 0PLO [ ntery ey, (33)

The radiation of the disk and its image is obtained by adding H? to the preceding equation
which is of the same form as —H{ with 7—@ replacing 6, and »—2kk cos 6 replacing . The
summation in the preceding can be converted to a Bessel function by first starting with the
addition theorem;

L oL (n—m)!

exp (tkr, sin @ cos ¢) = 2 % om)!
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Ficure 2. Earth current distribution below a disk-loaded monopole.
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and then multiplying each side by cos ¢ and integrating with respect to ¢ from 0 to 27. This
leads to the interesting relation

. . ® (2n+1 : .
1), (kry sin 0):”22‘{ 7(2(7111; P (cos 0) PL(0)jn(kr). (35)

Therefore

174 Ilgesta i . o
o= gy €08 f Fry) oy (kry sin 0)dr, (36)

ry=0

subject, of course, to k7>>>1. The squared-current assumption, f(r,)=1— (/*/a?) is now intro-
duced in the above which fortunately enables the integration to be carried out to yield

ikr
Iokfe cos 0 T(S), (37)

Il =
where 7(S)=[1—J(8)—J5(8)]S™" with S=Fka sin §. The field of disk plus its image can then
be written

_lokae =

H{+HY =~ o = COS 6 i sin (kh cos 6) T(ka sin ), (38)

in terms of the spherical coordinates », # with the origin at the base of the vertical member as
indicated in figure 3. For the usual case where ka sin < <1, it follows from the power series
expansions of the Bessel functions ./, and .J,, that

ka sin §
8

Thkasin §) = ’ (39)

S 7 i

Frcure 3. Coordinate system for describing radiation pattern.
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where terms in (ka sin 6)°, ete. have been neglected. Noting that the radiation field for the
vertical member in an 7, 8 coordinate system can be written

T he—i87 -
‘;:3]”1?),];7 —sin g, “0)

it follows that the resultant radiation field is given simply by

(41)

2 na2tn
H,~H: <1_(k(1) c;(os 0)}

neglecting terms of order (ka)*.
7. Conclusion

The results indicate that the earth currents near a monopole antenna are not significantly
modified by the presence of a symmetrical top loading. Therefore, in any calculation [4] of
the energy absorbed in the ground system, it is usually sufficient to consider only the contribu-
tion from the currents in the vertical members (downleads). Furthermore, the radiation pattern
of a loaded monopole at low radiofrequencies is essentially a dipole pattern being modified to
small order by the currents in the top-loading structure. The effect of unsymmetrical top
loading 1s considered in a sequel to this paper [5].

The author thanks Mrs. A. Murphy for carrying out the calculations and W. W. Brown,
A. D. Watt, and H. A. Wheeler for informative discussions.
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