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Capacity Requirement of a Mail Sorting Device 1 

B. K. Bender and A. 1. Goldman 

A mathema tical model of a sorting device suggested by S. H enig is considered . The 
relevant par~meters are. r (the .number of d est inations for t he ma il) a nd k (t he n umber of 
letters ent ermg t he devICe dunng each cycle of operation). It is shown t hat t he device 
will n: ver ja n: if i ts capacity is at. le.ast (r- l )(k- l ) +k .let~ers.; t his is t h e lowest p ossible 
capacIty r eqUIrement, and for realIstIc values of r and k IS slgDlficantly less t han t he pre
viously known est imate r2k. 

1. Introduction 

We deal wi th a highly idealized mathematical 
model of a mail sorting device sugges ted by S. H enig 
( BS Electronic Instrumentation Section) . For our 
purposes, the operation of the device can b e described 2 

as follows. Mail (to any of r destinations) enters 
the sys tem . After k lett ers have entered, the device 
" asks itself" to which destination it contains th e 
most letters.3 All let ters to this predominant destina
tion are then dropped out of the device, another lc 
lett ers enter , and the process continues. 

The device is said to jam if, after a dropout, it is 
s till so "full" that entran ce of the next k letters would 
cause an " overflow". We will determin e the mini
mum capacity required of the device to ensm e that 
no jamming occm s. This is of comse equivalent to 
determining (in t erms of rand lc ) the maximum pos
sible contents of the device under the dropout rule 
described above, and 'we shall work with this alter
native version of t he problem . The derivation in
v olves nothing more complicated than counting up 
letters, so t hat nonmathematician readers should be 
able to follow the arguments . 

2 . Statement of Results 

In order to describe om results, i t is convenient 
t o define 

.x(t)= number of letters in the device just before the 
tth dropou t . (1) 

A . Bruce Clarke 4 has shown that 

x(t ) ':5,r2k , for all t, (2) 

which proves that the number of letters in the device 
never exceeds r2lc , so that the device will never jam 
if its capacity is r 2lc or more. Clarke (see footnote 4) 
remarks that "this upper bound for x(t) is clearly much 
too crude to be of any practical use;" for example, for 

I Part of a project supported by the Post Office Department, Office of Research 
and Engineerin g. 

, The physical device can also operate under "dropoilt rules" other than the 
one descr ibed bclow. 

3 A rule for breaking " ties" between destinations is also required . 
• A. . Bruce Clarke, A mathematical model for the Henig sorting machine, partly 

oabstracted in Ann. M ath. Statistics 29, 622 (1958). 

the Philadelphia-mail-t ype data (with 1'= 200 , lc= 3) 
used for numerical illustration, it only informs us 
that the device will never jam if its capacity is 
120,000 or more. . 

As was pointed out by L . S. Joel (I BS Computa
t ion Labor~tory), the estimate (2) can be very much 
reduced usmg rather imple argumen ts. I t will in 
fact be shown that 

x(t ) ':5, (1' - 1)(lc - 1)+lc, for all t, (3 ) 

which proves that the number of letters in the device 
can never exceed (r - 1)(k - 1)+ k , so that a capacity 
of at leas t (1' - 1) (k - 1) + k will ensure that the device 
never jams. For the Philadelphia-type data, this 
shows tha t a capacity of 401 (rather than 120,000) is 
~ufficient.to pre,:"ent j.ammi~g. The proof of inequal
l ty (3 ) WIll b e gIven m sectlOn 3 . 

In addition, it will be shown that the device can 
jam if its capacity is less than (r - 1)(lc - 1)+k ; tha t 
is, i t is possible (under the dropou t rule described 
above) for the number of let ters in the device actually 
to r each (r - l )(k - l) + lc . In other words, the esti
mate in (3 ) is no t only an upper bound for x(t ) but is 
the maximum possible value for x(t ) : 

x(t)max POSB= (r - 1) (lc - 1) + k (4) 

This will also be proved in section 3. ection 4 con
tains some commen ts on the probabili tic aspects of 
the problem . 

3 . Proofs 

3.1. Proof of Inequa lity (3) 

It is assumed, of course, that the device had fewer 
than (r- l ) (lc - l ) + k letters in it at the star t of opera
tion. An "indirect proof" will be used ; th a t is, we 
can ten tatively suppose tha t (3) is false and show 
that thi supposition is un tenable. 

If (3) is false, there must b e a first value to of t (i .e., 
a first dropout) for which it fails. Since (3) is false 
for t= to but true for t= to - l , we have 

x(to»(1'-- 1) (lc~ l )+ k, 

x (to - 1) ':5, (1' - 1) (lc -,- l ) + k . 

(5) 

(6) 
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We continue the argument by pointing out two 
facts about the contents of the device directly after the 
(to- 1) -st dropout: 

(a) There are more than (r- l )(k- l ) letters in the 
device, and . 

(b) T here are a t leas t k letters in thc dcvice to 
some one destination. 

The truth of (a) follows directly from (5) and the 
fact that only k letters were added between the 
(to- l )-st and to-th dropouts . All letters to some 
destination left the device in the (to- 1)-st dropout, 
so that if (b ) were false the device would contain at 
most (k - 1) letters to each of at most (1'- 1) destina
tions, or at most (r - 1)(k - 1) letters in all, con
tradicting (a). Thus (b ) is true. 

From (b) and the dropout rule it can be seen that 
the (to- 1 )-st dropout consisted of at least k letters, 
so, examining the contents of the device just before 
the (to- 1)-st dropout, we have 

(number of letters to predominant dest.) ?:. k, 
and by (a), 

(number of letters to other dest.'s»(r- 1) )k- l ); 
the last two inequalities together yield 

x(to- l»(r- l ) (k - l ) + k , (7) 

which contradicts (6). Thus the supposition that (3) 
is false is untenable, so (3) must be true. 

3.2. Proof of Equation (4) 

vVe already know, by (3 ), that the device can never 
contain more than (r - l )(k - 1)+k letters. Thus, in 
order to prove (4 ), it suffices to exhibit a sequence of 
possible events leading to a situation in which the 
device contains exactly (r- l )(k - l) + k . Ther e are 
many such sequences, and the one described below is 
not necessarily the shortest one. 

The sequence will be constructed in two stages, 
beginning with the device empty at t= O. At the 
end of stage 1, t he device will contain k - lletters to 
each of 2 destinations and k - 2 letters to each of the 
other 1' - 2 destinations. At the end of stage 2, the 
device will con tain exactly (1'- l )(k - 1) + k letters 
and the proof of equation (4) will have been 
completed . 

Stage 1 : We suppose that the l' des tinations are 
numbered in some way. The sequence of possible 
events begins as follows: 5 The first k letters entering 
the device consist of one letter to the first destina
tion and k - l letters to the 1'th destination ; these 
last (k- l ) letters then leave the device in the first 
dropout. The second k letters to enter t he device 

'consist of one letter to the second destination and 
lc- l letters to the 1'th destination, etc. After the 
(r - l)-st dropout, the device contains no letters to 
t he 1'th destination and one letter to each other 
destination . The rth set of k letters to enter the 
device consists of one letter to the first destination 

,\ For a more formal description of the following process, let R (t) denote the 
remainder when t is divided by r-I, except that R (t)=r- l when t is a multiple 
of r-l, The for I~t~(r-l)(k-2), the k letters entering the device between 
the (t - 1)·st and tth dropouts are to consist of one letter to the R (t)·th destination 
and k- lletters to tlJe rth destination. 

and k-l letters to the 1'th destination, and the 
process continues as before ; after the (1'-1) (k- 2)-nd 
dropout the device contains no letters to the rth 
destination and k - 2 letters to each of the (1' - 1) 
other destinations. 

The k lett ers entering the device between the 
(1' - l )(k- 2)-nd and ((1' - l )(k - 2) + 1)-st dropouts 
consist of k - l letters to the rth destination and one 
letter to some other destination ; the device now 
contains k - 1 let ters to each of 2 destinations and 
k - 2 letters to each of the other 1'-2 destinations. 
In other words, if we define 

net) = number of destinations to which there are} 
k - 1 let ters in the device just before the (8) 
tth dropout, 

then we have 

n((r- l ) (k - 2) + 1) = 2. (9) 

The ((r - l )(k - 2) + 1)-st dropout will consist of 
k - 1 letters to whichever of the 2 destinations 
mentioned above is "preferred" by whatever tie
breaking rule is employed. After this dropout the 
device will contain no letters to some one destina
tion, k- lletters to some other destination, and k - 2 
letters to each of the 1' - 2 remaining des tinations. 

Stage 2: In this stage matters will be arranged so 
that 

for 
net) = n(t- l ) + 1 

(r- l)(k - 2) +2 ::=:; t ::=:; (1' - 1) (k - l ); 
(1 0) 

i.e., so that after each dropout there are k - l letters 
in the device to one more destination than before. 
If this is done, then by (9) and repeated application 
of (10) we have 

n((1' - 1) (k - l )) = n((r - l ) (k - 2) + (1' - 1)) =1', 

so that just before the (1'- 1) (k- l )-st dropout the 
device contains k - l letters to each of the r destina
tions. Then k - l of these 1'(k- 1) letters are dropped 
leaving (r - l )(k - 1) in all, and k new letters enter ; 
the device now contains (1' - 1) (k - 1) + k letters, and 
equation (4) is proved. 

To achieve (10) we choose the k letters entering 
the device between the (t- l )-st and tth dropouts, 
for t=(r - l) (k - 2)+ 2, (1' - l )(k - 2) + 3, . ., 
(r-l)(k - l ), to consist of k - l letters to the desti
nation just previously dropped out, and one letter 
to a destination which previously had k - 2 letters 
to it in the device. 

4 . Probabilistic Aspects of the Capacity 
Problem 

We have been concerned above with choosing the 
capacity of the device so that jamming never occms. 
In practice we might well have the more modest 
aim of keeping the frequency of jamming down to 
some tolerable level, and so could get by with a 
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malleI' capacity than that indicated by eq (4). On 
the one hand this leads to the "policy" question of 
what jamming frequencies are to be considered 
intolerable; on the other hand, it leads to the pmely 
mathematical problem of what capacity is needed in 
order to keep jamming below these frequencies. 

This last problem seems very difficult. As was 
pointed out (unpubli hed memorandum, July 1956) 
by J. R. Rosenblatt (I BS Statistical Engineering 
Laboratory), the behavior of the device constitutes 
a stochastic process (indeed, a Markov chain) 
governed by the probabilistic distribution of mail by 
destinations. The possible number of "states" of 
the device is very large (for realistic values of rand 
lc ), and the creation of analytic techniques for the 
treatment of Markov chains with a great many 
state appears to be one of the "underdeveloped 
areas" of applied mathematics . We know that the 
specific iV[arkov chain in the current problem ha a 
probabilistic "steady state" toward which the device 
"settle down," and the average number E (x) of 
letters in the device before dropouts , in this steady 
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tate, might serve as a very rough initial guide 6 to 
the capacity required of the device. Even the de
termination of E(x) seems far from easy ; we may 
note that the upper bound derived for E(x ) by a 
complicated probabilistic argument (see reference 
cited in footnote 4) yields the result E(x ) ~545 for 
the particular illustrative data used, whereas our 
eq (4) (which was not aimed at estimating E(x) and 
docs not use the probabilistic distribution of mail by 
destinations) can be combined with the inequality 

E(x) ~x (t)max P088 

to yield the harper result E (x) ~401 for the arne 
data. 

, T he fre quency of lar~e·a lll plilude osci llations aroune! this average must also 
be considered; at the vcr~r least, some in fo rm ation is required 011 the standard 
dev iation of the nu mber of letters in t he device. 

WASHIN G'l' OI, January 5, 1959. 
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