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Elastic Deformations in Strips With Holes Loaded
Through Pins

Michael Chi and L. K. Irwin

Bickley’s solution for the generalized plane stress in a plate loaded through a pin is ex-
tended to give the deformation at any point in a plate loaded through one or two pins which

are on the same load line.

Analytical expressions are derived that are known to apply to

a finite strip with a width >14a and distance between holes >&a, where a is the radius of

the hole.
cal cases.

1. Nomenclature

hole

K,,L:(',ongtnnh (*(})('Him(‘nts’, eg., Ki=¥%, Ki=—M},
K,=0, K;="2, Ki=0, etc.

E=Young’s modulus of (‘l(l\ll(ltV

G=modulus of rigidity, ST

1,

n=npositive integers from 0 to « in an infinite
series whose general term is f(n)

,=—a positive integer arbitrarily chosen to desig-
nate the first term of a partial series
p=maximum intensity of the pressure from the

pin on the hole
P=total force exerted by pin on the boundary
of hole
r,0=polar coordinates
s=partial sum of a series
u=displacement in radial direction
v=displacement in tangential direction
w,=displacement in longitudinal direction
w,=displacement in transverse direction
=shearing strain
e;=strain in radial direction
e—strain in tangential direction
p= Poisson’s ratio
p' =modified Poisson’s ratio in a generalized plane
stress problem, w/(1- )
o,—normal stress in radial direction
agp=normal stress in tangential direction
To—shearing stress

Numerical examples are developed and presented in the form of graphs for typi-

2. Introduction

The Toads applied to a plate can be transmitted to
other plates through joints which are made with
fasteners in holes. The loads produce shearing
stresses in the fd\t(‘n(‘lh which, in turn, produce com-
pressive or “bearing” forces on the boundaries of the
holes. The elastic stresses in the plate 1)10(111( red by
the boundary force on a hole, if solved, can be used
directly for the determination of the vlzlsl‘lg deforma-
tions. These deformations are of primary importance
in evaluating the suitability of different combinations
of materials and fasteners for acronautical structures.

This method cannot be applied to a strip of arbi-
trary dimensions loaded by pins because the general
solution for the elastic stresses in this case has not
been found. However, the problem of the elastic
stresses in an infinite plate loaded by one rigid pin
was solved by Bickley [1]' and the pml)l('m of ¢
plate with a circular hole at its middle subjected to
uniform unidirectional tension was solved by Kirsch
[2]. The stresses given by the solutions contained in
these papers are combined by superposition to ob-
tain the stresses for the problem considered here.
With the aid of these stresses, the deformations of
finite strips loaded through one or two holes located
on the load line are caleulated.

3. Theory

Bickley’s solution for the general plane stress func-
tion ¢ for an infinite plate loaded by one solid pin is:

o=a? |:AO log%+]3(,9+4-11 { " -0 sin 6~——“ " (log ~> oS 0}

+B1{

©

2

where 4, B,, C, and D,, are coefficients.

<1(>gb = %m 6}—{—0 ~ 0S8 6+1)1 —sin §

+>{a" 2 r="2 (A, cos mo+ B, sin mb) +a™ r=" (C,, cos mf+D,, sin mo) }:I (1)

l ! Figures in brackets indicate the literature references at the end of this paper
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The above expression satisfies the biharmonic
equation based on compatibility considerations [3,
p. 54],

1 02
(br2+7 br+r2 502>

and has single-valued deformations and stresses.

The stresses in polar coordinates in terms of the
stress function ¢ which satisfy the equations of
equilibrium are [3, p. 52]:

% 106
br2 r or

1 0%\
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o i @
__ 0 _1_%

=" or\r 06

The distribution of the forces due to the pin load is
customarily assumed to vary as a cosine function over

half the boundary of the hole [1; also 4, p. 123]. This
has been confirmed by experiment [1]. Since cosine
functions are even functlons we can represent the
distribution of the boundary forces on the edge of the
hole due to the pin by the Fourier cosine series:

1) :a—z'q-lriam cos mé. (3)

The coefficients are determined by a known distribu-
tion of boundary forces,

fO)=p cos 6, QSBS

=0 elsewhere.

Since the stresses at the edge of the hole must be
equal to the boundary forces, due to the pin, the co-
efficients in eq (1) may be determined by substituting
eq (1) in eq (2), performing the indicated partial dif-
ferentiations, and then equating the resulting stresses
at the edge of the hole to the forces, eq (3). If the
distribution, f(6), is assumed a('ting, tho stresses, eq
(2), become

=
1 /a\, 3+u a 1—u’ [a\?
P 1r<7">+78 ;(050 3 (;)cosﬂ
. m+
© ] S . I
+ > =T ’r+““ l( ) cos m0{9+m(1—m>}
2,4,6,...<« ,"2’_*_1 m
1/a\2 1—u' a a\’
- <};> —{—? ) € ) cos 0
- (4)
(o m+l .om—1 .
1} sin——7 sin T a\" . a?
‘ G SR 2 4 2 (; cos mf< —2-+4m 1—72
B m—1 m—1 ] =
o (]“M)(I . 1—u’ ay>3
Trg=2P T Sin 60— 3 ; cos 0
> 1 jsin sin
- > 5, ﬁ ( sm mf< m 1——~>
2,4,6,.. .« -
L 7n+1 m-l J
Since eq (1) was derived using plane strain theory, .
the above equations were made applicable for a gen- du 1 3
eralized plane stress solution by replacing Poisson’s Yl (o,—n'a5)
ratio, u, with p” which is equal to w/(14-u) [5]. -
In polar coordinates, the stress-strain-deformation v 7 , ;
relationships are e Tu=ra=p (@—p'or) ¢ (5)
Hoo on o 1
ro6 or r G’ )
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Substituting the first and second expressions of (4)
into the first part of eq (5) and integrating,

1 /
u:‘ffrdril 0=cnx|st:Ff<UT_” Uﬂ) "

similarly,
—5o |7 owto) to— [ @ —we dr ©)
—E r(ocg—p o, E. T,— M 0g) G )

By substituting (6) into the last of eq (5), it can be
shown that the constants of integration are rigid body
displacements [3, p. 189] and therefore may be set
equal to zero for the purposes of this investigation.

Thus far, only the infinite plate with the load ap-
plied through a pin at the middle and supported at
infinity [6] as shown in figure 1(a) has been con-
sidered. The complete solution of the problem, fig-
ure 1(c¢), is obtained by superposing the solutions of
two subproblems, figures 1(a) and 1(b). The prob-
lem of a plate with a circular hole at its middle and
subject to a uniform unidirectional tension, figure
1(b), 1s the well known Kirsch’s problem which can

[ RXR] YT Ry
T}IH? [
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Figure 1.
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problem (c).

Sketehes represent infinite plates.

(c)

Superposition of subproblems (a) and (b) to solve

Combining these two solutions, the equations for

be found in standard texts [3, p. 195].

radial and tangential displacements are, respectively,

14+u a 3+2u — (W) ( : 1—(/ )2513 i
F[_ . 7_—{-— log, >(0§ 1= 6 cos 0
@ m—1 1 m— 1 'I+1 I)’I <)7? / m-, ’
‘ l(g) sin = l +1+ . ,u 2 (I+4u") a Y cos mo
246 ... T m—1 m+1  m—1 m41 72 )
T (1 (lﬂ_ﬂ ) r (1+,U ™ U m (1+l-‘/) ro_ ’ (o 9
58 ot 138 ot BT 138 g 128 U +") cos 20
> ()
2 90’ (17)2 2 2
v:]_)g 1+2” +('u) sin 6— M(log, ~><]n 6+ e — )'i sin
E r 16 r?
© m—1 R ,’ n —}il ‘) R _I/I
. ( > { sin T sin 5 7r 1{ + (]+;f %_ A+p ) sill mo
2,4,06,...T m——l m-+1 J L m—l m-1 ,ZJ
{ s D ) g () «}»m 2] |

w is taken as 0.25 for the purpose of this investi-
gation.

The displacements in Cartesian coordinates can
be evaluated from the radial and tangential displace-
ments in polar cordinates by the following relation-
ship [4, p. 18]:

W= cos §—n sin 0
@®)

w,=1u sin -+ cos 6.

Therefore, the displacements at any point in the
infinite plate loaded through a pin can be found by
substituting eq (7) into eq (8).

The displacements thus obtained are meaningless
by themselves because they include an arbitrary
amount of rigid body displacements. The displace-
ments of interest are the relative displacements be-
tween the points in the plate and a chosen reference
point. The point, r=a, 6=0 is chosen as the

149



reference point. The displacement of any point is
taken to be the difference between the displacement
of that point as computed by eq (8) and the dis-
placement of the reference point.

The rate of convergence of the series in the equa-
tions for the displacements, eq (7), varies with the
distance of the point from the hole. The first five
terms were sufficient to give an accuracy within
one-half percent for the displacements at all points.
The relative displacements are the differences be-
tween large numbers of the same order of magnitude.
To insure sufficient accuracy in the final results, the
displacements in eq (7) were therefore carried to
nine significant figures. This involved, for example,
the inclusion of 6 terms of the series for the points
a distance 3 times the radius of the hole, 3a, from
the edge of the hole and 16 terms for points a dis-
tance 0.5¢ from the edge of the hole. For comparable
accuracy at the edge of the hole, about 100 terms of
the series would be required. To reduce the com-
putational task, the following Euler-Maclaurin For-
mula for computing the partial sum of the series was
employed.

ny—1 n (Zm

s=>, fm) + " foydn 4> K2 dn" f("’)] .
0 ng m=0 n ng+1

2d4n+1—p
T (4n?—1)2

In this case, f(n)=

4. Finite Strip With One Hole

In a plate of finite width, a hole close to an edge
of the plate may have considerable effect on the
stress distribution in the plate. The case of a plate
of finite width (strip) with a circular hole on the axis
of a symmetry was solved by a method of successive
approximations [7]. The method was later extended
to the case in which the hole is loaded through a
pin [8]. However, the strain expressions obtained
by this method were not suitable for integrating to
obtain the displacements.

For strips whose width is large compared with the
diameter of the hole, ratio of diameter of hole to
width of strip less than 0.15, the effects of the edges
of the strip on the stresses around the hole can be
neglected [9]. On this basis, the displacements of an
infinite plate due to a load applied through a pin are
assumed to be applicable to a finite strip without
serious error. Figure 2 shows the relative displaces
ments along the longitudinal centerline and the edge-
for a strip with one pin. The diameter to width
ratio is equal to 0.125.

5. Finite Strip With Two Holes

The stresses around a hole are influenced by the
presence of adjacent holes. The method of successive
approximations is again applicable to this case [10]
but becomes much more complicated for the case of
two or more holes with boundaries loaded through
pins.
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Fraure 2.  Relative displacements along the longitudinal center-
line and the edges for a strip with one pin.

As previously mentioned, the effect of a hole in a
plate is a local phenomenon, and the effects of ad-
jacent holes on each other can be neglected [9] if
they are sufficiently far apart; that is, if the center to
center distance of the holes is four or more times the
diameter of the larger hole. Thus for a spacing
exceeding four hole diameters, the displacement of a
point in a plate containing two holes loaded through
pins can be taken equal to the sum of the displace-
ments due to each hole taken separately.

The relative displacements along the longitudinal
centerline and along the edges of a strip with two
equidiameter holes located on the longitudinal center-
line and loaded through pins are shown in figure 3.
The holes are four diameters apart and the ratio of
the diameter of the hole to the width of the strip
equals 0.125.

6. Concluding Remarks

The analytical expressions and the computational
methods presented here are applicable for determin-
ing the elastic deformations of finite strips loaded by
pins when the effects of edges and interference be-
tween adjacent holes are negligible. Such strips
have widths >14a and distances between holes > 8a.
The examples for which deformations are shown in
figures 2 and 3 correspond directly to single-shear test
specimens widely used to evaluate the performance
of joints. Further studies should be made to extend
the range of these results.

This investigation was part of a project conducted
under the sponsorship of the Bureau of Aeronautics.
The authors wish to thank this agency for its support
of this work.
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Ficure 3. Relative displacements along the longitudinal center-
line and the edges for a strip with two pins.
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