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Heat Transter in Laminar Flow Through a Tube'

Milton Abramowitz,?

William F. Cahill,’ and Clarence Wade, Jr.?

The problem of heat transfer due to laminar flow of a viscous fluid in a channel is

studied under the assumption that there is a parabolic distribution of velocity.

The effect,

of axial temperature changes are considered and the solution is based on the simpler situa-

tion where axial effects are discussed.

The solution, obtained by the method of least squares,
is represented in terms of a set of nonorthogonal characteristic functions.

These functions

and the corresponding characteristic values are determined by numerical integration employ-

ing the Runge-Kutta procedure.
are useful in the limiting cases.

1. Statement of Problem

The present paper is concerned with the steady
state problem of heat transfer in a tube. The fluid
moves with a prescribed velocity profile, which is
parabolic in the present case. Thus the end effect is
not considered m the velocity profile. The heat
transfer is small and is supposed not to influence
the fluid motion. The wall of the tube is assumed
to be kept at a fixed temperature, 6;, while the
temperature of the fluid entering the tube is fixed
to be 6. The velocity distribution in the tube
whose radius is unity is defined by

V=20 (1C72) M OES 7=} (1.1)
where r is the radial distance from the center and
v, is taken along the z-axis which is the axis of
symmetry of the tube and v, is the average value
of »,. The equation of heat transfer under these
conditions is

629 100 0%
Y b K{ T b/ bﬂ} =)
with the boundary conditions
=6, for =0
g finite for z= »
6=0, for r=1. (1.3)

This problem has been considered [1]* under the
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Finally, asymptotic developments are obtained which

assumption that temperature changes in the a-
direction will be negligible so that the term 0%/0x
may be omitted. However, recent studies [2,3],
which have included the effects of this term have
exhibited solutions based on approximating the
temperature distribution by a series of Bessel func-
tions. In the present paper we propose to obtain
a solution by the method of least squares. The
boundary value problem will be solved by numerical
integration of the differential equation employing
the Runge-Kutta method. This procedure avoids
the use of special functions but employs the basic
concepts necessary to solve the boundary value
problem. The results obtained indicate that the
present technique may be employed in other prob-
lems of a similar nature.

Let us first put A=22,/K and Ne=z so that (1.2)
becomes

of 0% 106, 1 0%
) ot 612+r or A o2

(1.4)

while the boundary conditions (1.3) remain un-
changed except that z is replaced by &, We see from
(1.4) that when X increases the contribution from the
term 020/0# will decrease. By analogy with the
solution for A= = it is assumed that

O
0 — _Z A exp (an)y(ryzn):
1 1

n=

(1.5)

where the constants z, are the eigenvalues and the
functions y(r,z,) are the -eigenfunctions of the
boundary value problem

v y+{ zna—r?)}.u:o, (1.6)

NrnA=0 sere =1, (1.7)
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TABLE 1.

The eigenvalues—z,

n Aa=0 A=1 A=10 A=100 | A=10006 A=

1 2.405 2. (44369 6. 744051 7. 306909 7.313523 7. 313587
2 5. 520 5. 187345 30. 76791 44. 32333 44. 60653 44. 66947
3 8.654 8. 323452 59. 50344 111. 9926 113. 9009 113. 9210
4 11.792 11. 46137 89. 47665 208. 3608 215. 1669 215. 2447
5 14. 931 14. 60050 119. 9727 330. 8685 348, 3678 348. 564
6 18.071 17. 74037 150. 7501 476. 6471 513.4475 513. 890
7 21.212 20. 88073 181. 6979 642.7513 710. 3849 711.217
8 24. 352 24. 02119 212.7574 826. 6381 939. 7287 940. 551
9 27.49 27.16301 243. 9199 1024. 875 1196. 191 1201.87

10 30. 63 3C. 30613 275. 1170 1224.774 1464. 309 ; 1495. 20

11 33.78 33. 44743

12 36. 92 36. 50123

13 40. 06 40. 06675

a For A=0, z, are the zeros of the Bessel function Jo(z); the values for A= e« were taken from reference [4].

In order to have axial symmetry it is required that
y(r,\,2) be an even function of 7. Further, to deter-
mine the temperature distribution 6 in (1.5), we
determine solutions of (1.6) which constitute a
nonorthogonal set of characteristic functions y(r,
N\,22). It is noted that since z occurs quadratically
in (1.6) there are two sets of characteristic values.
It turns out that one set is all positive while the
other is all negative. However, in evaluating the
temperature distribution, we wish to have a solution
which is finite for £ infinite so we discard the
positive set of characteristic values. In order to
satisfy the condition =6, at £¢=0 we formally
assume the solution in the form

) ~ gAnw,zn), (1.8)

where f(r)=1 in the present problem. When
A= o, (1.6) reduces to the Graetz-Nusselt equation
and the functions +7(1—72), y(r,z,) constitute an
orthogonal set and the coefficients are determined
accordingly. In the present case where X\ is finite
the orthogonality property no longer holds. How-
ever, we may still determine the coefficients in the
sense of least squares. Consequently, we require

flr(l—rz) {f(r)—i‘iziny(r,zn) }2 dr—=minimum.
’ " (1.9)

The weight function 7(1—7%) has been introduced
so that the results shall be consistent with the
Graetz-Nusselt (A=) case. It should be noted
that the solution of (1.6) may be expressed in terms
of the confluent hypergeometric function. However,
to obtain the required results it would still be

necessary to consider the problem of evaluating

these functions. Instead, we propose to solve the
differential eq (1.6) directly using numerical inte-
gration. Differentiating (1.9) with respect to A,
we get the infinite system of equations

aA=34, (1.10)

where

a:[am]:[J: =) 92 y(r,zn)dr:l,

ﬂ=[5m]=|:J: r(1—72) y(*,2n) f(r)dr],

A=[A,lmn=12, . . .. (1.11)
2. Determination of z, and y(r,z,)

The solution of the infinite system is dependent
on the determination of the characteristic functions

y(r,2,) and the characteristic values z,. The power
series solution of (1.6) is
y(rrzn) ZIszkT%; (21)
k=0

where

1 /22 3 :
bo=1;b2:—;1‘ <F—Z>,4k bo - (22/N

—2)by—st2by_s=0. (2.2)

This representation was used to expedite the
numerical integration of (1.6). The Runge-Kutta
method [5] was employed starting at »=0.5 with the
value of #(0.5,2,) obtained from (2.1) with trial
values of z,. The results are given in table 1 (see
figure 1 for the characteristic functions correspond-
ing to A=10).
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Frcure 1.

3. Calculation of the Coefficients 4,

The integrals in (1.11) necessary for the determina-
tion of the solution A of (1.10) were evaluated with
Simpson’s rule using the characteristic functions
y(r, z,) calculated previously. We give the results
obtained for 3 cases. Since the matrices are sym-
metric we omit the elements above the main
diagonal.

NN — 1 —5

3951938 B —

849201 2472921 T

— 176352 606464 1804961

63431 — 133686 469689
=1, ==k

382270 - -

48645 239335 S

— 16907 43600 175401

7130 — 13791 37374

375196 § e S
15 234420 S I
=1l 26 170471 . ______
11 —28 39 133932 i .
=17 19 —43 66 110280
3 =32 33 =aii3 38
=14 =gy 120 157 158
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Thus for A=1, if we start with the approximations
28V =—5 and z{¥ = —6 to z, the following successive
approximations are obtained:

i y(1,2

1 =(g, 0 0. 2362897

2 =5, —. 6633393107
3 o206 . 1110549 107!
4 —5. 187761 . 14553281077
S —5. 187344 —. 4580215 10~°
6 —5. 187345 —. 23792381077

The improved value of z, was obtained by linear

interpolation as follows:

etV —zi y(l,2)—y(1,28") . -
zéj‘l)—2§f~’_y(l,2§"‘1’)—y(1,2;7>)’y(1’22> =0,

The efficiency of the method was dependent on the
choice of the initial values of z. Once some of the
eigenvalues were known, relatively good starting
values were easily found by extrapolation. In
performing the integration (1.6) was written in the
form

V==
w'=—r{(2*/N—2)+zr’ly

and the interval Ar=0.002 was ultimately employed.

It is noted that as N\ increases, the matrix o tends
to a diagonal matrix, i.e., the set of characteristic
functions %(r, z,) tends to an orthogonal set with
respect to the weight factor r(1—7?). Finally,
examination of the integrals which are the elements
of a and @ indicates that since f(r)=1, elements of 3
follow as a simple byproduct of the computation of
the elements of a.

Solving the system aA=p we get the values of
A, in table 2.

With the known values of A, we are able to test
the efficiency of the least square approximation.
The results are summarized in table 3.

We conclude from the above that the method
described yields satisfactory results for practical
purposes. In conclusion we shall give asymptotic
representations useful in the regions of small and
large values of N. These serve to confirm the
numerical results obtained previously.

TABLE 8. S Awy(r,z) ~f(r) =1

n=1
A=1 A=10 A=100 A=1,000
r

n=>5 n=8 n=>5 n=8 n==5 n==_8 n=>5 n=8
0 0.981 | 0.918 | 1.151 | 0.905 | 1.188 | 0.845 | 1.188 | 0.864
0.1 2937 | 1L.011 | 1.047 | 1.009 | 1.037 | 1.042 | 1.033 | 1.100
2 .909 | 1.004 | 0.935 | 0.997 | 0.921 | 0.972 | 0.922 | 0.961
.3 | 1.004 | 0.985 | 1.001 .992 | 1.042 | 1.033 | 1.186 | 1.178
.4 [ 1.100 | 1.023 | 1.057 | 1.010 | 1.040 | 0.965 | 1.036 | 0.963
.5 | 1,053 | 0.971 | 0.969 | 0.972 | 0.920 | 1.023 | 0.917 | 1.036
.6 0.965 | 1.032 .942 | 1.039 2997 | 0.997 | 1.004 | 0.974
Sl .990 [ 0.969 | 1.076 | 0.952 | 1.139 .964 | 1.142 .987
.8 .984 | 1.024 | 1.081 | 1.052 | 0.992 | 1.121 | 0.983 | 1.126
.9 .651 | 1.004 | 0.682 | 0.964 .539 | 0.758 .528 | 0.718

1.0 (O 0 0 0 0 0 0 0

4. Solution of (1.6) for Small Values of A

To obtain a solution of (1.6) in terms of Bessel
functions valid for small values of X we put aA=z
and obtain

Y 17y + e —an(1—r)ly=0.

Now if A—0, (4.1) becomes v’/ +r~'y'+a*>y=0. The
solution of the limiting problem is Jy(ay) Where oJ,
is the Bessel function of the first kind of order zero
and a;=7, are the zeros of J,.

(4.1)

TasLE 2. Values of A,
A=1 A=10 A=100 A=1,000
n
n=>5s n=8 n=>5 n=8 n=>5 n=8 n=>5 n=8

7 1. 5779 1. 6003 1. 5370 1. 5423 1.478413 1. 479273 1.476457 1. 476472
2 —0. 9629 1. 0527 —0. 9563 —0.9778 —0. 8126151 —0. 813778 —0.806192 —0. 806222
3 L5217 0. 8172 . 7559 . 8062 . 599728 . 606701 . 588885 . 588874
4 —. 4547 —. 6658 —. 5804 —. 6865 —. 488371 —. 501968 —. 475988 —. 475937
5 . 2995 . 5489 . 4038 . 5805 . 411076 . 419506 . 405103 . 405024
6 —. 4462 —. 4797 —. 390254 —. 355635
7 . 3450 . 3765 . 348450 . 318681
8 —. 2289 ‘ —. 2565 —. 303294 —. 287201

104



Thus, if we assume
Yy =yt Nn+Ny+ . ..
as(>\>:a08+)‘als+ )\2a23+ ... (42>

and substitute in (4.1) we find

1 1 : 972 . = g
10 =(G=572) 7 (i35 5 T+ i

42
1 1 1 7 59 .
am*g‘l‘ﬁ’ azs—ﬁ;*%ﬁ‘l'wg‘ (4.3)

Omitting further approximations we show the com-
parison considering the quantities a;; and ay;.

N —z(N) Approz. —2(N) Approx.

1 2.04437 2.04417 5. 187345 5. 18755

2 3.48773 3. 44802 9. 75388 9. 7570

5 5.68968 6. 0350 20. 4943 20. 462
10 6.744051 15.2 30. 7679 32. b2

5. Solution of (1.6) for Large Values of A\
Let us assume that
Y=y NNt
28()\> == 20$+ 213)\"'2—*‘ 2’2,;)\44*}‘ o el s
We then find that 1,(7) is the solution of the Graetz-
Nusselt equation and zy, are the corresponding eigen-
values which have been listed in table 1. Substitut-

ing in (1.6) we obtain a series of characteristic values
from which we find

§ Z1s 25
1 —66. 9260 1218. 6
2 —2897. 8 374103

A comparison of the results taking into account z;s
and z,; follows:

A —aN) — 2N
True value — Approx. True value Approx.
10 6. 744 6. 766 30. 8 53. 0
100 7.307 7.307 44. 3 44. 323
1000 7.3135 7.313 44. 6065 44. 606
© 7. 313587 44, 60947

The authors acknowledge suggestions and assist-
ance of Miss Irene A. Stegun in the asymptotic
developments obtained.
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