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Heat Transfer in Laminar Flow Through a Tube 1 

Milton Abramowitz,2 William F. Cahill,3 and Clarence Wade, Jr.3 

The problem of heat t ransfer due to la mina r flow of a viscous fiuid in a cha nnel is 
studied under t he assumpt ion t hat t here is a pa ra bolic distribution of velocity. Thc efl'ect 
of axia l temperature cha nges a re considered a nd t he solut ion is based on t he simpler s it ua­
t ion where a xia l effects are discussed. The solut ion, obta ined by t he met hod of least sq ua res, 
is represented in terms of a set of nonort hogona l characteristic fun ctions. Thcse functions 
and t he correspondin g charac terist ic values are detel'lnined by numerica l integration e mploy­
ing t he Runge-Kutta procedure. Fina lly, asymptotic d evelopmcn ts ar c obtained whi ch 
are useful in t he limi ting cases. 

1. Statement of Problem 

The presen t paper is concerned with the s teady 
s tat e problem of heat transfer in a tube. The fluid 
moves with a prescribcd velocity profile, which is 
parabolic in the presen t case. Thus the cnd cfl'ectis 
not considered in the velocity profile. The heat 
transfer is small and is supposed not to influence 
the fluid motion. The wall of the tube is assumed 
to be kept a t a fixed temperature, 01, while the 
tempera ture of the fluid en terin g the tube is fixed 
to be 00• The velo('ity distribution in the tube 
whose radius is unity is defined by 

(1.1) 

where r is the radial distance from the center and 
v" is taken along the x-axis which is the axis of 
symmetry of the tube and v,,, is the average value 
of V". The equation of heat transfer under these 
conditions is 

v 00 _ K {020 ! 01J 020} 
" ox - or2+ l' or+ox2 

wi th the boundary conditions 

IJ = Oo for x= o 

o finite for x= CD 

1J = 01 for 1' = 1. 

(1.2) 

(1.3) 

This problem has been considered [1] 4 under the 
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assumption that temperature changes in the x­
direc tion will be negligible so lhat the term. 02lJjox2 
may be omitted. H owever , recen t s tudies [2,3], 
which have included the effec ts of this term have 
exhibited solutions based on approximating the 
temperature distribu tion by a series of Be sel func­
tions. In the pre en t paper we propose to obtain 
a solution by the method of leas t squares. The 
boundary value problem will be solved by numerical 
integration of the differenti al equa tion employing 
the Runge-Kut ta method. This procedure avoids 
the usc of special functions bu t employs the basic 
concep ts necessary to solve the boundary value 
problem. The r esul ts obtain ed indicate tha t the 
presen t technique may be employed in other prob­
lems of a similar nature. 

Let us first put X= 2vm/K and X~=x so that (1.2) 
becomes 

(1-1'2) 01J = 021J +:!. 01J +~ 020 (1.4) 
o~ 01'2 r 01' X2 oe 

while th e boundary conditions (1.3) remain un­
changed except that x is replaced by ~. W e sec from 
(1.4) that when X increases the con tribution from the 
term 020/0!?' will decrease. By analogy with the 
solution for X= CD it is assumed that 

where the constants Zn are the eigenvalues and the 
func tions y (1',zn) are the eigenfunctions of the 
boundary value problem 

(1.6) 

y(r, X,z) = O for r = 1. (1.7) 
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TABLE 1. The eigenvalues-z n 

n >."=0 ~= 1 ~=10 :\=100 :\=100G X= co 

1 2.405 2.&44369 6.7440.11 7.306909 7.313523 7.313587 

2 5.520 5.187345 30.76791 44.32333 44.60653 44.6G947 

3 8.654 8. 323452 59.50344 111. 9926 ll3.9009 113.9210 

4 11.792 11.46137 89.47665 208.3608 215.1669 215.2447 

5 14. 931 14. 60050 119. 9727 330.8685 348.3678 348.564 

6 18.071 17. 74037 150. 7501 476. 6471 513.4475 513.890 

7 21. 212 20.88073 181. 6979 642.7513 710.3849 711. 217 

8 24.352 24. 02119 212. 7574 826.6381 939.7287 940.551 

9 27. 49 27.16301 243. 9199 1024.875 JJ 96.191 1201. 87 

10 30.63 30. 30613 275. 1170 1224.774 1464.309 1495.20 

11 33.78 33.44743 

12 36.92 36. 50123 

13 40.06 40.06675 

":For :\= 0, z. are the zeros olthe Bessel function Jo(z); the values for:\ = 00 wore taken from reference [4J. 

In order to have axial symmetry it is required that 
y(r,A, z) be an even function of r. Further, to deter­
mine the temperature distribution (J in (1.5), we 
determine solutions of (1.6) which constitute a 
nonorthogonal set of characteristic functions y(r, 
A, Zn). It is noted that since Z occurs quadratically 
in (1.6) there are two sets of characteristic values. 
It turns out that one set is all positive while the 
other is all negative. However, in evaluating the 
temperature distribution, we wish to have a solution 
which is finite for ~ infinite so we discard the 
positive set of characteristic values. In order to 
satisfy the condition (J = (Jo at ~= O we formally 
assume the solution in the form 

00 

fer) ~ :;8Any(r,zn), (1.8) 
n=1 

where fer) = 1 in the present problem. When 
A= 00, (1.6) reduces to the Graetz-Nusselt equation 
and the functions ..jr(l - r2), y(r,Zn) constitute an 
orthogonal set and the coefficients are determined 
accordingly. In the present case where A is finite 
the orthogonality property no longer holds. How­
ever, we may still determine the coefficients in the 
sense of least squares. Consequently, we require 

these functions. Instead, we propose to solve the 
differential eq (1.6) directly using numerical inte­
gration . Differentiating (1.9) with respect to A n 
we get the infinite system of equations 

aA= {3, 
where 

(1.10) 

a= [amn]=[J~1 r(1 -r2) Y (1',zm) y(r, zn) dr} 

J3= [J3m]= [ i ' 1'(1 -1'2) y(1', zm) f(1')d1'} 

A = [An],m,n= 1,2, .. .. (1.11) 

2 . Determination of Zn a nd y (r ,zn) 

The solution of the infinite system is dependent 
on the determination of the characteristic functions 
Y(1', zn) and the characteristic values Zn. The power 
series solution of (1.6) is 

where 

'" y (r,zn) = :;8b2k1'2k, 
k=O 

(2.1) 

dr = minimum. bo= 1,h2=-~ (~-z }4k2b2k+ (Z2/ }..2 

(1.9) -z) b2k-2+zb2k-4= 0. (2.2) 

The weight function 1'(1 - 1'2) has been introduced 
so that the results shall be consistent with the 
Graetz-N ussel t (}..= 00) case. It should be noted 
that the solution of (1.6) may be expressed in terms 
of the confluent hypergeometric function. However, 
to obtain the required results it would still be 
necessary to consider the problem of evaluating 

This representation was used to expedite the 
numerical integration of (1.6). The Runge-Kutta 
method [5] was employed starting at 1'= 0.5 with the 
value of y (0.5, zn) obtained from (2.1) with trial 
values of Zo . The results are given in table 1 (see 
figure 1 for the characteristic functions correspond­
ing to }.. = 10). 
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FIC U RE 1. 

3. Calculation of the Coefficients Aj 

Tb e in tegrals in (1. 11) necessary for Lb e de termina­
tion of the olution A of (1.10) were evaluated with 
Simpson's rule using Lh e characteris tic functions 
Y(l', zn) calculated previollsly. Vie give the r esults 
obtained for 3 cases. Si nce the maLrices arc sym­
metric we omit the clements above the main 
diagonal. 

" = 1, m = 11 = 5 

39519:38 
849201 

- 176352 
63431 

2472921 
606464 

- 133686 

,,= 10 , m = n = 5 

382270 
48645 

- 16907 
7130 

239335 
43600 

- 13791 

,,= 1000 , m = n = 8 

375196 
15 

- 19 
11 

- 17 
3 

- 14 

234420 
26 

- 28 
19 

- 32 
- 69 

170471 
39 

- 43 
33 

]20 
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1804961 
469689 

175401 
37374 

133932 
66 

-35 
157 

110280 
38 

158 

.9 

--------1 
--------J --------
1422473 

--------1 --------

--------J --------
138567 

93796 
- 186 

1.0 

--------l 
--------

--------J --------

--------
--- - ----

--- ----
81323 



Thus for }.. = 1, if we start with the approximations 
Z~l) = - 5 and Z~2) = - 6 to Z2 the following successive 
approximations are obtained: 

J 
~ (j) 
"2 y(l, z~j)) 

1 -6.0 O. 2362897 
2 -5.0 -.6633393 X 10- 1 

3 -5.219196 . 1110549 X lO- 1 

4 -5. 187761 . 1455328 X 10- 3 

5 -5.187344 -. 4580215 X 10- 6 

6 -5. 187345 -.2379238 X 10- 7 

The improved value of Zn was obtained by linear 
interpolation as follows: 

z~j+1)-zij) 

zi j l)-z~j! 

The efficiency of the method was dependent on the 
choice of the initial values of z. Once some of the 
eigenvalues were known, relatively good starting 
values were easily found by extrapolation. In 
performing the integration (1.6) was written in the 
form 

, 1 
y=-u r 

and the interval M = 0.002 was ultimately employed. 
It is noted that as }.. increases, the matrix a tends 

to a diagonal matrix, i.e., the set of characteristic 
functions yeT, Zn ) tends to an orthogonal set with 
respect to the weight factor r(1-r2) . Finally, 
examination of the integrals which are the elements 
of a and (3 indicates that since fer) = 1, elements of {3 
follow as a simple byproduct of the computation of 
the elements of a. 

Solving the system aA= {3 we get the values of 
A n in table 2. 

With the known values of An we are able to test 
the efficiency of the least square approximation. 
The results are summarized in table 3. 

We conclude from the above that the method 
described yields satisfactory results for practical 
purposes. In conclusion we shall give asymptotic 
representations useful in the regions of small and 
large values of A. These serve to confirm the 
numerical resul ts obtained previously. 

00 

TABLE 3. L.: A"y (r,zn ) "'-'! (r ) = 1 
n=l 

A=l A=1O 1.=100 A=I,OOO 
-----

T 
n=5 n=8 n=5 n=8 n=5 n=8 n=5 n=8 

------------------
0 0.981 0.918 1. 151 0.905 1.188 0.845 1.188 0.864 

0. 1 .937 1. 011 1. 047 1. 009 1. 037 1. 042 1. 033 1.100 

.2 .909 1.004 0.935 0.997 0.921 0.972 0. 922 0. 961 

. 3 1. 004 0.985 1.001 .992 1.042 1. 033 1.186 1.178 

.4 1.100 1.023 1. 057 1.010 1.040 0. 965 1.036 0. 963 

.5 1. 053 0. 971 0.969 0.972 0. 920 1. 023 0.917 1.036 

. 6 0.965 1. 032 .942 1. 039 . 997 0.997 1.004 0. 974 

. 7 .990 0.969 1. 076 0.952 1.139 .964 1.142 . 987 

.8 .984 1. 024 1. 081 1. 052 0.992 1.121 0.983 1.126 

. 9 .651 1. 004 0.682 0.964 . 539 0. 758 . 528 0.718 

1.0 0 0 0 0 0 0 0 0 

4. Solution of (1.6) for Small Values of A 

To obtain a solution of (1.6) in terms of Bessel 
functions valid for small vnlues of }.. we put a}..=z 
and obtain 

y" + r- Iy' + [a2-a}.. (1-r2)]y= 0. (4 .1) 

Now if A-'70, (4.1) becomes yl/ + r- l y' + a2y= 0. The 
solution of the limiting problem is J o(a,r) where J o 
is the Bessel function of the first kind of order zero 
and as = j. are the zeros of Jo. 

TABLE 2. Values of An 

A=l A=lQ A=I00 A=l,OOO 
n 

n=5 n=8 n=5 n=8 n=5 n=8 n=5 n=8 

1 1.5779 1. 6003 1. 5370 1. 5423 1. 478413 1. 479273 1. 476457 1. 476472 

2 - 0. Q629 1. 0527 -0. 9563 - 0. 9778 -0.8126151 -0.813778 - 0.806192 - 0. 806222 

3 . 5217 0.8172 . 7559 .8062 .599728 . 606701 . 588885 .588874 

4 -. 4547 -.6658 -.5894 -.6865 -.488371 -.501968 - . 475988 -. 475937 

5 . 2995 . 5489 . 4038 .5805 . 411076 . 419506 . 405103 . 405024 

6 - . 4462 -. 4797 -.390254 -.355635 

7 . 3450 . 3765 . 348450 .318681 

8 -.2289 -.2565 -.303294 - . 287201 
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Thus, if we assume 

(4.2) 

and substitute in (4.1) we find 

( ') _(1 1) J (.) 1 1'2 J ( 'r) +1'3 J ( 'r) y, 1 - -6-~ l' 1 Js1' -,)"""'2 2 Js -6 3 Js 
eJs ~ Js 

1 1 1 7 59 
alS=j+ 3j ;' a2s= 15j s - 90j~+ 90jf (4. 3) 

Omitting further approximations we show the com­
parison considering the quantities al s and 0'28 ' 

A -ZI(I\) 

1 2. 04437 
2 3.48773 
5 5. 68968 

10 6. 744051 

App1'ox. 

2.04417 
3.44802 
6.0350 

15. 2 

-Z2(X) 

5. 187345 
9. 75388 

20.4943 
30. 7679 

App1'ox. 

5. 18755 
9. 7570 

20.462 
32. 52 

5 . Solution of (1.6) for Large Values of A 

Let us assume tha t 

We then find that 110(1') is the solution of the Graetz­
N usselt equation and <'Os are the correspondin~ eigen­
values whieh have been listed in table 1. SUDstitu t­
ing in (1.6) we obtain a series of characteristic values 
from which we find 

s 

1 
2 

- 66.9260 
- 2897.8 

1218. 6 
374 X I03 

A comparison of the results taking into account <'I' 
a nd Z2s follows : 

10 
100 

1000 
00 

True value Approx. True value Approx. 

6. 744 
7.307 
7.3135 
7. 313587 

6. 766 
7. 307 
7.313 

:30.8 
44. 3 
44. 6065 
44.60947 

53. 0 
44. 323 
44. 606 

The authors acknowledge sugges tions and assist­
ance of Miss Irene A. Stegun in the asymptotic 
developments obtained. 
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