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Theory of the Effect of Drag on the Orbital

Inclination of an Earth Satellite
John PO Vint

The rotation of the earth’s atmosphere with the earth gives rise to a change in the
inclination of the orbit of an earth satellite. In this paper it is assumed that the drag is in
the direction of the air velocity relative to the satellite and that its magnitude diminishes
so rapidly with altitude that it is appreciable only near perigee in an elliptic orbit. With-
out further assumptions about the properties of the drag function, results are then deduced
for the secular changes in inclination up to, but not including, the final ballistic stage of
motion.

1. Introduction

Although the drag on an earth satellite is not well known, it is possible to express the
secular changes that it produces in the inclination of the orbit, in terms of easily measurable
quantities, provided only that the drag is given by a certain very general law. The present
paper, which was suggested by a note by Wildhack," gives a more complete treatment of the
problem, with more liberal use of mathematical methods.

2. Forces and Frame of Reference

If we adopt a Cartesian reference system with origin at the center of the earth and axis
directions fixed relative to the fixed stars, the following forces act on a satellite:

F,=inverse square gravitational force of the earth,

Fy=correction to F,, arising from oblateness of the earth,

F,=gravitational force of the sun,

F,=gravitational force of the moon;

F,,=inertial force arising from acceleration of the earth, produced by the sun,
F,,=inertial force arising from acceleration of the earth, produced by the moon,
F ,=drag force.

There are other forces, all of which may be disregarded as extremely small. Moreover,
F,+F; and F,+F;, are small compared to F,. We are thus left with the forces F,, F, and
F,.

The oblateness force F, has a secular effect on the orbit, inasmuch as it produces a secular
precession of the line of nodes and of the line of apsides. In considering changes in the in-
clination of the orbit, however, we are concerned with nutation and the effect of oblateness is
only to produce a small oscillatory nutation. We shall therefore be concerned only with the
forces F, and F,, up to that point where we find results dependent on the (oblateness-induced)
motion of the perigee. At that point it will then be sufficient to quote results by Garfinkel?
to find how oblateness influences the secular effect of drag on the inclination.

3. Fundamental Theory

With the above choice of reference system the center of the earth plays the role of a fixed
point and the angular momentum p of the satellite is given by

p=m rXF. (1)
Here m is the mass of the satellite, r is the radius vector to it from the center of the earth,
and r is the velocity of the satellite.

1 W. A. Wildhack, Science, 128, 309 (Aug. 8, 1958).
2 B. Garfinkel, Astron. J. 63, 88 (March 1958).
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As an orthonormal vector basis we choose k pointing northward along the axis of rotation
of the earth, i pointing in such a fixed direction that at time t=0 its extension pierces the
Greenwich meridian, and j so that j=kXi.

The orbit is a space curve, but it is natural to define the instantaneous plane of the orbit
as the plane of two successive radius vectors, i. e., as the plane of r and r or the plane perpen-
dicular to p. It is then convenient to define the directed unit normal to the orbit as a unit
vector 1, along p. The sense of the motion of the satellite relative to 1, 1s then given by the
right-hand screw rule. We then define the inclination 6 of the orbit as the angle between k
and 1,. (In terms of observable quantities 0 is thus the greatest latitude reached by the sat-
ellite in a revolution.) Then

p:])lll' (2)
where p=p| and
1,=1isin 6 cos ¢-+j sin 0 sin ¢-+k cos 0 (3)

the angle ¢ being the angle between i and the projection of p on the equatorial plane {i, j /.
Then p, 6, and ¢ are the polar coordinates of p.

The vector
1y=kX1, csc 6 (4)

1s a unit vector lying both in the equatorial plane and in the plane of the orbit, so that it points
along their intersection, the line of nodes. If 1, is a unit vector along r, it follows from (1)
that 1, is perpendicular to 1,. Moreover 1y is perpendicular to 1,, by (4), and so is 1,<1y.
Thus the unit vectors 1,, 1y, and 1,X 1y are coplanar, since they are all perpendicular to 1,.
If now ¢ is the angle between the radius vector and the line of nodes, so that

v=(~y, 1,), (5)
we have

1,=1y cos ¢y+1,X1y sin ¢, (6)

where the positive sense for increase of ¢ is from 1y towards 1, 1.
From (3) and (4)
1y=—1isin ¢+j cos ¢ (7)

KX 1y=—1i cos ¢—J sin ¢. (8)
Comparison of (8) with (3) shows that
1,=k cos 0—k X1y sin 9)

By (4) it follows that 1y is perpendicular to k, so that k, 1y, and kX1y form another right-
handed orthonormal basis, which turns out to be useful.

4. Changes of Angular Momentum
If F is the total force acting on the satellite, then
p=rxF. (10)
The secular changes with which we are here concerned are produced only by F,, so that for
our present purposes

I.):rXF{I' (]])

To find the rates of change of p, 6, and ¢, it is now convenient to express each side of (11) in
terms of the basis k, 1y, and k1.
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The left side may be so expressed by means of (2), (3), (7), (8), and (9), with the result
p=Kk(p cos 6—p sin 0)6-+1yp sin 0p-+k><1y(—p sin 6—p cos 66). (12)
5. Drag Force and Drag Torque

We assume the atmosphere of the earth to be rotating with it like a rigid body. If w, is the
angular speed of rotation of the earth, the velocity w of the atmosphere (w for “wind”’), relative
to the inertial system i, j, k, 1s

w=uwkXr. (13)
The velocity of the satellite relative to the inertial system is r. Its velocity v, relative to
the atmosphere is then

V,=I—W. (14)

We assume the drag force to be in the direction of —v,, with magnitude dependent on r and
the relative speed r—w/|. Thus

F.=f(|t—w|)(w—r). (15)

Equation (15) is the “very general law’ mentioned in the Introduction. If the drag is quad-
ratic in the air speed [t—w/|, then the function f is proportional to the air speed. No such
special assumption is needed, however, for the purposes of this paper.

The drag torque is now given by

rXF,=frXw—frXr. (16)
Now by (1)
r<r—np/m, (17)
by (13)
rx w—awr2k—1,(1,K)], (18)
and by (6) and (9)
I, =Kk sin 6 sin 41y cos ¢k X1y cos 6 sin ¢. (19)

From (16) through (19) it then follows that
r X F,=—fp/m-+fwrk(1—sin’ sin? ¢) — 1y sin 0 sin ¢ cos ¢ —k 1y sin 6 cos 6 sin* . (20)
This is the expression for the drag torque.

6. Basic Equations

On inserting (12) and (20) into (10) and equating corresponding coefficients of the basis
vectors Kk, 1y, and kx<ly, we find

D cos B—p sin 00— —fm~'p cos 0+ fwr?(1—sin? 6 sin® ¥) (21.1)
P sin 8-+ p cos 06— —fm~"p sin 6-F fw, 2 sin 0 cos 6 sin® (21.2)
P sin 0= —fw,r? sin 6 sin ¢ cos Y. (21.3)
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Multiplication of (21.2) by i=+/—1 and addition of the resulting equation to (21.1) gives, after
division by expif:

pipb=fm='p+fwrcos® ¢ exp(—ib)+cos 0 sin? ¥, (22)

from which there follow

p=fm~'p-+fwr? cos 0 (23.1)
])é: —fwr? cos? ¢ sin 6. (23.2)

Equations (23), together with (21.3), are the basic equations for the changes in p, 8, and ¢
that arise from the drag.

7. Stages of the Motion

We assume that the motion of a satellite takes place in three stages:

Stage (1): The motion is that of a precessing and shrinking ellipse, with diminishing
eccentricity, in which the elliptic elements are slowly varying functions of time. For our
present purposes the relevant elliptic elements /, ¢, and ¢, along with the related quantities
P, 75, and 7,, may be chosen as follows:

p=magnitude of the orbital angular momentum
[=semi-latus rectum
e=eccentricity
r,=—radius at perigee
r,—radius at apogee
¢ ,—value of ¢ at perigee.
The elliptic orbit is then characterized by the equation

r=I1-+4e cos(¢y—y,)] ", (24)
where
l=(GMm?*)~'p* (25)
and
p=mr¥j, (26)

M being the mass of the earth. From (24) it follows that

r,=Il(1+¢)"1 (27)
ro=Il(1—e)™! (28)
from which
[=2rro(rotr,)"" (29.1)
e=(ra—7y)(rat+r,) " (29.2)

Stage (2): A quasi-steady spiral stage, in which there are no apsides, so that 7 is small
and negative throughout the stage, and in which the speed » is given approximately by the
formula for a circular orbit without drag. With neglect of oblateness this relation is

v?= GM|r. (30)
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Stage (3): A final “ballistic’” stage, which consists of a rapidly diminishing spiral, and
in which » is not given approximately by the formula (30) for a circular orbit. Quantitative
treatment of such a final stage would require an accurate knowledge of the drag function, so
that we omit consideration of it in this paper, restricting our attention to the changes in
inclination that may occur in the first two stages.

We let 7 ,0and 7, be the initial perigee and apogee radiiin stage (1) and r, their final common
value at the end of stage (1). The quantity 7, is then the initial radius in stage (2), which we
take to have a final radius .. In any actual case the quantities 7, and 7, would be given as
initial conditions, while the radii 7, and 7, would have to be determined by observation—or
calculated with use of an accurate expression for the drag. For rough estimates of the order
of magnitude of the expected changes in inclination we shall here simply postulate arbitrary
values of 7,, and 7, and try to guess plausible values of 7, and ..

8. A Simplification

Oblateness is known to produce no secular change in the inclination 6, but only an oscilla-
tion with amplitude less than 0.05°.  Suppose we also anticipate a result of the present paper,
viz, that drag produces only a small secular change in 8, of the order 0.3°.  For a polar orbit,
with 6,=90°, we can then neglect the term in (23.1) that involves cos 6.

For any other orbit this term, although nonvanishing, is still small in comparison with
the term fm~'p. To show this, note that the ratio /2 of the two terms satisfies

R<mw*/p. (31)

With use of (26), it follows that

R< w Y (=~1/15). (32)
[f we neglect this term we need consider only the simplified system
]}j —fm~'p (23.1a)
p0= —fwr? cos? ¥ sin 6. (23.2)
9. Stage (2): Quasi-Steady Spiral Orbit

[t is convenient to treat stage (2) first. In this stage we shall assume that the change in
7 in one revolution is so small that we can neglect the corresponding change in f compared to
that in . Presumably / is proportional to the density, which in turn presumably varies like
K exp[— (r—r,)/s], where r,=mean earth radius=radius of sphere of same volume as the earth
=3,959 miles and where s is of the order 10 miles. Our neglect of the variation in f in one
revolution is thus equivalent to assuming that the corresponding decrease in 7 is somewhat less
than one mile. (Clearly it would not do to make such an assumption for stage (3), when 7
may be diminishing much more rapidly.)

To obtain the secular change, we can then “secularize’ the right side of (23.2) by replacing
cos® ¢ by %, thereby obtaining,

po= — 3 fwr? sin 6. (33)

Division of (33) by (23.1a) then gives

df/dp=Fme*p—* sin 0. (34)
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Note that the unknown drag function has now dropped out from the theory—in any explicit
form. In stage (2)

v=ny, (35)
closely enough, so that
p=mro, (36)

by (26) and (35). Equations (30) and (36) then yield

14 14 B erd
p=m(GM)"*r*. (37)

For convenience, we now define ¢, by
p=GM=g.r>, (38)

where 7,=3959 miles, the above mean radius of the earth, and where ¢, is a corresponding
effective value of the acceleration of gravity at sea level, free from centrifugal effects. Here

9.=32.224 ft/sec? (39.1)
(re/9.)**=805.4 sec. (39.2)

Then
D=7, er"e. (40)

From (34) and (40) it follows for stage (2) that

esc 0 do=0.25w,0," g, 1 dr (41)
and thus that
0, tan (6,/2) w, » . o .
2w = — A 1e o [r.) %2 — (r 3 3% 42
Ji cse 0 do—tn BB - g s [ (e (42)

where 7, and 6, are the radius and the inclination of the orbit at the beginning of stage (2) and
7y and 0, are the corresponding quantities at the end of stage (2).

AN Exampre: Suppose that the initial altitude in stage (2) is 200 miles and the final altitude
100 miles. Then

71=3959+200=4159 miles (43.1)
7s=23959-+100=4059 miles. (43.2)

We find
(rofr.) % — (ry/r.) = —0.03860. (43.3)

Then since w,=27/86,164 sec™!, it follows from (42), (43.3), and (39.2) that

tan (6,/2) y
" tan 6:2) 0.0003781. -

Thus 6, does not differ much from 6,. If we now put

Q=" (g ((rfr) %= (rafr >0 (45.1)
8,/2=n (45.2)
01/2=mnq, (45.3)
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then, by (42)

tan n=exp (—@) tan . (46)
To find from (46) a power series in @ for
that will be valid for all 6;, 6, in the interval (0, 7), we use the fact that 5 and 5, are almost equal
to each other, with each lying in the first quadrant, and proceed as follows. Multiply (46)

by 7 cos 1, and add cos 5, to each side.
The result is

€OS n, Sec n exp in=-cos 1,1 (sin n,) exp (— Q) (48.1)
= (exp imy)[1—1vy sin 5, exp (—1in,)], (48.2)

where
y=1—exp (—Q), (48.3)

a small positive quantity. Then
n—no=1Im In [1—7y sin n, exp (—in,)] (49)
= — sin g, cos 7,—0.5y* sin 2n, sin® gy4. . ., (50)
on expansion of the logarithm and selection of the imaginary part. Thus
AI=2(n—mny) = —7 sin 6;—~v?* sin 6, sin? (6,/2)+ . . . . (51)
With use of (48.3), this becomes
A= —@ sin 6,-+Q*0.5—sin? (,/2)] sin 6,+ . . ., (52)

which may be shortened, accurately enough, to

Af=—() sin 01:—-% (7e/Ge) 2] (1[1s) 2 — (ryfr,) *¥] sin ;. (53)
Then, since
% (r./g.)"4=0.009789 radians=0.5609°, (54)

we have, as our final result for stage (2):
t=l

Ab=—0.5609[(r1/r,) " — (ry/r,)*] sin 6, degrees, (55)

where 7,=3959 miles.
For the above example, where the altitude is assumed to diminish from 200 miles to 100
miles in stage (2), insertion into (55) of the numerical value 0.03860 from (43.3 gives the result

Af=—0.0217 sin 6, degrees. (56)

This is a very small effect.  We next consider stage (1), where we can often expect a larger
effect, but where the calculations are more uncertain.

10. Stage (1): Shrinking Elliptic Orbit

In stage (1) the density and thus the function fin (23.1a) and (23.2) are appreciable only
when the satellite is very close to perigee. In effect d§=0 and dp=0 unless r=r,. If we
divide (23.2) by (23.1a), the result is

ese 0 do=mwr*p~? cos® Ydp. (57)
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In stage (2) we denote initial quantites by the subseript 0 and final quantities by the subseript
1. The integral of (57) over the whole of stage (1) is then

tan (6,/2)

0, y 2
Q =In ——— % 77— 27 —2 2 =
ﬁ” cse 0 do=In tan (@,/2) mweﬁ70 722 cos? Ydp. (58)

In the light of the above remarks we may put
72 cos2 Yy=r2 cos? ¥, (59)

for any appreciable increment dp, with the result

/2 ’
n f:ﬁ Eg;’/g;:mwe ﬁ:l 73~ % cos? Y, dp. (60)

Now the perigee radius changes little even in stage (1), so that we shall not be far wrong if
we replace 7, in (60) by either 7, or r;. Let us therefore replace r, by the arithmetic mean

;:%(rp0+71)- (61)

In (60) ¥, is the angle between the line of nodes and the radius to perigee (the line of
apsides). When oblateness is taken into account (but not drag), the rate of change of ¢, isgiven
by Garfinkel (see footnote 2, eq. 53), whose result in the present notation is

¥, =3e(r,/l)’n(1—1.25 sin? 6), (62)
where

e=(1,—1,)/Mr?*=0.00109, (63)

the quantities 7, and /, being respectively the polar and transverse moments of inertia of
the earth. We have here replaced Garfinkel’s equatorial radius by our mean radius 7,, an
unimportant change. The quantity / is the semi-latus rectum, 6 is the inclination of the
orbit, and 7 is the mean angular velocity of the satellite in its orbit; i. e.,

n=(n/a*)*%, (64.1)
where the semi-major axis a is given by
a=Il(1—e) =3, +r,). (64.2)

With the use of (64), (62), (38), and (39), we find

¥, =3e(go/r)¥(r,/a)%(1—e?) ~2(1—1.25 sin? 6) (65.1)
=20.1°(r,/a)%(1—¢*)~%(1—1.25 sin® ) per day. (65.2)

As an example, suppose that r,,=(3959+4400) miles and 7r,,=(3959-+2000) miles and
let us guess that r,=r,=r=(3959-+200) miles. (This latter figure corresponds to the
beginning of stage (2), as assumed in our example above.) Then, by (64.2) and (29.2), a;=>5159
miles and ¢=0.1552, so that ¢=0.0241. Also a,=4159 miles and ¢;,=0. The factor
(ro/a)”(1—e*) =% then increases from 0.415 to 0.842, with a mean value of about 0.628. Thus

(¥ mean = 12.6°(1—1.25 sin’ 6) per day. (65.3)

This amounts to 12.6° per day for an equatorial orbit or —3.15° per dayv for a polar orbit.

Thus for a polar orbit the period of ¥, is about 3.7 months. If the lifetime of a polar-
satellite is less than this, it remains doubtful what to do about cos® ¢, in (60), although even.
then we can establish an upper limit for |6, —6,|.
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If stage (1) lasts for a year or more, then ¥, goes through a number of cycles in this state,
unless sin? 6 is too close to the value 0.8, for which the inclination 6=63.4°. If we consider
various possible orbits and let # approach 63.4°, the period of ¥, becomes greater and greater,
until at this critical inelination the angle ¥, would remain constant at its initial value during
the whole of stage (1).

For durations of stage (1) longer than a year and unless §=63.4°, however, we may find
the secular change in 6 by replacing cos® ¢, by 3 in (60), with the result

tan (6,/2)

D (00/2):0.57nwe72(p0_1—])f1) | (66)
=—0.50,(r/ge)"2(7[1)*[(re/r1) " — (r.fl0) ], (67)

with the use of (25) and (38). Here
151=0.5(ra' +730) (67.1)

from (29.1).

We may evaluate 6,—6, from the logarithmic tangent expression, in the same manner
that we found 6,—6; in stage (2). From (67) we find

0;—6=—0.5 L (04#63.4°) (68)
and from (60) we find
0,—0,=— L cos*y, (0=63.4°, with ¢, effectively constant). (69)
In (68) and (69) , , .
L=w,(rge)” T/re)* [(ro/r)” — (ro/l) . (70)
In any case
|0, — 60| < L. (71)

AN Exampre: We consider the case where the initial perigee and apogee altitudes are respec-

tively 400 miles and 2000 miles and assume that the final perigee and apogee altitudes of stage

(1) are both 200 miles. The end of stage (1) in this example is then the same as the beginning

of stage (2) in the previous example, so that the two examples together constitute one com-

pound example. The r,0=39594+400=4359 miles, 7,=3959-+2000=>5959 miles, 7, =7r,=

71=23959-+200=4159 miles, so that .=0.346°. Then, by (68) through (71), we have for
Stage (1) (In miles, perigee 400—200; apogee 2000-—200)

6:—6,=—0.173° sin 6, (6,%#63.4°) (72)
0;—0,= —0.346 cos® ¥ ,sin 6, (6, so close to 63.4° that ¢, 1s effectively constant.) (73)

In any case
16,—0,|<0.346° sin 6,. (74)

These results may be compared with those for
Stage (2) (In miles, altitude 200—100)
0,—0,— —0.022° sin 6, = —0.022° sin 6,
The over-all results are that
,—0,=—0.195° sin 6, (6,%£63.4°)

|605—0,/<0.368° sin 6, in any case.
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11. Summary

The motion of an earth satellite relative to the earth’s atmosphere produces a secular
change in the inclination of the orbit. In predicting this change it is assumed that atmospheric
drag acts in the direction of the air velocity relative to the satellite and that its magnitude
depends on the relative air speed and in such a way on the altitude that it is appreciable only
near the perigee, in the elliptic stage of motion. No other assumption is made about the drag.

If 6 is the inclination of the orbit, p the orbital angular momentum, m the mass of the
satellite, w, the angular speed of rotation of the earth, r the distance of the satellite from the
earth’s center, and ¢ the angle between the radius vector and the line of nodes, it is then
shown that cse 8 dd=mw,r’cos*ydp, to a good approximation, independently of the magnitude
of the drag.

The motion is separated into an initial elliptic stage, a quasi-steady spiral stage, and a
final ballistic stage. The secular change in 6 is deduced for the spiral stage by integrating the
above differential equation with use of an average value for r and the average value % for
cos’¢. For the elliptic stage the secular change is found by putting r*cos* equal to the perigee
value 1% ,c0s* ¢, in the above equation and then using some results of Garfinkel (see footnote 2)
concerning the motion of the perigee. Nothing can be said about the final ballistic stage,
however, without accurate knowledge of the drag.

The secular change A6 in the inclination, a quantity difficult to measure, is thus expressed,
for the first two stages of motion, in terms of easily measurable satellite distances. As an
example, it is assumed that a satellite, with initial perigee and apogee altitudes of 400 miles
and 2,000 miles, falls to an altitude of 200 miles at the end of the elliptic stage and an altitude
of 100 miles at the end of the quasi-steady spiral stage. If these data should happen to be
correct, then A8 would be —0.022° sin 6, for the spiral stage and —0.173° sin 6, for the elliptic
stage. The latter figure depends on the assumption that 6, is not close to the critical value
63.4°, for which there is no motion of the perigee relative to the line of nodes. In any case
the total [A8) would always be less than 0.368°, for the assumed satellite altitudes, before the
ballistic stage sets in. Once the ballistic stage begins, no predictions can be made by the
methods of this paper.

WasniNGgTON, September 15, 1958.
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