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Thermodynamic Properties of Gases at High
Temperature:

1. Chemical Equilibrium Among Molecules, Atoms,
and Atomic Ions Considered as Clusters
Harold W. Woolley

The equilibrium thermodynamic properties of gaseous mixtures at high temperatures
are treated by an extension of the cluster theory of Ursell, omitting the assumption of addi-
tivity of pair energies. An effective partition function is introduced, which is a convenient
function in expressing the increase of the partition function for the entire gas due to the
joining together of the parts of the cluster. The law of mass action and the dependence
of second and third virial coefficients upon the cluster integrals for pairs and triples of
molecules in a mixture have been obtained therefrom. Extension to a partially ionized
gas is made by incorporating Mayer’s cluster-based extension of the Debye-Hiickel theory.

1. Introduction

The calculation of the thermodynamic properties of gases at high temperatures involves
a number of special problems which may well be disregarded at more moderate temperatures.
The thermodynamic functions for a gaseous constituent in a mixture in chemical equilibrium
are usually calculated from a partition function definable as a sum of Boltzmann factors for
all states of the elementary unit of the constituent. The states of a single isolated molecule,
atom, or atomic ion may be arranged in some kind of joint or compound progression of quantum
numbers up through a range of moderate energies. For still greater energies, however, the
number of states associated with the physical system comprising the constituent is enormously
greater, with the states forming a continuum of values nominally of infinite extent, as the
constituent dissociates, rather than occurring discretely. At some elevated temperature and
beyond, the usual criterion for neglect of high-energy states based on the smallness of the
Boltzmann factor is not fulfilled below the dissociation limit. The infinity of states immedi-
ately encountered at this energy does not permit the continuation of the same type of sum of
states to indefinitely higher energies. A common procedure for avoiding the divergence which
threatens to occur involves the termination of the sum of states at the dissociation energy or
the inclusion of only that limited group of states above dissociation which still imply some of
the typical structure of the undissociated constituent.

A different procedure for avoiding this divergence difficulty is to be discussed, involving
the use of a method thought to have the merit of formal correctness, although it is admittedly
not the only type of analysis with this appropriate feature. For this purpose, a special kind
of partition function will be used, here to be termed an “effective partition function”. These
effective partition functions are related to the increase in the occupancy of states of a combined
unit due to the joining together of parts of the unit, putting it together from any of all of the
ways in which the unit may be considered as separated into component parts. The present
procedure comprises an analysis using clusters of the Ursell type [1] ' to specify the net
thermodynamic effects of particle groupings in the combinations involved in forming mole-
cules, atoms, and ions. As the populations of these clusters are measures of contribution to
concentration due to interactions among several particles, it is admitted that they can give
contributions of reversed sign if exclusion effects exceed the effects of combination.

The calculation procedure presented is a treatment of a multicomponent system including
the principal quantum effects remaining at ordinary or elevated temperatures. As such it is
in some degree a generalization of the treatments for pure substances given by Kahnand
Uhlenbeck [2], Kahn [3], and Kilpatrick [4], and for the nonquantum multicomponent treat-
ments of McMillan and Mayer [5], Fuchs [6], and Muto [7]. A restricting assumption of
additivity of pair energies, made in some of these treatments, has not been retained in the

! Figures in brackets indicate the literature references at the end of this paper.
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present one. The assumption is considered to be a rather good approximation for mixtures of
ordinary molecules but not universally for the many types of interaction occurring among
the chemically unsaturated fragments of molecules existing at very high temperatures.

Though the cluster integral procedure provides a way of avoiding divergence difficulties
associated with ordinary dissociation, there is a type of dissociation for which the separating
parts of the molecule or cluster are oppositely charged. The distribution of rotational states
for which such fragments occur as unexcited parts is similar to that existing when a single
electron is nearly separated from a positive ion. In the latter case, just below the energy at
which the continuum due to ionization begins, there is an infinity of discrete states, and each
level of the outer electron specified by the principal quantum number # is actually a group of
states whose number has 2n? as a factor. In the method of Urey [8] and Fermi [9], discussed
also by Fowler [10], the summation was halted at such electron orbits that at the given density
an orbit based on one atomic ion would just “touch” an orbit of a neighboring atomic ion.
Their method, which appears capable of extensive development and application, forms part of
the basis for a treatment of high temperature thermodynamic properties of a gas given by
Megreblian [11]. The method of Planck [12] involved the evaluation of a Gibbs phase integral
with simplifying assumptions. The present treatment is somewhat related to that of Planck
but takes some account of a known property of an ionic assembly in involving an exponential
Debye shielding function multiplying the long range Coulombic ionic interaction, such as oc-
curs in the Debye-Hiickel theory of electrolytes. In their theory of a plasma, Bohm and Pines
[13] made a canonical transformation to new coordinates of two kinds, one associated with
pure translational motions, and one associated with a short-range interaction showing at least
some resemblance to the Debye screened Coulomb potential. Of more immediate application,
Mayer [14] derived thermodynamic quantities for ionic solutions including all ring-type graphs
of interionic interaction, using an exponential shielding function multiplying the Coulombic
ionic interaction as a tool in the mathematical analysis. In effect, as shown by Meeron [15],
Mayer converted the calculated effect of interionic interactions asindicated by virial coefficients
from a nonconvergent form for the unscreened Coulomb potential to a convergent form with the
Debye screened potential and obtained also the well-known limiting law Debye-Hiickel term.
The avoiding of divergence in the integrals related to virial coefficients by using Debye screening
corresponds in some degree with the avoiding of divergence by Ecker and Weizel [16] who noted
that n, the principal quantum number for atomic states, must have an upper bound if the
electron moves in a Debye screened potential field. The correspondence is not that of identity,
however, since the virial-coefficient-type quantities receive part of their contribution from
regions of phase space above the dissociation, or ionization energy.

As to the arrangement of the present paper, section 2, which follows, presents a number of
items of cluster theory leading to the method of calculation used to treat chemical equilibrium
and the virial coefficients related to further clustering of the aggregations considered as the
chemical constituents. Many of the relations are so similar to those in earlier derivations of
cluster theory as clearly to form obvious extensions from them. A somewhat extensive dis-
cussion pertaining to an analysis in rather elementary algebraic form has been ineluded, how-
ever, which may serve to show the very simple physical meaning of the extended Ursell-type
formulas and thereby permit an easy inference of the essential correctness of the treatment.
The effect of quantization on the cluster integrals or effective partition functions for molecules
is also treated.

In section 3, formulas are given for the Helmholtz free energy for the gaseous equilibrium
mixture including molecules, atoms, and atomic ions, based in part on the ionic-solution theory
of Mayer and in part on the equilibrium theory of clusters of section 2. Formulas for the
equilibrium constants for chemical reactions which can occur among constituents are also given.
Expressions for other themodynamic functions for the mixture in terms of functions for its
constituents are given in the appendix.

Further discussion of the status of cluster theory, particularly in regard to its present
application, will be found in section 4.
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2. Application of Cluster Theory

Apart from effects associated with ionization, an accurate theory for the thermodynamic
properties of equilibrium mixtures of chemically reacting substances at high temperatures may
be directly formulated involving equilibrium constants identical with the quantum equivalent
of the cluster integrals of gas theory. In the nonquantum treatment, the Gibbs phase integral

=1 [ [exp ZETIAp e 2.1
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is analyzed according to the method of Ursell [1]. The extension to the exact quantum mechan-
ical treatment involves the replacement of the Boltzmann factor by a Slater sum so as to
provide an exact equivalent to

Q=%} exp %;; (2.2)

The treatment should give results similar to those obtained by Kahn and Uhlenbeck [2], and
Kahn [3], for a pure gaseous substance.
The theoretical analysis is made in terms of cluster integrals b, defined by

»: t ‘.'
Vb(,i)uli!:f- - -JU,nndsrs, 2.3)

with U, to be defined in terms of products of quantities W, to be described. * The number of
particles of type ¢z within a given cluster is /;, with the different types of particles extending to
1=t. This general cluster will be said to have composition (/;). The cluster is to be thought
of as subdivided arbitrarily into fragments, including every possible way of subdividing the
cluster. The number of particles of type z within a particular type 7 of fragment of the cluster
is to be indicated as (/,); and the number of fragments of type j by £,. Conservation of matter
then indicates that

ij(li) j:li (2.4)

for each type of particle in the cluster. The total number of fragments according to a particular
way of subdividing the cluster is

k=2k;. 2.5)
The quantity [/, may now be defined as the sum
1 W,q, \Ni ¢t
- — 1\k=1( 1! o o] 1
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with the factor ¢, arbitrarily separated to indicate an explicit counting of spin multiplicities
for the fragments, if desired. The summation in eq (2.6) includes products formed according
to every possible way of subdividing the cluster into fragments or groups of particles. Each
product term involves different W,’s which together involve once and only once each particle
of the cluster. W, represents the probability of occurrence of an isolated fragment ;7 of the
cluster in a given geometric configuration as a relative probability compared with the occurrence
of the fragment when there is no internal energy of interaction. Thus, W; will represent a
Boltzmann factor in a nonquantum treatment or a suitable Slater sum in a quantum treatment,
such as is indicated by

W,=TL(h*2mm:kT)*> Y pkexpl—en/kT]. 2.7
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The integral of the Slater sum for each fragment or group of particles provides the sum over its
quantized states, as far as quantized states exist, with the appropriate integral in the continuum
for the remaining contribution. A number, ¢, of states of like spin may have essentially
identical energy and then can naturally be counted together. The separation of this factor
from eq (2.7) as written in eq (2.6) is clearly arbitrary. When completely separated, the spin
t
factor I1q,% is the same as II (2s,-+1)% based on the individual spins of the constituent particles.
J i=0
The denominators II(/;);! under the W,’s in eq (2.6) occur as shown if the eigenfunctions in
i

eq (2.7) are regarded as not restricted by the exclusion principle but instead as having the full
number of states corresponding to the Boltzmann statistics as a limiting condition. If the
Slater sum were obtained exactly according to the exclusion principle, then a compensatory
multiplication by this factor would be required, as indicated in the theory for a pure gaseous
substance as given by Kahn and Uhlenbeck and by Kahn.

With the preceding formulation, the cluster integrals are the equilibrium constants for
cluster formation according to the equation

N ‘N, \b
I;‘”:b(mril (Z—V‘%> , (2.8)
where Vis the volume accessible to the gas, where NV, is the number of clusters of composition
(4;), and where N, is the number of separately occurring individual particles of type 7, 1. e.,
as ‘‘clusters’ of one particle. This result can be inferred in accord with the analogy between
the present case and the treatment for clusters for a single pure substance [2, 3]. Alternately,
the result can similarly be easily inferred from the nonquantum formulation of Fuchs [6], on
the grounds that the present formulation is equivalent except for its inclusion of quantum
effects. Further indication of the correctness of these equations will be presented later in this
section.

It is to be noted that the equilibrium constants of eq (2.8) are the theoretically exact
ones for a treatment of the real gas as a mixture of ideal gas components. Hill [17] has
pointed out that any modification of definition that would give clusters other than these
(he terms the present ones “‘mathematical clusters”), would eliminate the ideal gas law de-
pendence of each component cluster gas; this would not allow the simple mass action law of
eq (2.8). Excluded volume effects are automatically included in our theoretical formulation
at this stage and would not be added separately unless a compensating readjustment were
introduced to remove an equivalent quantity from the cluster representation. It may be
recognized that a cluster of a given composition can be called a molecule or free radical or ion,
or a group of such entities, according to the normal custom for nomenclature. If a molecule
happens to have various isomeric forms, the requirements of the particular application could
determine whether the different forms would be treated together or separately according to a
reasonable apportionment of accessible phase space.

The Helmholtz free energy for a mole of like clusters of type (/,) in the absence of
lonization may be represented as A=£k7InQ) with

Q=[QI1"[QuI"/N!
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The first bracket indicates @,°, the effective internal partition function, and the second in-
dicates Q,,, the translational partition function for a single cluster.
From eq (2.9) with eq (2.3) and (2.6), one may infer that the effective partition function

for the cluster may be represented formally as

Q= (— 1) k=DM Q% 2.10)
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with @, taken as
(2]‘ H([ J jvlr 27!'"1 k[) 15,’” (211)

in accord with eq (2.1) and (2.7), since each W, in eq (2.6) is a function of coordinates internal
to the fragment j.

Even though the equations given follow plausibly from earlier investigations, it may be
advantageous tv examine some of the relations in greater detail. By such a procedure we may
hope (1) to confirm definitely that the Ursell type formula is actually being extended cor-
rectly to mixtures with “‘non-additive” potentials, (2) to show that the structure of the cor-
rect Ursell-type formulas is simply that which provides the incremental contribution (per
cluster) to the state sum, due to the particles being in the cluster rather than present in other,
less combined forms, and further, (3) to obtain the result that the formation of a combined
cluster from two component clusters is strictly analogous to the combination of two particles
into a cluster of two, so that repeated application of a process analogous to calculating the
second virial coefficient gives an analysis concerning clusters of any degree of complexity.

Thus it is informative to compare the effective partition functions for two cases differing
in that in one case one additional particle is present within the cluster while in the other case
it is counted as present in the assembly without interaction with other constituents of the
cluster. The difference in magnitude between the state sum for the entire gas when the
particle is combined and its value when the particle is uncombined includes the effect of in-
serting the particle into every subcluster or fragment of the cluster involved according to eq
(2.6) or (2.10) for the effective partition function for the initial cluster. The numbers of sub-
clusters after insertion of a single particle into one of them include %;, of the type of the
receptor subcluster (initially there were k;,+1 of this type), £;, of the type of the product
subcluster (initially there were k;,—1 of this type). The number of single particle subclusters
for particles of type ¢ after addition of the added particle of this type is to be indicated as
k;,. The increment in the total effective partition function for the system including the
initial cluster and the added particle due to addition of the particle to the cluster will be indicated

by

Q(Liylsy - - - lgy - - )=0Qe(y,ls, . - . Lo—1,.. ), (2.12)
where 6 is an operator operating on Q“(ly, [, . . . l,—1, . . .), the effective partition function

for the initial cluster. The total contribution to the effective partition function of the com-
bined cluster formed by adding the new particle includes a contribution from each factor
of each term of the partition function for the initial cluster. From this it can be seen that the
numerical factors arising in use of the operator  are identical with those occurring in a
differentiation process. 6 can be represented as @, *—@;, in which @,* is an operator which
produces the ordinary partition function of a combined system when it operates on the
ordinary partition function of the partial system, as Q,*Q,=@,@,, while @, is an ordinary
partition function of the added particle.

Making use of eq (2.10) for the effective partition function of the initial cluster, the
effective partition function of the combined cluster obtained with this operator 6 is indicated
in accord with eq (2.6) and (2.11) using the corresponding (",/TTIII-! in terms of the W’s, now

to be written omitting the spin factor IT1(2s,+1):
B (H (/1,/). D) l: (k1) kk,, (k-—l)k»] 1.
/ e k=1 A A o J L n W g N M || Ko
[,II/ Z( 1) ) H H(/ ) ki Z (k},+1) (/q)]km%—z ]L__1+ J—1 (/(,k)
(2.13)

On the right-hand side of the equation, the expression before the bracket is the regular ex-
t=) ) t=)
pression for the combined cluster. The expression within the bracket includes contributions
of various kinds arising from the addition of the particle to various possible fragments of the
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initial cluster. For the first term in the bracket, coming from the insertion of the added par-
ticle to a subcluster, the factor k;,+1 in the numerator is due to there havingbeen thisnumber
of subclusters to which the particle might be added to produce one particular type of product
cluster. This modifies a particular product of the type preceding the bracket since there had
been a factor k;,+1 in the old factorial in the denominator and this factor now appears in the
denominator of the term in the bracket. Similarly the new factor outside has a new factor
k;, in a factorial in its denominator (included in one of the (k;)! factors) which is balanced to
the original by the %;, in the numerator of the term in the bracket. Also, a new factor (/,); is
in the denominator in front of the bracket (included as a net increase of one factor in the
general (/,),!) because of the k; indicating k;, instead of a former k;,—1, and this is balanced
in the term in the bracket by the (/,); in its numerator.

The other two terms in the bracket arise from the addition of the new particle as a separate
subcluster arising in the — @, term of the 6. For the initial cluster, the value of £ was less by
one than its value in such corresponding terms of the combined cluster, as are obtained using
the @, factor thus giving the opposite sign by (—1)* which, when combined with the minus
sign on the— @y, gives positive contributions within the bracket for both terms. The occurrence
of £—1 in their denominators is a compensation concerning the (k—1)!factor and is also due to
for the terms for the initial cluster being one less than for the combined cluster. The first of
these last two terms in the bracket has an origin somewhat analogous to that of its predecessor
but with @, involved rather than the combining @f. The prime on the summation sign is to
indicate that the summation is to include only those j’s for which the k’s do not represent k;,,
so as to obtain the count of the number of terms which had been involved for the @Qf, except
for those due to adding a single particle to a like particle. The effect of adding the separate
single particle subcluster is to increase the exponent in front of the bracket for single particles
q to k;, from k;,—1, its value in the initial cluster. To compensate for the matching extra
factor in the factorial expression in the denominator preceding the bracket, the value %;, occurs
in the numerator of the present term in the bracket. The last term in the bracket is likewise
analogous to the first term, with @, involved rather than the combining @%. This term counts
the number of separate occurrences in which the added particle enters into the formation of
clusters of two like particles. This term appearing as a balancing quantity to which the effect
of Qf is compared, has the factor k;,—1 for the number of initial subclusters in connection with
which this final comparison process arises. In addition, the numerator contains the factor k;,,
as in the term preceding, to balance the augmented factorial in the denominator of the ex-
pression preceding the bracket.

The quantities in the bracket may now be combined. For the first term, k;, occurs only
for the subclusters produced by adding the new particle to a previously existing subcluster.
Thus, it does not include j’s for single particle subclusters, so that

220 esp=2"(19 skes—ky=1li—kyq- (2.14)
For thesecond term, >3k k;,, the summation is over j’s for which the k;’s do not represent ;.
As the full sum >k, \]vould have been equal to k, >3k, is k—Fk;,. The three terms are now
readily combined ]as :

Zq—/Cja+ (k‘—kliql)_k@_*_

(qu_ l)qu’

— (2.15)

which reduces to /,. This is cancelled by the /, in the denominator after the bracket, represent-
ing an additional factor in the general factorial of the denominator needed to convert from
phase integral to partition function as indicated in eq (2.1). From this demonstration eq (2.6),
or its equivalent, eq (2.10), may be seen to be an appropriate extension of the ordinary Ursell-
type formula to mixtures. Thus, an effective partition function agreeing with the Ursell-type
formula may be generated relevant to the combined cluster, starting with an Ursell-type
formula for the cluster of one less particle by simply evaluating the increase in the net state
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sum due to counting an additional particle of the entire system as belonging to the cluster. On
the one hand, one may see this as a logically correct process to build up the effective partition
function, so that on the basis of the obvious correctness of the Ursell-type formula for small
clusters of one or two particles, mathematical induction permits one to regard the present
Ursell-type formula as clearly holding for clusters of arbitrary size and composition, but with
due regard for details of particle statistics as required. Alternatively, for one who finds the
present Ursell-type formula to be an obviously correct extension of the Ursell formulas previ-
ously known, the foregoing demonstration can show that the addition of a particle to a previous
cluster can be treated formally in the simple form of a second virial coefficient as indicated,
using the operator §=@Q7—@; with eq (2.12). It may also be noted that the joining of one
cluster with another to form a combined cluster may be treated similarly using an operator 6
built from effective partition functions

0=Q*—Qs5, (2.16)
since

Qo =0Q5= QL5 — Qo (2.17)

has a form identical with the pattern for obtaining the second virial coefficient for the effects
of interaction between the two clusters. Thus, the calculation of the effective partition function
for a diatomic molecule is directly related to and essentially identical with the calculation of the
second virial coefficient for the interaction of its constituent atoms, no matter whether one
regards the atoms as interacting particles or clusters of nuclei and electrons. Similarly, the
treatment for a triatomic molecule is directly related to that for a cluster of three particles such
as is involved in the cluster theory for the third virial coefficient. In all cases, states of higher
electronic excitation should be allowed for if significantly present and should be understood as
included in the present notation.

We now come to the particular advantage obtained by use of the effective partition func-
tions as defined in the foregoing discussion. The partition function for the complete gas as-
sembly can be written out readily when they are used in the analysis. Using total effective
partition functions @5=Q5(Q; yans) for a cluster for which the number of particles of kind
118 (;);, the partition function for an assembly involving N; particles of each kind 7 is

Qv =20 T0(@%)™m,\ ], (2.18)
(N)L j

with the sum including every kind of term consistent with the condition
>m, (1) =N, (2.19)

The most probable state may readily be found in the sense of determining the greatest term in
the sum. This may be done on the basis that, in the immediate vicinity of the maximum,
neighboring terms are almost exactly equal. If for a neighboring term, the number of clusters
of type j is taken as m;+mn; (where each n; is a small integer) rather than the m; of eq (2.18),
then eq (2.19) takes the form > (m;+n,)(l,),=N,, and the difference between the two is the

general conservation equation
2.ny(15) ;=0. (2.20)

The requirement that neighboring terms near the maximum be approximately equal gives

IL(Q5) ™"/ (my+n,)! =~ TL(Q))™i/m, (2.21)
J J;
which reduces to
IL(Q5)"=TI(m ;+n;) /m,!, (2.22)
j j
or
(@) ~ TIm, (2.23)
j j
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since m;>1 and n; is a small integer. By substituting @Q; ... for @5 and dividing by

11 V7%, the relation
=1

m; ”j j tran i \
H( V]> =TI(Q5)™ LZ]{/,J) (2.24)
J N\ J
is obtained. Since @y, contains V as a factor as shown in eq (2.9), or according to
Qitrans:‘a\(—l?)]‘y (225}
with
A(ll)J:h/(QW[Z (l I)Jﬁll]kj‘) 12, (2,26>
1

the right-hand side of eq (2.24) is independent of V, and by further reduction using items
relevant to eq (2.9), is equal to (b, ,)," and forms an equilibrium constant to which the
i Usly

product of concentrations on the left-hand side of the equation is equated. The reaction
equation to which this law of mass action is relevant is

2nY =2 'Y
2. nY =0, 2.27)

or

where n; represents both n}" and —nj, with Y, representing the chemical symbol for the type
of cluster (or molecule) referred to. For the reaction of formation of a single cluster (or
molecule) from elementary particles or clusters, the mass action equation can be reduced to
eq (2.8), with N, corresponding to the m; of the equations just concluded.

If the representation of gas properties is carried out directly in terms of particular kinds
of clusters, then these clusters may be considered afresh as the constituents of a gas mixture
whose interactions lead to the virial coefficients for this mixture gas. These virial coefficients
for the gas are of course related to the cluster integrals—or the effective partition functions—
for the clusters formed among its constituents. An adequate theory representing their effects
formally can be given using the grand partition function. Exactly the same results may be
obtained in the present case, however, by noting that the gas acts as a mixture of ideal gases
subject to chemical equilibrium, as shown by eq (2.24). Then, the pressure of the gas is the
sum of the partial pressures of all kinds of clusters of the constituents. Similarly, the net
concentration of any kind of constituent particle is proportional to an analogous sum in which
each term of the pressure sum is multiplied by the number of that kind of constituent particle
in the corresponding cluster. While the various terms of these two expressions are expressible
using cluster-integral-type or effective-partition-function-type equilibrium constants, multiplied
by products of powers of density-type fugacities of the various constituents, the ideal-gas-
type relations which apply to each constituent permit the density-tyvpe relations which apply
to each constituent permit the density-type fugacity to be equated to the quotient of the partial
pressure of the constituent, divided by k7, so that

i

N\ @i
,%’T=;[bu,abljl <l%w (2.28)
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The mole fraction of constituent 7 i1s z;=N,/N. The process of eliminating the fugacities
(pi/kT) from the expression for pV/NkT is more involved than that for a pure substance
[18]. Using b;; and b, as the cluster integrals b, for two particles < and j and for three
particles 7, 7, and k, respectively, the first two virial coefficients are obtained as

B=232 2B, (2.31)

and
C=2.2.222:2;2:Cy, (2.32)

with
];7']‘: —4’7\Tb1]', (2'33)

and with
Z\/ .

('zﬂ» [4b1]b1k+4b1kbl\]"1 4bklsz - szk}' (234)

Higher virials may similarly be obtained, but much less readily due to the proliferation of
algebriac expressions in the transformations. Even for the third virial, the problem of non-
additivity of pair potentials arises. For pure substances, Rosen [19] found nonadditive effects
in the three helium atom interaction, Axilrod [20] has found such effects for the dispersion
energies, and Jansen [21] has examined the entire problem at some length. Kihara [22] also
has recognized the problem and has made use of Axilrod’s results in estimating the effect on
third virials for the pure noble gases. For gas mixtures, the problem is of added complexity
as it involves the estimate of interaction between two unlike constituents as well as the non-
additivity among all the differing kinds of constituents considered three at a time, alike and
unlike. In applications at elevated temperatures where the constituents may be other than
ordinary stable substances, nonadditivity can be expected to have large effects. Where the
prediction of properties of a gas mixture using rigorous theory is particularly impracticable,
the use of empirical mixture rules becomes a natural expedient.

If one attempts to obtain the effective molecular partition functions from second virial
or cluster integral calculations, a classical type calculation may be simplest and thus might
most naturally be used, with potential functions based on empirical spectroscopic constants
and other known facts. Corrections for quantization effects in such cases would also be needed.
A study of the effects of the change of spacing of levels when the quantum of action, £, is
considered as approaching zero, as discussed in Appendix 1 (section 5.1) shows that the quantum
effective partition function (referred to the lowest quantized level) may be obtained approxi-
mately at high temperature by multiplying the classical effective partition function (referred
to the classical zero energy) by the correction factor,

{1+112,f}[zd<d+1>r“+2>:ddx<3 wioi ' —o0) 41 =50 (i) Sk

w (¢

¢ iWi 9 9K
+5766<k [Z(nd +2)d, wﬁ—lOZde w? w]:l} (xpk[ g’ (2585)
where for nonlinear polyatomic molecules
f=2>"q;+320d0 (A7 o+ B o + 0 o) + (24,+2B,+2C,— A, B.C; '— B.C A Y,

while for linear molecules

f:22 !]ii+Zdiwi]g; la;4-4B,.

The constants in these expressions follow the usual spectroscopic notation with vibrational
energy given by

(e (o 3P )4
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with rotational constants

A=A~ < ‘;

B—B —Zal< 1)

()

B,=B~%a; <z-,+‘»;—f

for the nonlinear molecule, and

for the linear molecule. The diatomic molecule may be regarded as a special case of the
linear molecule. The terms purely in v, in the bracket in eq (2.35) amount to a simple exten-
sion of a result which Herzfeld and Teller [23] obtained by the method of Wigner and Kirkwood,
and which others have used in other forms [24, 25]. Except for form, the terms linear in
helkT agree exactly with the result of Mayer and Mayer [26] for diatomic molecules. It will
be noticed that if the two kinds of partition functions, quantum and classical, are to be
referred to the same zero of energy, say the classical zero or the zero of the potential energy
function, then the additional required factor exp [(—he/kT) Gy, where Gy is the zero point
energy, removes the factor of exp [(he/kT)Z(w!d,/2)] of eq (2.35) and replaces it with an expo-
nential factor based on the much smaller anharmonicity constants. Thus, for such a quan-
tization correction, the zero point energy might be considered as not being involved. The
detailed procedure of taking a calculation with the zero of energy with the cluster particles
dispersed and adjusting to a zero of energy at the lowest quantized level for the cluster to
conform with custom in the tabulation of molecular thermal functions involves, in addition
to eq (2.35), the use of the factor exp [(—he/kT)D,|=exp [(he/kT)(Dy+ Gy)]. This gives as the
combined correction the expression in the bracket in eq (2.35), multiplied by exp [(—he/kT) Dy)
exp [(he/kT)(2{wd;/2}— Gy)]. In the adoption of eq (2.35) as the approximate quantization
correction, not only has the existence of other than Boltzmann statistics been ignored as of
no importance in caleulations at high temperature and up to moderate densities, but also the
quantization correction contributions associated with fragments of the cluster have also been
disregarded, since at moderate temperatures the net quantization effects due to the fragments
would be very small because of reduction due to powerful Boltzmann factors.

The molar thermal functions for molecular-like clusters according to this formulation are
to be consistent with

A=—kTInQ (2.36)

as in eq (2.9), but with each effective internal partition function Q¢ including its appropriate
quantization effect given by eq (2.35) and also multiplied by exp (—he/kT) D, so as to be based
on the usual molecular zero of energy.

In eq (2.17) it is indicated that the effects of interactions between two different clusters
or between a cluster and a particle may be indicated formally as a cluster integral for the
joining of the two parts into a combined cluster. In making use of this principle as a guide
in obtaining approximate thermodynamic functions for a gas mixture, it seems appropriate
to emphasize its indication of the permissible arbitrariness of assignment of regions of phase
space either completely to the formation of the combined cluster (in the style of the so-called
mathematical cluster), or partly to the combined cluster (now possibly called a physical
cluster), and partly to a second virial type interaction between the two parts of the cluster.

One application of this principle is in regard to the effective internal partition function
for the interaction of two atoms forming a diatomic molecule. One alternative is to use the
entire effect in this partition function and the corresponding thermodynamic functions. On
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the other hand, any part of this partition function may be used in obtaining the thermody-
namic functions for the constituent, provided that the remainder of the effective partition
function is retained as contributing in its appropriate way to the second virial type interaction
between the corresponding atomic constituents.

Somewhat similarly, the combination of an added outer electron with a positive atomic
ion to form an atom or a positive atomic ion with one unit less of charge may also be treated
in good approximation using an arbitrary subdivision of phase space. In a gas in which
considerable excitation of levels near ionization occurs, there is also considerable formation of
free ions, for which the effective interaction potential in the assembly as a whole may be taken
as the Debye screened Coulomb form. Meeron [15] has shown that the nonquantum-
mechanical treatment of Mayer [14] for ionic solutions can be given this simple interpretation,
using quantities corresponding to second virial coefficients, even though expansion of higher
order terms would not be the equivalent of a higher virial evaluation using the Debye screened
Coulomb potential. Application to a high-temperature gas involves details of quantized
states of the combined atom with ionic screening to which the approximate treatment by
Ecker and Weizel [16] is relevant. Further discussion of this subject may be presented in
a later paper. It would appear that a conventional sum of states for the atom up to some
moderate principal quantum number of the outer electron should be acceptable provided that
the remainder of the effective partition function be used in obtaining corrections for equation
of state quantities. A very different division of phase space has been used in the treatment
which will be presented in the following section and in the next paper of the present series.

As the virial coefficients based on additive pair interactions as used by Mayer [14] in
deriving quantities for his theory of ionic solutions are consistent with the cluster integrals
for the Cloulombic interaction, since this is additive, it is possible to treat the effect of ioni-
zation using Mayer’s classical ion-solution theory, which he arranged primarily for an assembly
of ions with each pair separated by a distance greater than its particular sphere radius. The
interior of each ion sphere is a region actually accessible to the electrons of the system, as they
can enter and become energetically attached so as to form ions of various numbers of electrons.
As each such group is a cluster of particles, one would wish to evaluate contributions to the
Ursell integrals for electrons within the sphere but with such quantization corrections as
would be needed to approximate the effects due to the discrete states of the ions. Unfortu-
nately for purposes of evaluation, the integrand of the general integral for the many-particle
case 1s of such complexity and the integrals are so highly multiple that precise direct evalua-
tion according to this procedure appears impossible. It is therefore appropriate to make use
of convenient approximations. The effective partition function may be estimated approxi-
mately using the observed and estimated low lying quantized states with classically estimated
contributions from higher energy regions of phase space within the assigned radii. These
may depend on the representation of effective potential-energy functions, with simplifying
approximations made possible by partial compensation for cognate fragment terms in the
cluster integrals.

Because the thermodynamic functions obtained are specifically arranged for use with an
ionic-gas treatment based on Mayer’s development of ion-solution theory with specific values
for the ion radi, it seems appropriate now to summarize the results of his approximate
treatment when applied to such an ionic-gas mixture in chemical equilibrium.

3. Ionized Gas as an Ionic Solution

The nonquantum-mechanical theory of ionic solutions given by Mayer [14] retains terms
applying to ions free to move to any accessible pair separation greater than their collision
radius. By also including the contribution of Mayer’s eq (46) due to the departure of the
non-Coulombic pair potential from rigid-sphere form, an approximate expression consistent
with the terms retained in his original derivation may be obtained. On this basis, the
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Helmbholtz free energy for the gaseous assembly of molecules, atoms, atomic ions, and electrons
with the accompanying thermal radiation may be taken approximately as

—A[RT=(V/Vy) { S0, [(—AYRT),—In C—In /T2 w4 (SZC) e (DT) 4 (No/ V)

v v i NO “ 92 )
2(222(*) ZZ Z (——1) ( (WZ 7‘131 [bv(‘pw)+gy(¢s7)]+;Z(.§(yr VO.[) hsr27rllsr(lhsr

s=1r=1,=,0

8= kT3 V,
47:: h'; ) A,}—f—A(—‘—Al/IIYY), (3 1)

+[ h2e? ) M—-~ 34 ]\7 v2+

120 mk2T? V, 32 <7rka

where O, 1s the O representing electron concentration and where terms are given for the
first-order quantum corrections for an electron gas including Fermi-Dirac statistics [27, 28] for
electrons.
The symbols used in the present ion-solution equations have the following meanings:
(’;=concentration relative to that of a pure ideal gas at standard conditions, i. e., ;=
N Vi/N,V,
Zs=rionic charge of each ion of type s, in protonic units,
e=celectronic charge,
D=-ceffective dielectric constant, ~ unity for low density,
k=DBoltzmann constant,
asr =0, DET/E,
a,=collision radius for ion s and ion 7.
b,(¢), 0.(¢), and h,(¢) are functions defined and tabulated by Poirier [29]. The argument of
these functions is defined by

o, (O 22 0 N,
‘)Q\'r_ a(D%[ ) = 0> =Ky,

where k=472 72C/DkT, as known from the Debye-Hiickel theory.

The omission of by, ¢g;, and A, (h, appears in appendix 2) on the basis of net electrical
neutrality for the complete assembly is acceptable in case there is but one value of a,, the case
for which Poirier’s tables were prepared. If there are several values of a,, then cancellation
does not occur in general for ion separations between the least and greatest a,,. Evaluation
of the net contribution may then be based on the explicit expressions

bilp) =21e~¢[1+p—1—1
(o) =3¢ (1t o+ 30 —3
and

h@=3—3¢"°[1+ot+30—3.

A(—A/RT) has been included to account for any further corrections omitted from the equation
of state. As pointed out in the preceding section, nonionic equation-of-state effects at low and
moderate density may be treated by cluster theory and could be accounted for by including all
clusters as separate new constituents in the first term in the brackets in eq (3.1).  Alternatively,
the effects may be indicated in accord with the usual procedure employed to obtain thermo-
dynamic corrections for nonideality. Thus, one might use

11 A ,@ﬁi 0* £])777T)0 Y P <
) so+GR o+ ea - ] 6

where B— By, C—Cj,, and D— D, represent additional parts of the virial coefficients required
over and above the zeroth order values implied by the remainder of the ion-solution-cluster
treatment being used. Corrections to a nonvirial type representation could similarly be
provided.
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The quantity h,, in eq (3.1) has the value

BT /e i
exp {l:—( \\.,4,-])[.,” (1—e—*E )]//x,l};

for 0< R,,<a,, and the value

{I: I\,—{—DI" ' 1—(/‘“3")]//5’['}—0\[)

for a,,< R, < . In the present method of describing effects between ion cores and an outer
electron, Ay, will be taken as zero in the range 0<2;,<a,,, since this is a region which con-
tributes to the internal sum of states determining the A°/RT), for the corresponding
constituent of ion core with outer electron, and the effect is taken into account by that means.
If a,, is well chosen for the approach of two atomic ions, Ay, can be small in almost all of both
regions, as pointed out by Mayer for his closely related k... Thus for R<a,, h,, is small
because the pair potential {7, is very large; while for 2 >a,,, it is small because U/, is almost
identical with Z.Z,¢&/DR.,.

If the contribution within the braces of eq (3.1) due to h,, for the interaction of ions of
like charge is to be based on the use of a Debyve sereened Coulomb repulsion for 2, <a, as
well as for 2, >a,,, it may be given as

27r o A”
.; ¢ 11—

(]u st @vry

with

2 DO I T

Formulas for ¢,(x) are given in Appendix 3 (section 5.3).

Equation (3.1) has been written in rather general form which allows it to be used in more
than one way. An approximate treatment for an assembly including atomic ions under condi-
tions of high-ion density may be obtained by choosing a single a4, to apply throughout or a very
small number of different a,,’s, with suitably limited sums to represent the internal partition
functions. IFor conditions of relatively low density, however, it may be desirable to use
internal partition functions for the atomic ions based on an extensive set of levels extending to
moderately large electron separations. The so-called “collision radius” between an electron
and an atomic ion could in principle be taken correspondingly large in this case, but with the
added detail that the »%, or initial index in the summation in eq (3.1) and in similar expressions
in Appendix 2 (section 5.3) would be greater than zero, signifying free entry into the ion sphere
for this one case rather than having a zero value signifying the exclusion from the ion sphere
such as is used in regard to the close approach of two atomic ions.

Calculations concerning the concentration of the various constituents of the gas mixture
under conditions of equilibrium can be made based on this 1on-solution LI‘(‘llIn(‘lll according
to well known principles. Thus, we may consider a stoichiometric chemical reaction among
substances Y, with stoichiometric coefficients 7,y and n,,, in the reaction equation (c.f.,
eq (2.27))

Zn ks’ Y.«‘*Z'Lks” )7.\-";
which may be written as

anslvs:o, (;;)

with 7, representing both 7,y and —n,y. The equation for chemical equilibrium for this
kth reaction equation is

2 Mysps=0 (3.4)
in terms of the chemical potentials ug, with

M= (011/5]\73)7“,. (.;.‘))
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This gives

T \Z"%s
KI.,:I;IO;'M:(TO> exp [Z”ﬁb('— lfT 0 ; I{T:l II'YL Kk(O)II'Y (36)
where AHG is D> nge Hy for the reaction with
% Zi /8 e '3Z§ SN
i I:w = %)(D(E";“ - AO] 3.7)

according to the Debye-HﬁCkcl theory, and with

%@Zf—;ﬁ SESC0COZZETe) ) 6

as the principal correction based on the tabulated functions representing Mayer’s extension
of the theory. A correction for the effect of the A, terms may be expressed by

(27 nls) )\Y o ahgr
—),3—_~exp{2;zrnkS J hs,27rlus,:lli’s,+9<222( )ZZO O’V v 21r]’s,rll?s,}

(3.9
which for Debye sereened Coulomb repulsion between ions takes the form

2
Y3=exp sr 17 [2220 ZQn(-I‘sr)ﬁasrnks

hre [ZZOO ] ] (3.99)
+2[ 1rmk2T2V0 32 ka ]C"""’Jr 2720y 2" eir [ Lo | [+ T

An estimate for effect of dependence of dielectric constant ) on composition may be made
using

¢(52Z20,) %6 ( Ny
(gt {[— Do (vn) “asyzoy DNCOAZ
by )+ 62 ) | [ S 38 D]} (3.10)

although a more detailed microscopic analysis of the kinds of screening affecting both v; and
v+ should be made. In fact, the rapid increase of atomic polarizability with principal quantum
number poses another convergence problem unless each atomic state be taken as defining an
independent constituent. Additional effects related to the equation of state may be estimated
from

vs=exp{—2n5(0/0C,) [(B—Bo) (22C)* Vs
+(0—0)(220:)*2Ve+(D—Do) 220 8Vi+ . . 1} (3.11)

It is also necessary to take into account the dependence of energies of states and the heats of
formation and reaction on the ion density. Some indication of the dependence for atomic
ions may be obtained from a study of atomic levels for a Debye screened atomic ion.
Discussion of these effects will be deferred until a later publication.

The equations for “mass” and charge balance are well known and obvious but may be
represented here for completeness. Thus if the number of atoms of element X in a molecule
of constituent Y, is /;, then

ZC e (3.12)
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is the local average concentration of this element, usable ecither directly or in ratio to other
similar quantities in the expression of conservation of each chemical element. Similarly, if
the electric charge on each molecule of constituent Y is Z, in protonic units, then

SO = (3.13)

states that, on the average the gas is electrically neutral.

The concentrations of constituents as given by these equations may be termed nominal
concentrations of clusters considered as molecules. To obtain the actual molecular concentra-
tions O™ from the corresponding nominal cluster concentrations €, one may make use of
the ratio

O [C=Q Q=2 9. exp (—e/kT)/Q5, (3.14)

with the partition function
QM =2>_9; exp (—e;/kT), (3.15)
(1
formed by a sum over whatever group of states is deemed to comprise the specification of the
molecular form (or similarly for atoms and atomic ions). The concentration of molecules in
their ground states is given by
Cigo exp (—e/kT)/Q, (3.16)

where ¢y is the @ priori weight of the ground-state level and ¢ is its energy relative to the
energy zero used in obtaining Q°.

It is to be emphasized that nominal concentrations of clusters are in general not identical
with concentrations of molecules or ions bearing the equivalent name. If accurate estimates
for concentrations of these species are required, then (3.14) and (3.15) must be used.

4. Discussion

The calculation of thermodynamic properties of gas mixtures in chemical equilibrinm
at high temperature and moderate density, with each molecule, atom, or ion considered as
a cluster of its constituent particles, has been discussed. The method of calculation may be
used for very high temperatures at which the number density of ions is high, using ion-solution
theory in Mayer’s formulation.

The detailed discussion of the method of calculation of thermodynamic functions for the
atoms and atomic ions that form the principal constituents of the gas mixture at high tem-
perature is reserved for paper II of this series. Under conditions of considerably elevated
density, the proportion of small molecules may be enough to make accurately descriptive
functions desirable, even at rather high temperatures. Methods of calculating such functions
for diatomic molecules may be discussed further in paper I11 of this series, including both con-
ventional partition functions and the effective partition functions provided by cluster in-
tegrals. Molecular cluster integrals automatically include distortion and stretching effects
due to centrifugal forces and so are especially suited to calculation at high temperature. The
effect of quantization on the molecular cluster integrals has been included in considerable de-
tail, yielding estimated “‘effective partition functions.” Ratios between these functions give
proper equilibrium constants for the treatment of a gas mixture as a mixture of ideal gases
in the absence of ionization for the purpose of representing the over-all thermodynamic
properties of the mixture.

Special emphasis can be given to the concept of the “effective partition function” con-
sidered as a convenient function for expressing the increase of the partition function of the
entire gas due to the joining together of the parts of the cluster. It is thought that this con-
cept is useful in clarifying the physical meaning of the kind of cluster which has sometimes been
called a “mathematical cluster.”
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The analysis of the gas-mixture properties by means of equilibrium constants for cluster
formation, or the cluster integrals for clusters of all compositions for small numbers of par-
ticles is formally no less complete than the representation of the gas properties according
to a virial series expansion carried through virials of an equivalent order, or involving inter-
actions of an identical number of particles as in the highest virial coefficient included. Indeed,
in the low density region the cluster integral representation as a treatment of chemical
equilibria is considerably the more complete when applied to effects of chemical bond for-
mation under conditions that favor the formation of small clusters (molecules) only. This
detail of good representation may be touched on again in connection with paper III of this
series, dealing with diatomic molecules. If triatomic molecules were the largest molecules
formed, then a cluster treatment including all clusters of three atoms would include all
chemical bonding effects varying directly exactly as the third power of the free atom con-
centration and would include higher order virial type effects due to chemical bonds in pairs
and triples of atoms. In the high-density region, however, the higher virial coefficients have
large excluded volume effects which are not included in a treatment covering only pairs and
triples of atom particles as clusters. IFor these, the cluster treatment would need to be
carried through for clusters of the same number of particles as the numerical order of the virial
coefficient in order to give a complete representation for the given coefficient. Application in
the high-density region is complicated further by the detail that for an ordinary chemically
inert gas, the virial expansion itself, to which the cluster treatment is formally equivalent,
is found to be progressively poorer as a representation when extended to higher and higher
density. This might suggest that the virial expansion itself may be correct only asymptotically
in the limit of low density. Nevertheless, the virial expansion is to be regarded as a useful
approximation capable in principle of giving good estimates up into regions of considerable
density. As the equivalent cluster treatment gives a still less suitable extension to high density,
the problem of practical estimation of properties of chemically reacting gas mixtures at high
density and temperature calls for further estimates of volume effects beyond accessible cluster
evaluation, so as to be either in accord with empirical and relevant theoretical knowledge of
higher virial coefficients or in accord with gas theory of still broader application.

5. Appendices
5.1. Appendix 1

For high temperature calculations of thermodynamic functions for molecules according
to the present cluster approach, one might first obtain the ordinary nonquantum cluster in-
tegrals based on potential functions agreeing with empirical spectroscopic constants and
other known facts, following which, one would wish to combine quantum corrections based
on known molecular spectroscopic constants. By taking the ratio between the ordinary
partition function for the molecule and a limiting partition function consistent with it, ob-
tained by reducing the spacing between levels uniformly to zero with a proportionate reduc-
tion in weight per level, one may readily obtain a principal correcting factor for the effect of
quantization. Since the fragment submolecules implied in the cluster integral occur at much
higher energy than the combined molecule, only a small error is introduced by ignoring the
quantization corrections for these fragments.

In a well-known system of notation, the logarithm of the ordinary partition function,
with energy referred to the ground-state level of a molecule, may be written as

he

ll»QzlrlQR+07i—Zd,-1n<1—(f"f>—<kT {Z.r”di(d,v—%—])e*”f(l—e‘"f) &
—+—Z<Z;r,-jd[r/j(f"’“e‘“i(l—e“”i) “ll—e ) 142> gue T (1—e %) 72 } + 2> adie % (1—e %) 71
i<j i
(Al.1)

Here @ is the rotational partition function for the ground vibrational state in classical
approximation, 6, represents the Stripp-Kirkwood [30] correction for nonlinear molecules or

484



the Mulholland correction for linear molecules due to the finite spacing of the rotational levels.
The variable u; may be expressed in terms of the usual vibrational constants of

G=>" w0 +dyf2) + D 3w (0 +di/2) 24D D> w0 4-dy/2) (0, +d;/2) + > 94402 (A1.2)
7 7 i<j

according to

he

: L L .
W= w;t+ (di+ D ey +32 d2 | (A1.3)

. J#i
In view of the principal vibrational dependence of the rotational partition function, repre-
sentable by a factor exp >Ja,v;, In @r may be replaced by InQg, 43> d,a;, where Qg, refers

1]

to the equilibrium configuration. The derivation of the main part of the vibrational effect
proceeds as already stated with a factor X for the level spacing appearing wherever a quantum
number factor (»,+d;/2) appears in the fundamental expressions:

InQMN)=2_2d;InA\—2d;In[l —e™™]— h( )\2{21,,([ (di+1)e 24N (1—e— %) 2
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with

e =2 Doyt N 1)+ PN ) (A1.5)
k1 =

The quantity InQ(A=1)—InQ(\=0) gives the vibrational quantization correction, to be
put in suitable form by expansion of the various funections, either directly or giving the form

QO=1/Q=0={ 1+ 1 [ )zt 3l (3= =™
he 1 he
+?(/a +2> (/,,] ‘)4 T ?([wl '7F0<kT [Z()(1+ 2)dl 0t

H 103350 d 53] }0\1) ]?;2 ‘-‘3:')’/"- (A1.6)
i<j !
The rotational quantization correction is already known, being given by the factor 1-46,/7
as indicated earlier above.
[t may be noted that the expression is in such form as to change from a classical treatment
with energy measured from the classical »,=0 or potential minimum value to a quantum
treatment with energy measured from the quantum »,=0 or ground-state energy.

5.2. Appendix 2.

Additional thermodynamic functions and relations for the equilibrium gas mixture as
derived from eq (3.1) are:
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The dependence of the dielectric constant I on the gas density using the Clausius-
Mosotti relation provides as a further contribution® to PV/RT, the quantity

_D+2) (D 1)< a
R

lonic

where (6F/RT);,,. includes the ordinary ionic terms in eq (A2.2), 1. e., the limiting law Debye-
Hiickel term and the Mayer-Poirier terms for which the dependence on ) is of the same form
as for 7.
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2 The approximate contribution to PV/RT due to the effect of the dielectric constant should apply also to the closely related H/R7T and F/RT
of (A2.3) and (A2.5). F/RT and H/RT are also subject to a small contribution not given here due to the dependence of specific polarizabilities
on the temperature. This will also affect C'»/R of eq (A2.6).
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with
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For such ion interactions as are taken to have identical radii a,, the factors > > 3C,C,Z:Z
8 T
in (3.1) and (A2.1) to (A2.6) can be grouped together as (ZOZ;)(ZO,Z?), reducing further
s T

to the form used by Poirier if all are identical.

5.3. Appendix 3

Functions relevant to the Coulombic interaction in the close approach region for ions of
like sign include a contribution to —A/RT due to hs, given by

LA S50, S (A3.1)
4 8 1

s n=0
with
-I'sr:ZsZr/asr;
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The related contribution to PV/RT is
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A similar contribution to E/RT is given by

(%) 5 3 S=0.0at Sea(wues
0
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n ST 2 n 8T V’ d Sr n ST
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(A3.3)



The contribution to H/RT is given by

( QJ ﬁﬂ B ) (1\,2/1"(-1'”%037;

0 8 r
with

btz =ealr) =(145 ) aa(air),

or

ho=—4q,+¢77,
hy=—6xqy+3xe™7,
/12:—5;[3(1(,—!—(; T z2> )

L 1 5 (1
hs= ——,;x"q(,-—<§ r—y xz——é .1"‘>e*f,

— 34% '1 2 IE % 1_,,4 —r
hy=— 240 rqﬂ+< + -i—8 ) e

The contribution to S/R is
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The contribution to —F/RT is
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The contribution of this kind to C,/R is

'V 27 N, < n\ n <d In D> (d In C
(K ) 3 ‘4)22( (ﬂ”i?[ > dInT din T /)y
n 2 v, (410 O > :] l: ((!ln ])> ](
25200, (S5 |eena—= | 14+(557), | (=

489

de,
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with the ¢, as given above, and with zde,/dz obtainable by differentiation,

such as
xdeo/dr=—9qy+ (9—3x)e~%,
33 . ~
Tde/dx= —18xqo+<? 1——312) e,
75 3 .27 , 3.\ _,
wdez/(lrz—z x2q0+<z u-+—2~ x2—§ J3> e

27 7 \
r(les/dx~-7’1 QO—<4 r~— : 2_,1_‘ xS—I—% AP
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