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Thermodynamic Properties of Gases at High 
Temperature: 

1. Chemical Equilibrium Among Molecules, Atoms, 
and Atomic Ions Considered as Clusters 

Harold W . Woolley 
The eq uilibrium t hermodynam ic properties of gaseous mixtures at high temperatures 

a re treated by an extension of t he cluster t heory of Ursell , omitting t h e assumpt ion of addi­
t ivi ty of pair energies. An effective partition function is in t rod uced, whi ch is a conven ient 
function in expressin g the increase of t he partition function for t he cntire gas due to t he 
joining together of t he parts of t he cluster. The law of mass action a nd t he dependence 
of second and th ird vi rial coe ffi cients upon t he cluster integrals for pairs and triples of 
molecules in a mixture have been obtained t herefrom. Extension to a partially ionized 
gas is made by in corporating Maye r's cluster-based extension of t he Debye-Huckel t heory. 

1. Introduction 
The calculation of the thermodynamic proper ties of gases at high temperatures involves 

a number of special problems 'which may well be disregarded at more moderate temp cratuTes. 
The thermodynamic functions for a gaseous constitCl ent in a mL'\': ture in chemical equilibrium 
are usually calcula ted from a partition function definable as a sum of Boltzmann factors for 
all states of the elemen tary unit of the constituent. The states of a single isolated molecule, 
atom, 01' atomic ion may be arranged in some kind of Join t or compound progression of quantum 
numbers up till'ough a range of moderate energies. For still greater encrgies, however, the 
number of states associaLed with the physical system comprising the constituent is cnormously 
greater, with the statcs forming a continuum of valucs nominally of infinite exten t, as the 
constituent dissociates, rather than occurring discretely. At some elevated temperature and 
b eyond, the usual criterion for ncglect of high-energy states based on the smallness of the 
Boltzmann factor is not fulfilled below the dissociation limit. The infinity of states immedi­
ately encountered at this energy does not permit the co ntinuation of the same type of sum of 
statcs to indefinitely higher cnergies. A common procedure for avoiding the divergence which 
threatens to occur involves the termination of the sum of statcs at the dissociation energy or 
t.he inclusion of only that limited group of states above dissociation which still imply some of 
the typical structure of the un dissociated constituent. 

A different procedure for avoiding this divergence difficulty is to be discussed, involving 
the use of a method thought to have the merit of formal correctness, although it is admittedly 
not the only type of analysis with this appropriate feature. For this purpose, a special kind 
of partition function will be used , her e to be termed an "effective partition function". These 
effective parti tion functions are related to the increase in the occupancy of states of a combined 
unit due to the joining together of parts of the unit, putting it together from a ny of all of the 
ways in which the unit may be considered as separated into component parts. The present 
procedure comprises an analysis using elusters of the Ursell type [1] 1 to specify the net 
thermodynamic effects of particle groupings in the combinations involved in forming 111.01e­
cules, atoms, and ions. As the populations of these clusters are measures of con tribution to 
co ncentrat ion due to interactions among several particles, it is admitted that they can give 
con tributions of r eversed sign if exclusion effects exceed the effects of combination. 

The calculation procedUl'e presented i a treatment of a multicomponent system including 
the principal quantum effects remaining at ordinary or elevated temperatmes. As such it is 
in some degree a generalization of the treatments for pUl'e substances given by Kahn and 
Uhlenbeck [2], Kahn [3], and Kilpatrick [4], and for the nonquantum multicomponent treat­
ments of McMillan and Mayer [5], Fuchs [6], and Muto [7). A restricting assumption of 
additivity of pair energies, made in some of these treatments, has not been retained in tbe 

1 Figures in brack~ts indicate the Iiteraturc rcferences at the cnd of this paper. 
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present one. The assumption is considered to be a rather good approximation for mLxtures of 
ordinary molecules but not universally for the many types of interaction occurring among 
the chemically unsaturated fragments of molecules existing at very high temperatures. 

Though the cluster integral procedure provides a way of avoiding divergence difficulties 
associated with ordinary dissociation, there is a type of dissociation for which the separating 
parts of the molecule or cluster are oppositely charged. The distribution of rotational states 
for which such fragments occur as unexcited parts is similar to that existing when a single 
electron is nearly separated from a positive ion. In the latter case, just below the energy at 
which the continuum due to ionization begins, there is an infinity of discrete states, and each 
level of the outer electron specified by the principal quantum number n is actually a group of 
states whose number has 2n 2 as a factor. In the method of Urey [8] and Fermi [9], discussed 
also by Fowler [10], the summation was halted at such electron orbits that at the given density 
an orbit based on one atomic ion would just "touch" an orbit of a neighboring atomic ion. 
Their method, which appears capable of extensive development and application, forms part of 
the basis for a treatment of high temperature thermodynamic properties of a gas given by 
Megreblian [11]. The method of Planck [12] involved the evaluation of a Gibbs phase integral 
with simplifying assumptions. The present treatment is somewhat related to that of Planck 
but takes some account of a known property of an ionic assembly in involving an exponential 
Debye shielding function multiplying the long range Coulombic ionic interaction, such as oc­
curs in the D ebye-Hiickel theory of electrolytes. In then: theory of a plasma, Bohm and Pines 
[13] made a canonical transformation to new coordinates of two kinds, one associated with 
pure translational motions, and one associated with a short-range interaction showing at least 
some resemblance to the Debye screened Coulomb potential. Of more immediate application, 
Mayer [14] derived thermodynamic quantities for ionic solutions including all ring-type graphs 
of interionic interaction, using an exponential shielding function multiplying the Coulombic 
ionic interaction as a tool in the mathematical analysis. In effect, as shown by Meeron [15], 
Mayer converted the calculated effect of interionic interactions as indicated by virial coefficients 
from a nonconvergent form for the unscreened Coulomb potential to a convergent form with the 
Debye screened potential and obtained also the well-known limiting law Debye-Hiickel term. 
The avoiding of divergence in the integrals related to virial coefficients by using Debye screening 
corresponds in some degree with the avoiding of divergence by Ecker and Weizel [161 who noted 
that n , the principal quantum number for atomic states, must have an upper bound if the 
electron moves in a Debye screened potential field. The correspondence is not that of identity, 
however, since the virial-coefficient-type quantities receive part of their contribution from 
regions of phase space above the dissociation, or ionization energy. 

As to the arrangement of the present paper, section 2, which follows, presents a number of 
items of cluster theory leading to the method of calculation used to treat chemical equilibrium 
and the virial coefficients related to further clustering of the aggregations considered as the 
chemical constituents. Many of the relations are so similar to those in earlier derivations of 
cluster theory as clearly to form obvious extensions from them. A somewhat extensive dis­
cussion pertaining to an analysis in rather elementary algebraic form has been included, how­
ever, which may serve to show the very simple physical meaning of the extended Ursell-type 
formulas and thereby permit an easy inference of the essential correctness of the treatment. 
The effect of quantization on the cluster integrals or effective partition functions for molecules 
is also treated. 

In section 3, formulas are given for the Helmholtz free energy for the gaseous equilibrium 
mixture including molecules, atoms, and atomic ions, based in part on the ionic-solution theory 
of Mayer and in part on the equilibrium theory of clusters of section 2. Formulas for the 
equilibrium constants for chemical reactions which can occur among constituents are also given. 
Expressions for other themodynamic functions for the mixture in terms of functions for its 
constituents are given in the appendix. 

Further discussion of the status of cluster theory, particularly in regard to its present 
application, will be found in section 4. 
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2 . Application of Cluster Theory 

Apart from effects associated with ionization, an accurate theory for the thermodynamic 
properties of equilibrium mixtures of chemically reacting substances at high temperatures may 
be directly formulated involving equilibrium constants identical with the quantum equivalent 
of the cluster integrals of gas theory. In the nonquantum treatment, the Gibbs phase integral 

(2.1) 

is analyzed according to the method of Ursell [1] . The extension to the exact quantum mechan­
ical treatment involves the replacement of the Boltzmann factor by a Slater sum so as to 
provide an exact equivalent to 

Q=~ exp k;n. (2.2) 

The treatment should give results similar to those obtained by Kahn and Uhlenbeck [2], and 
Kahn [3], for a pure gaseous substance. 

The theoretical analysis is made in terms of cluster integrals bu ) defined by 
1 

(2.3) 

with U I to be defined in terms of products of quantities W} to be described." The number of 
particles of type i within a given cluster is lt, with the different types of particles extending to 
i=t. This general cluster will be said to have composition (It) . The cluster is to be thought 
of as subdivided arbitrarily into fragments , including every possible way of subdividing the 
cluster. The number of particles of type i within a particular type j of fragment of the cluster 
is to be indicated as (It)} and the number of fragments of type j by k}. Conservation of matter 
then indicates that 

(2.4) 

for each type of particle in the cluster . The total number of fragments according to a particular 
way of subdividing the cluster is 

(2.5) 

The quantity U I may now be defined as the sum 

W 
)

k' t 
_ _ k-\ _ , J.- ~' , UI-~ ( 1) (k l )·I1 k o' ( I1 Cl o) , HZ;., 

J J" t} · ,=0 
i 

(2.6) 

with the factor q} arbitrarily separated to indicate an explicit counting of spin multiplicities 
for the fragments, if desired. The summation in eq (2 .6) includes products formed according 
to every possible way of subdividing the cluster into fragments or groups of particles . Each 
product term involves different W/s which together involve once and only once each particle 
of the cluster. W} represents the probability of occurrence of an isolated fragment j of the 
cluster in a given geometric configuration as a relative probability compared with the occurrence 
of the fragment when there is no internal energy of interaction. Thus, TV} will r epresent a 
Boltzmann factor in a nonquantum treatment or a suitable Slater sum in a quantum treatment, 
such as is indicated by 

W}=I1 (h2/27rm.kT) ~~..pn..p~exp[-En/kTJ· (2.7) 
• 
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The integral of the Slater sum for each fragment or group of particles provides the sum over its 
quantized states, as far as quan tized states exist, with the appropriate integral in the continuum 
for the remaining contribution. A number, qil of states of like spin may have essentially 
identical energy and then can naturally be counted together. The separation of this factor 
from eq (2 .7) as written in eq (2.6) is clearly arbitrary. When completely separated, the spin 

t 

factor IIq/J is the same as II (28 i+ 1) i, based on the individual spins of the constituent particles. 
j i=O 

The denominators II (li)j! under the W/s in eq (2 .6) occur as shown if the eigenfunctions in 
i 

eq (2.7) are regarded as not restricted by the exclusion principle but instead as having the full 
number of states corresponding to the Boltzmann statistics as a limi ting condition. If the 
Slater sum were obtained exactly according to the exclusion principle, then a compensatory 
multiplication by this factor would be required, as indicated in the theory for a pure gaseous 
substance as given by Kahn and Dhlenbeck and by Kahn. 

With the preceding formulation, the cluster integrals are the equilibrium constants for 
cluster formation according to the equation 

N(ti) - b II C'N (i) ) li 
V - (ti) iV' (2.8) 

where V is the volume accessible to the gas, where N (li) is the number of clusters of composition 
(I ;) , and where N (i) is the number of separately occurring individual particles of type i, i. e., 
as "clusters" of one particle. This result can be inferred in accord wi th the analogy between 
the presen t case and the treatment for clusters for a single pure substance [2, 3]. Alternately, 
the result can similarly be easily inferred from the nonquantum formulation of Fuchs [6], on 
the grounds that the present formulation is equivalent excep t for its inclusion of quant um 
effects. Further indication of the correctness of these equations will be presented later in this 
section. 

It is to be noted that the equilibrium constants of eq (2.8) are the theoreticall y exact 
ones for a treatment of the real gas as a mixture of ideal gas components. Hill [17] has 
pointed out that any modification of definition that would give clusters other than these 
(he terms the present ones "mathematical clusters"), would eliminate the ideal gas law de­
pend ence of each component cluster gas; this would not allow the simple mass action law of 
eq (2 .8). Excluded volume effects are automatically included in our theoretical formulation 
at this stage and would not be added separately unless a compensating readjustment were 
introduced to remove an equivalent quantity from the cluster representation. It may be 
recognized that a cluster of a given composition can be called a molecule or free radical or ion, 
or a group of such entities, according to the normal custom for nomenclature. If a molecule 
happens to have various isomeric forms, the requirements of the particular application could 
determine whether the different forms would be treated together or separately according to a 
reasonable apportionment of accessible phase space. 

The H elmholtz free energy for a mole of like clusters of type (l i) in the absence of 
ionization may be represented as A = kTlnQ with 

(2 .9) 

The first bracket indicates Q/, the effective internal partition function , and the second in­
dicates Q t T, the translational partition function for a single cluster . 

From eq (2.9) with eq (2.3) and (2 .6), one may infer that the effective partition function 
for the cluster may be represented formally as 

Cl= L: (- l )k- l(k- l ) !II k
1, Q/i, 
J" 

(2.10) 
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with Qj taken as 

(2. 11) 

in accord with cq (2.1) and (2 .7), since cach Wj in cq (2.6) is a fun ction of coordinates in ternal 
to the fragment j . 

Even though thc cquations givcn follow plausibly from carlier inves tigations, it may be 
advantageous tv examin c somc of thc rclations in greater dctail. By such a procedure we may 
hope (1) to confirm dcfini tcly that th e Ursell type formula is actually being extended C01'­

Tectly to mixturcs with " non-addi ti ve" potcntials, (2) to sbow' that the structure of the cor­
r ect Urscll-type formulas i simply that which providcs thc incremental contribution (pel' 
cluster) to the state sum, duc to thc particles being in the clustcr rather than prcscnt in other , 
less combined forms, and furthcr , (3) to obtain t he result that the formation of a combined 
cluster from two compon en t clustcrs is strictly analogous to the combination of two par ticles 
ioto a cluster of two, so that repcated application of a proccss analogous to calculating the 
scco nd virial cocfficicnt gives an analysis conccrning clusters of any dcgree of complexity. 

Tbu it is informati vc Lo comparc thc cffective partition functions for Lwo cascs diffcring 
in that in onc r$J,sc onc additional particlc is present within the cluster whilc in the othcl' case 
it is co unted as prcsent in thc asscmbly without interaction with other co nstitucnts of the 
cluster. Thc difference in magnitudc bctwecn the sta te sum for thc cnti re gas when the 
particle is combincd and its valu c whcn thc particle is uncombined includcs the cffect of in­
ser ting the par ticle into every subcluster or fragmcnt of the clustcr involved according to eq 
(2.6) or (2.10) for the effcct ive partition function for the initial clustcr. Thc numbcrs of s ub­
clusters after inscrtion of a singlc particlc into one of them include le j , of the type of the 
r eceptor subcluster (initiall.\' thcrc wcre le j,+ l of this type), le j1) of the typc of the product 
subcluster (init ially thcrc wcrc le j p- 1 of t Ltis type). The number of singlc particlc subclusters 
for particlcs of type q after add ition of the added particle of this type is to be indicated as 
k jq . Th e increment in the total effective partition function for thc system including the 
initial cluster and t hc addcd pa rticle due to addition of t he particle to the clustcr will be indicated 
b y 

(2.12) 

where 8 is an operator operating on Qe(ll ' l2 ... lq- 1, . .. ), thc effe cLive partition function 
for thc initial clusLer. The total contribution to thc effcctive pa rti tion function of the com­
bined cluster formcd by adding thc ncw par ticle includcs a con tribution from each factor 
of cach term of t hc partition fun ction for thc initial cluster. From this it can be sccn that Lhe 
numerical factors arising in use of the opcrator e are identical with those OCCUlTing in a 
differentiation process. 8 can bc represcn ted as Ql *- QI , in which QI * is an opcrator which 
produ ces the ordinary partition fun ction of a combined system when it opcrates on the 
ordinary partition function of the partial system, as Ql *Qb=Ql(Jb, while QI is an ordinary 
p artition fun ction of the added particlc . 

.Making usc of eq (2.10) for the effcctive part.ition function of the ini t ial clustcr , the 
effcctive partition fUllction of thc combincd cluster obtained with th is operator 8 is indicated 
in accord with eq (2.6) ancl (2. 11) using thc corresponding U t/TIl j!in terms of the W's, now 

1 

to be written omitting the sp in factor rr (2s j + 1): , 

(2.1:3) 

On t hc right-hand sidc of Lhe eq uation, th e expression before the bracket is the regular cx­
pression for the combined cluster. The express ion within the bracket includes contributions 
of var ious kinds aris ing from the addition of the par t icle to various possible fragments of thc 
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initial cluster. For the first term in the bracket, coming fr~m the insertion of the added par­
ticle to a subcluster, the factor kjT+1 in the numerator is due to there having been thisnumber 
of subclusters to which the particle might be added to produce one particular type of product 
cluster. This modifies a particular product of the type preceding the bracket since there had 
been a factor k j T+ 1 in the old factorial in the denominator and this factor now appears in the 
denominator of the term in the bracket. Similarly the new factor outside has a new factor 
kjp in a factorial in its denominator (included in one of the (k j)! factors) which is balanced to 
the original by the k jp in the numerator of the term in the bracket. Also, a new factor (l q) j is 
in the denominator in front of the bracket (included as a net increase of one fac tor in the 
general (li) j!) because of the k j indicating k jp instead of a former k jp- l , and this is balanced 
in the term in the bracket by the (l q)j in its numerator. 

The other two terms in the bracket arise from the addition of the new particle as a separate 
subcluster arising in the - Q\ term of the 8. For the initial cluster, the value of k was less by 
one than its value in such corresponding terms of the combined cluster, as are obtained using 
the Q\ factor thus giving the opposite sign by (- 1) \ which, when combined with the minus 
sign on the- Qi> gives positive contributions within the bracket for both terms. The occurrence 
of k - l in their denominators is a compensation concerning the (k - l ) ! factor and is also due to k 
for the terms for the initial cluster being one less than for the combined cluster. The first of 
these last two term.s in the bracket has an origin somewhat analogous to that of its predecessor 
but with Q\ involved rather than the combining Qt. The prime on the summation sign is to 
indicate that the summation is to include only those j's for which the k's do not represent k jq , 

so as to obtain the count of the number of terms which had been involved for the Qt, except 
for those due to adding a single particle to a like particle. The effect of adding the separate 
single particle subcluster is to increase the exponent in front of the bracket for single particles 
q to k jq from k j a- l , its value in the initial cluster. To compensate for the matching extra 
factor in the factorial expression in the denominator preceding the bracket, the value k jq occurs 
in the numerator of the present term in the bracket. The last term in the bracket is likewise 
analogous to the first term, with Q\ involved rather than the combining Qt. This term counts 
the number of separate occurrences in which the added particle enters into the formation of 
clusters of two like particles. This term appearing as a balancing quantity to which the effect 
of Qt is compared, has the factor k ja - 1 for the number of initial sub clusters in connection with 
which this final comparison process arises. In addition, the numerator contains the factor kja, 

as in the term preceding, to balance the augmented factorial in the denominator of the ex­
pression preceding the bracket. 

The quantities in the bracket may now be combined . For the first term, k jp occurs only 
for the sub clusters produced by adding the new particle to a previously existing subcluster. 
Thus, it does not include j's for single particle sub clusters, so that 

(2.14) 

For the second term, "2::/k jk jq, the summation is over j's for which the k/s do no t represent k jq . 
j 

As the full sum 'L,lc j would have been equal to lc, 'L,'k j is k - k jq• The three terms are now 
j j 

readily combined as 

(2.15 ) 

which reduces to l a. This is cancelled by the lq in the denominator after the bracket, represent­
ing an additional factor in the general factorial of the denominator needed to convert from 
phase integral to partition function as indicated in eq (2.1). From this demonstration eq (2.6), 
or its equivalent, eq (2. 10), may be seen to be an appropriate extension of the ordil1.ary Ursell­
type formula to mixtures. Thus, an effective partition function agreeing with the Ursell-type 
formula may be generated relevant to the combined cluster, starting with an Ursell-type 
formula for the cluster of one less particle by simply evaluating the increase in the net state 
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sum due to counting an additional particle of the entire sys Lem a belonging to the cluster. On 
the one hand, one may ee this a a logically COlTe ·t process Lo build up the effective partition 
function, so that on the basis of the obvious correctness of the Ursell-type formula for small 
clusters of one or two particles, mathematical induction permits one to regard the present 
Ursell-type formula as clearly holding for clusters of arbitrary size and composition , but with 
due regard for details of particle statistics as required. Al tern ativcly, for one who finds the 
present Ursell-type formula to be an obviously correct extension of the Ursell formulas previ­
ously 1mown, the foregoing demonstration can show that the addition of a particle to a previous 
cluster can be treated formally in the simple form of a second virtal coefficient as indicated, 
using the operator 1J = Q'f- Q! with eq (2.12). It may also be noted that the joining of one 
cluster with another to form acorn bined cluster may be treated similarly using an operator IJ 
buil t from effective partition functions 

slllce 
IJ= Q~*-Q~ , 

Qe _ eQe_ IJ, {,e_ QeQe 
ab - b - "\':u"\':Q a b 

(2.16) 

(2.17) 

has a form identical with the pattel'l1 for obtaining the second virial coefficient for the effects 
of interaction between the two cluste rs. Thus, the calculation of the effective partition function 
for a diatomic molecule is directly related to and essentially identical with the calculation of the 
second viria.l coefficient for the interaction of its constituent atoms, no matter whether one 
regards the atoms as interacting particles 01' clusters of nuclei and electron s. Similarly, the 
treatment for a triatomic molecule is directly related to that for a cluster of three particles such 
as is involved in the cluster theory for the third virial coefficient. In all cases, states of higher 
electronic excitation should be allowed for if significantly present and should be understood as 
included in the present notation. 

We now come to the particular advantage obtained by usc of the effective partition func­
tions as defined in the foregoing discussion. The partition function for the complete gas as­
sembly can be written out readily ,,,hen they are used in Lhe analysis. Using total effective 
partition functions Qj= Qj(Qj trans) for a cluster for which the number of particles of kind 
i is (li)" the partition function for an assembly involving N t particles of each kind i is 

(2.18) 

with the sum including every kind of term consistent with the condition 

(2.19) 

The most probable state may readily be found in the sense of determining the greatest term in 
the sum. This may be done on the basis tha t, in the immedia te vicinity of the maximum, 
neighboring terms are almost exactly equal. If for a neighboring term, the number of clusters 
of type j is taken as m j+n j (where each n j is a small integer) rather than the mj of eq (2 .18), 
then eq (2.19) takes the form "L, (m j+n ;) (l i) j=N i, and the difference between the two is the 
general conservation equation 

(2.20) 

The requirement that neighboring terms near the maximum be approximately equal gives 

ll (Q~)mj+"j/(mj+nj) ! "" II (Q j)milmj!, (2.21) 
j j 

which reduces to 
II (Qj)"i= ll (mj+ n j) !Imj!, (2.22) 
j i 

or 
rr (Q ~)"i "" IIm Ji, (2.23) 
j j 
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sin ce mj~l and n j I S a small integer. By substituting Q~Qj trans for Q~ and dividing by 
11 V n;, the relation 

. ~ I 

(2.24) 

is obtained. Since Q Jtrans contains V as a factor as shown in eq (2.9) , or according to 

(2.25) 

with 

(2.26) 

the right-hand side of eq (2.24) is independent of V, and by further red uction using items 
relevant to eq (2. 9), is eq ual to n (bUi)/i and forms an equilibrium constant to whicll the 

I 

product of concen trations on the left-hand side of the equation is equated. The reaction 
eq ua tion to whicb this law of mass action is relevant is 

or 
(2.27) 

where n j r epresents both n~ ' and - n;, with Yj r epresenting tile chemical symbol for th e type 
of cluster (or molecule) referred to. For tbe reaction of formation of a single cluster (or 
molecule) from elementary particles or clusters, the mass action eq uation can be reduced to 
eq (2 .8), witb N (li ) corresponding to the m j of the equations just concl uded. 

I f the represen tation of gas properties is carried ou t direc tly in terms of particular kinds 
of clusters, then these clusters may be considered afresh as the constituen ts of a gas mixture 
whose interactions lead to the virial coeffi cients for this mixture gas. These virial coefficients 
for the gas are of co urse related to the cluster integrals- or the effective partition functions­
for the clusters formed among its consti tuents. An adequate theory represen tillg their effec ts 
formally can be givcn using the grand partition function . Exactly the same results may be 
obtained in the present case, however , by noting that the gas acts as a mixture of ideal gases 
subj ect to chemical equilibrium, as shown by eq (2 .24). Then, the pressure of the gas is the 
sum of the partial pressures of all kinds of clusters of the constituen ts. Similarly, the net 
co ncentration of any kind of constituent particle is proportional to an analogous sum in which 
eac h term of tbe pressure sum is multiplied by the number of that kind of constituent particle 
in the corresponding cluster. IiVhile the various terms of these two expressions are expressible 
using cluster-in tegral-type or effective-partition-function-type eq uilibri um constan ts, multiplied 
b.Y products of powers of density-type fugacities of the various constituents, the ideal-gas­
ty pe relations whiell appl.\' to each constituent permit the density-t.vpe relations which app].\' 
to each constituent permit the density-type fugacity to be equated to the quotient of the partial 
pressure of the constituent, divided by kT, so that 

(2.28) 

and 

(2.29) 

glnng 

p V L?[b ( li) L~ (IT Yi); 
NkT- ~[~(l Jj][b (li) J J~(ti) (/ i)' · 

(2.30) 
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The mole fraction of constituent i is xi=N dN. The proce of eliminating the fugacities 
(p dkT) from the expre sion for p V jNkT is more involved than that for a pure substance 
[18]. Using bij and bijk as the cluster integrals bUt) for two particles i and j and for three 
particles i, j, and k , respectively, the first two virial coefficients a,re obtained as 

(2.31) 
and 

(2.32) 
with 

(2.33) 
and with 

(2 .34) 

Higher virials may simil arly be obtained, but much less readily due to t,he proliferation of 
algebriac expressions in the transformation s. Even for the third virial, the problem of non­
additivity of pair potentials arises. For pure substances, Rosen [19] found nonadditive effects 
in the t hree helium atom in tem ction, A..,ilrod [20] has found such effects for the dispersion 
energies, and Jansen [21] has examined the entire problem at some length. Kihara [22] also 
has recognilled the problem and has mad e use ofAxilrod's results in estimating thc effect on 
third virials for the pure noble gases. For gas mixtures, the problem is of added complexity 
as it involves the estimate of interaction between two unlike constituents as well as the non­
additivity among all the differing kinds of constituents considered three at a time, alike and 
unlike. In applications at elevated temperatures where the constituents may be other than 
ordinary s table substances, nonadditivity can be expected to have large effects . Where the 
prediction of propcrties of a gas mixture using rigorous theor,v is particularl~r impracticable, 
the use of empirical mixture rules becomes a natural expedient. 

If one attempts to obtain the effective molecular par tition functions from second virial 
or cluster in tegral calculations, a classical type calculation rna,v be simplest and thus might 
most na turally be used, with potential fun ctions based on empirical spectroscopic constants 
and oLher known fads. CorrectioJls for quantization effects in such cases 'would also be nceded. 
A study of the effects of the change of spacing of levels when the quantum of action, h, is 
considered as approaching zero, as discussed in Appendix 1 (section 5. 1) shows tha t the quantum 
effective partition function (referred to the lowest quan tized level) may be ob tained approxi­
mately at high temperature by multiplying the classical effe ctive partition function (referred 
to the classical zero energy) by the correction factor, 

(2.35) 

wh ere for nonlinear polyatomic molecules 

j = 2L;qii+ t L;diwi (A ; \)'f+ B ; \)'f+ 0; la{) + (2Ae+ 2Be+ 20 e- A eBeO; 1- B eOe A ; I), 
i i 

while for lineal' molecules 
j= 2L;gii+ L;diwiB ; lai+ 4Be' 

i i 

The constanLs in these expressions follow the usual spectroscopic nota lion \Vit ll vibratiollaJ 
energy given by 

~>{Vi+~~)+ ~Xii ( Vi + ~iy+ ~<~ 1'ij (Vi+~i)(Vj+~)+ ~gii lt 
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with rotational constants 

for the nonlinear molecule, and 

A v= A e-~af (V i+(;) 

Bv=Be-~aP ( Vi+ ~i} 

C - C "'" c ( di ) t'- e- yai Vi+ -2' 

for the linear molecule. The diatomic molecule may be regarded as a special case of the 
linear molecule. Tbe terms purely in W i in the bracket in eq (2.35) amount to a simple exten­
sion of a resul t which Herzfeld and Teller [23] obtained by the method of Wigner and Kirkwood, 
and which others have used in other forms [24, 25]. Except for form, t he terms linear in 
he/leT agree exactly with the result of Mayer and Mayer [26] for diatomic molecules. It will 
be noticed that if the two kinds of partition functions , quantum and classical, are to be 
referred to the same zero of energy, say the classical zero or the zero of the potential energy 
function , then the additional required factor exp [( - he/leT) Go], where Go is the zero point 
energy, removes the factor of exp [(he/leT)~(wldl/2)] of eq (2.35) and replaces it with an expo­
nential factor based on the much smaller anharmonicity constants. Thus, for such a quan­
tization correction, the zero point energy might be considered as not being involved. The 
detailed procedure of taking a calculation with the zero of energ? with t he cluster particles 
dispersed and adj usting to a zero of energy at the lowest quantized level for the cluster to 
conform with custom in the tabulation of molecular thermal functions involves, in addition 
to eq (2.35), the use of the factor exp [( - he/leT)D c]= exp [(he /leT) (Do+ Go)]. This gives as the 
combined correction the expression in the bracket in eq (2.35), multiplied by exp [( - he/le T ) Do] 
exp [(he /leT) (~{w idd2}- Go) ]. In the adoption of eq (2.35) as the approximate quantization 
correction, not only has the existence of other than Boltzmann statistics been ignored as of 
no importance in calculations at high temperature and up to moderate densities, but also the 
quantization correction contributions associated with fragments of the cluster have also been 
disregarded, since at moderate temperatmes the net quantization effects due to the fragments 
would be very small because of reduction due to powerful Boltzmann factors. 

The molar thermal functions for molecular-like clust.ers according to this formulation are 
to be consistent with 

A =-leTlnQ (2.36) 

as in eq (2.9), but with each effective internal partition function Q/ including its appropriate 
quantization effect given byeq (2.35) and also multiplied by exp (-he/lcT)D c so as to be based 
on the usual molecular zero of energy. 

In eq (2.17) it is indicated that the effects of interactions between two different clusters 
or between a cluster and a particle may be indicated formally as a cluster integral for the 
joining of the two parts into a combined cluster. In making use of this principle as a guide 
in obtaining approximate thermodynamic functions for a gas mixture, it seems appropriate 
to emphasize its indication of the permissible arbitrariness of assignment of regions of phase 
space either completely to the formation of the combined cluster (in the style of the so-called 
mathematical cluster), or partly to the combined cluster (now possibly called a physical 
cluster), and partly to a second virial type interaction between the two parts of the cluster. 

One application of this principle is in regard to the effective internal partition function 
for the interaction of two atoms forming a diatomic molecule. One alternative is to use the 
entire effect in this partition function and the corresponding thermodynamic functions . On 
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the other hand, any part of this partition function may be u ed in obtaining the thennody­
namic functions for the constituent, provided tha t the r emainder of the effective par tition 
function is retained as contributing in its appropriaLe way to th e second vi l'ial type interaction 
between the corresponding atomic constituents. 

Somewhat similarly, the combination of an added outer electron with a positive atomic 
ion to form an atom or a po itive atomic ion with one unit less of charge' may also be treated 
in good approximation usin g an arbitrary subdivision of phase space. In a gas in which 
considerable excitation of levels near ionization occurs, there is also considerable formation of 
free ions, for which the effective interaction potential in the assembly as a whole may be taken 
as the Debye screened Coulomb form, :Meeron [15] has shown that the nonquantum­
mechani cal treatment of .Mayer [l4] for ionic solutions can be given this simple interpretation, 
using quantities corresponding to second virial coefficients, even though expansion of higher 
order terms would not be the equivalent of a higher virial evaluation using the D ebye screened 
Coulomb potentiaL Application to a high-temperature gas involves details of quan tized 
states of the combined atom with ionic screening to which the approximate treatment by 
E cker and Weizel [16] is r elevant, Further discussion of this subj ect may be presented in 
a later papeL Jt would appeal' t In t a conventional sum of states for the a tom up to some 
modera te principal quantum number of the outer electron should be acceptable provided that 
the remainder of the effective partition function be used in ob taining correc tions for equation 
of state quan ti t ies, A very different division of phase space has been uscd in the trea tment 
which will be presen ted in t he followin g section and in the next paper of the present series. 

As the virial coefficients based on additive pair interactions as used b~T Mayer [14] in 
deriving quantities for his theory of ionic solutiolls are consistent with th e cluster integrals 
for tbe Coulombic interaction, sillce this is additive, i t is possible to trea t the effect of ioni­
zation using Mayer's classical ion-solution theory, which he arranged primarily for an assembly 
of ions ,,-iill eac lt pail' separa ted by a distan ce greater than i ts particular sphere radius. The 
interior of eael l ion sphere is a region actually accessible to tbe electrons of the sys tem, as they 
can enter and become energe tically attached so as to form ions of various numbers of elecLrons. 
As each such group is a cluster of parLicles, one would wish to evaluate contribu tions to the 
Ursell int egrals for electrons within the sphere but wi th such quantization cOlTections as 
would be needed to approximate tbo effects du e to t he discrete states of the ion . Unfortu­
nately for purposes of evaluation , the in tegrand of the general integral for the ma n:\'-par ticle 
case is of such complexity and the integrals are so highly multiple tha t precise direct evalua­
t ion according to this procedure appears impossible, It is therefore appropriate to make use 
of convenient approximations. Tho effective partition fUllcLion may be es timated approxi­
matel~T using the observed and estimated low lying quantized states with classically est imated 
contributions from higher energy regions of phase space within the assigned radii. These 
may depend on the representation of effective potential-enCl'g,v functions, with simplifying 
approximations made possible by partial compensation for cognate fragment terms in the 
clus ter in tegrals. 

Because the thermodynamic functions obtained are specifically arran ged for use wi th an 
ionic-gas treatment based on Mayer's development of ion-solution th eory with specifi c valu es 
for the ion radi i, it seems appropriate now to summarize th e results of his approximate 
treatmen t wh en applied to such an ionic-gas mix ture in chemical equilibrium . 

3 . Ionized Gas as an Ionic Solution 

The nonquantum-mechanical theory of ion ic solu tion s given b:v Mayer [14] r etains terms 
applying to ions free Lo move to an:v accessible pair separation greater than their collisio n 
radius, By also including the contribution of Mayer 's eq (46) du e to the depar ture of the 
n on-Coulom.bic pair potential from rigid- phere form , an approximate expression consistent 
with tbe terms retained in his original derivation may be obLained . On this basi , the 
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Helmholtz free energy for the gaseous assembly of molecules, atoms, atomic ions, and electrons 
with the accompanying thermal radiation may b e taken approximately as 

(3.1) 

where Ce is the Cs representing electron concentration and where terms are given for the 
first-order quan tum corrections for an electron gas including Fermi-Dirac statistics [27 , 28) for 
electrons. 

The symbols used in the present ion-solution equations have the followin g meanings: 
Cs= concentration relative to that of a pure ideal gas at standa,rcl conditions, i. e., Cs = 

N sVo/NoV, 
Z s=ionic charge of each ion of type s, in protonic uni ts, 

E= electronic charge, 
D = effective dielectric constant, '" unity for low density, 
k= Boltzmann constant, 

<x sr = asrDkT/E2, 

a sr= collision radius for ion s and ion T. 

bv(<.p) , gv(<.p) , and hv(<.p) are functions defined and tabulated by Poirier [29) . The argument of 
these fun ctions is defincd by 

where ,,2 = 47ri"L,Z;Cs/Dk T , as known from the D ebye-Huckcl theory. 
The omission of b], gl, and hI (hv appears in appendix 2) on the basis of net electrical 

neutrality for the complete assembly is acceptable in case thcrc is but one value of a s" the case 
for which Poirier's tables were prepared. If there are several values of asr , then cancellation 
does not occur in general for ion separations between the least and greatest a ST ' E valuation 
of the net contribution may then be based on the explicit expressions 

and 

bl (I{) = te-"[l + <.p- t<.p2)- t, 

ql (I{) = te- "[l + <.p+ t<.p2)- t, 

t1 ( - A /RT) has been included to account for any further corrections omitted from the equation 
of state. As pointed out in the preceding sectio]) , nonionic equation-of-state effects at low and 
moderate density may be treated by cluster theory and could be accounted for by including all 
clusters as separate new constituents in the first term in the brackets in eq (3. 1). Alternatively, 
the effects may be indicated in accord with the usual procedure employed to obtain thermo­
dynamic corrections for nonideality. Thus, one might usc 

t1 (-~)=- V [ (B-Bo) ("" C)2+(0-00) ("" C) 3+ (D - Do) ("" C)4 ... J (3.2) 
RT Vo Vo L.J s 2115 L.J s 3Vg L.J s ' 

where B - B o, O-Co, and D - Do represent additional parts of the virial coeffi cients required 
over and above the zeroth order values implied by the remainder of the ion-solu tion-cluster 
treatment being used. Corrections to a nonvirial type representation could similarly be 
provided. 
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The quan tity hsr in eq (3.l) has the value 

exp {[ -[7,,+ ~~:2 (l -e-,n,,) JI kT } , 

for O< R sr<a" a nd the yallle 

ex p { [ _Usr+~~,:2 (l-e-,n<r)JI kT } -exp [ ;R~:;~ e-,n"J 
for a sr< R ,,< ro . ] n Lite present m ethod of describing effects between ion cores and an o uter 
electron , h ST will be taken as zero in the range O< R sr<as" since this is a region which con­
tl'ibuLes to the internal Sllm of states determining t he fun ction (- A o/RT)s for the corresponding 
co nst itu ent of ion core with outer electron , ancl the effect is taken into account by that m eans . 
If asr is well chosen for t he approach of two atomic ions, h sr can be small in almost all of both 
r egion s, as pointed out by :Mayer for Ilis closely relatf'd k" . Thus fo1' R < a'7) hsr is sm al1 
because the pair potential U sr is verI" la rge; while for R> a,,, i t is small because U" is almost 
id en tical wi th Z "ZT€2/ D 1(" . 

Jf Lhe contr ibu t ion within Lhe braces of eq 0 .1) clue Lo h" for the interact ion of ion s of 
like charge is to be based on t he use of a Debye screened Coulomb repulsion for R ST < asr as 
well as for R sr > asr, i t m a\' be g iven as 

~)7f' a;, N,Vo L::L:: ('s('r L:: qn(J'sr) <P~r , 
t) 0 S r 11 = 0 

with 

Formulas for q,, (x) are given in Appendix 3 (section 5.3). 
Equation (3. 1) has beeu wri tten in rather general form which allows it to be used in more 

than one way. An approximate treatment for an assembly including atomic ions under co ndi­
tions of high-ion density may be obtained by choosing a single as, to appl.l" th roughout or a very 
small number of different a ,,'s, with suitably limited SLlms to l'epresen t the internal partition 
functions. For conditions of relatively low density, however , it may be desirable to use 
internal part it ion functions for the atomic ions based on an extensive set of levels exte nding to 
modera tely large electron separa tion s . The so-called "collision radius" between an electron 
and an atomic ion co uld in principle be taken correspondingly large in this case, bu t with the 
added detail thaL t he v~, 01' ini t ial index in the summat ion in eq (3.1) and in similar ex pressions 
in Appendix 2 (section 5.3) would be greater than zero , signifyin g frce entI'.I" inLo the ion spbere 
for t his one case rather than having a zero value sigllifying the exclus ion from t he ion sp here 
such as is used in regard to t be close approach of two atomic ions. 

Calculations co ncerning th e concentration of the various cons Lituents of the gas mixture 
under conditions of equilibrium can b e made based on this ion-solution treatment according 
to well known prin ciples. Thus, we may consider a stoichiometric ch emical reaction among 
substances Y s wi th stoichiometric coeffi cients n t,' and n kS" in the reaction equation (cof., 
eq (2.27)) 

which may be \Vl'i Lten as 
(3.3) 

wi th n kS representing both n kS" and - n kS" The equation for ch emical eq uilibrium for this 
kth reaction equation is 

in terms of the chemical potentials fJ. s, with 

486859- 59- 4 

fJ. s= (oA/oN ,) T, v' 
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This gives 

]{k= IfC~k.=(~ynk8 exp [ L;nks ( ~FoR:I~)s_ ~:~J If"1i=]{k(O)r;"li (3. 6) 

where !::"H~ is L;nks H~ for the reaction with 

_ [7T~2 (L; ZW s)" (L;nksZ~) ~3 N tfJ 
"11- exp Vtf (DkT) ~~ (3.7) 

according to the Debye-Huckel theory, and with 

"12= exp { (L;~Ws) ~~L?~- l ) VCrZ;Z;al; 'nkS [b v(\t'sr) + gv(\t'sr)] 

(L;Z;nks) "''''''' ( l )vO O Z 'Zv I-v ( ) } 
("'Z2C)2 .L....J.L....J.L....J - S T S Ta ST gv 'PST 
.L...J s s s r v ~, 

(3.8) 

as the principal correction based on the tabulated functions representing Mayer 's extension 
of the theory. A correction for the effect of the hsr terms may be expressed by 

o 8 r n = O 

which for Debye screened Coulomb repulsion between ions takes the form 

"13= exp { 237T 
a ;T MT/ [2L;L;CrL;Qn(xsr) 'P::,nks 

"\ 

+ 2 L;. ";~ ~: -;2 C;~T r ~:Jc"n,,+[~:'~ ~nq. (x,,).:, ] Z:n" ] Y (3.9a) 

An es timate for effect of dependence of dielec tric constant D on composition may be made 
usmg 

'Y4= exp {[ 

(3.10) 

although a more detailed microscopic analysis of the kinds of screening affecting bo th "13 and 
"14 should be m ade. In fact, the rapid increase of atomic polarizability with principal quan tum 
number poses another convergence problem unless each a tomic state be taken as defining an 
independent constituent. Additional effects r elated to the equation of state may be es tima ted 
frorr .. 

'Y;;= exp{ - L;n ksCojoCs)[(B - Bo)(L;Cs)2jVo 

+ (C- Co)(L;Cs)3j2V5+ (D-Do)(L;Cs) 4j3V~+ ... J) (3. 11) 

It is also necessary to take into account the dependence of energies of sta tes and th e heats of 
formation and r eaction on the ion density. Some indication of the dependence for atomic 
ions may be obtained from a study of atomic levels for a D ebye screened atomic ion. 
Discussion of these effects will be deferred until a later publication . 

The equations for " mass" and charge balance are well known and obvious but may be 
represented here for completeness. Thus if the number of a toms of element X ( i) in a molecule 
of constituen t Y , is l iS) then 

(3. 12) 
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is th e local average concentration of this clement, usable eiLher direcLly 01' in ratio to other 
similar quantities in the expression of conscrvation of each chemical clemenL. Similarly, if 
the electric charge on each molecule of constituent Y s is Z s in protonic units, then 

~OsZs= O (3. 13) 
8 

states that , on the average the gas is electrically neutral. 
The concentrations of con tituents as given by these equations may be termed nominal 

concentrations of clusters considered as molecules. To obtain the actual molecular concentra­
tions Oim) from the corresponding nominal cluster concentrations Os, one may make use of 
the ratio 

with the partition fUll ctioll 
Q;m) =~g i exp (- Ei/kT) , 

i 

(3 .14) 

(3. 15) 

formed by a sum over wll atever group of sLaLes is deemed to comprise the specification of the 
molecular form (or similarly for a,toms and atomic ions). The concentration of molecules in 
their ground states is given by 

(3.16) 

where go is Lhe a priori weight of the ground-state levcl and EO is its energy rclative to the 
energy zero used in obtaining Qs"u. 

It is to be emphasized that nominal concentrations of clusters are in general not identical 
with concen trations of molecules or ions bearing the equivalent name. If accurate estimates 
for concentrations of these species are required , then (3. 14) and (3. 15) must be used. 

4. Discussion 

The calculation of thermodynamic proper ties of gas mixtures in chemical equilibrillll1 
at high temperature and moderate density, with each molecule, atom, or ion considered as 
a cluster of its constituent particles, has been discussed. The method of calculation may be 
used for very high temperatures at which the number density of ions is high, using ion-solution 
theory in 11ayer 's formulation . 

The detailed discussion of the method of calculation of thermodynamic functions for the 
atoms an d atomic ions Lhat form the principal constituents of the gas mLc"ture at high tem­
perature is reserved for paper II of this series. Under conditions of considerably elevated 
density, the proportion of small molecules may be enough to make accm ately descriptive 
functions d esirable, even at rather high temperatures. Yfethods of calculating such functions 
for diatomic molecules may be discussed further in paper III of this series, including bo th con­
ventional parti tion functions and the effective partition functions provided b y cluster in­
tegrals. Molecular cluster integrals automatically include distortion and stretching effects 
due to centrifugal forces and so are especially suited to calculation at high temperature . The 
effect of quantization on the molecular cluster integrals has been included in considerable de­
tail, yielding estimated "effective partition functions." Hatios betvveen these functions give 
proper equilibrium constanLs for the treatment of a gas mixture as a mixture of ideal gases 
in the absence of ionization for the purpose of representing the over-all Lhermodynamic 
properties of the mixture. 

Special emphasis can be given to the concept of the "effective par tition function" con­
sidered as a convenient function for expressing the increase of the par tition function of the 
entire gas due to the joining together of the parts of the cluster . It is thought that this con­
cep t is useful in clarifying the physical meaning of the kind of cluster which has sometimes been 
called a "mathematical cluster. " 
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The analysis of the gas-mixture properties by means of equilibrium constants for cluster 
formation, or the cluster integrals for clusters of all compositions for small numbers of par­
ticles is formally no less complete than the representation of the gas properties according 
to a virial series expansion carried through virials of an equivalen t order, 01' involving inter­
actions of an identical number of particles as in the highest virial coeffi cient included. r ndeed , 
in the low density region the cluster in tegral representation as a treatment of chemical 
equilibria is considerably the more complete when applied to effects of chemical bond for­
mation under conditions that favor the formation of small clusters (molecules) onl~r . This 
detail of good representation may be touched on again in connection with paper TTl of this 
series, dealing with diatomic molecules. If triatomic molecules were t he largest molecules 
formed , then a cluster treatment including all clusters of three atoms would include all 
chemical bonding effects varying directly exactly as the third power of the free atom con­
centration and would include higher order virial type effects due to ch emical bonds in pairs 
and triples of atoms. In the high-density r egion, however , the higher virial coefficien ts have 
large excluded volume effects which are not included in a treatment covering only pairs and 
t riples of atom particles as clusters . For these, the cluster treatment would need to be 
carried through for clusters of the same number of particles as the numer ical order of t he virial 
coefficient in order to give a complete representation for the given coeffi cient. Applica tion in 
the high-density region is complicated further by the detail that for an ordinary chemically 
inert gas, the virial expansion itself, to which the cluster treatmen t is formall~r equivalen t, 
is found to be progressively poorer as a representation when extended to higher and higher 
density. This might suggest that the virial expansion itself may be correct only asymptotically 
in the limit of low density. Nevertheless, the virial expansion is to be regarded as a useful 
approximation capable in principle of giving good estimates up in to regions of considerable 
density. As the equivalent cluster treatment gives a still less sui table extension to high density, 
the problem of practical estimation of proper ties of chemically reacting gas mixtures at high 
density and temperature calls for further es timates of volume effects beyond accessible cluster 
evaluation, so as to be either in accord with empirical and relevant theoretical k nowledge of 
higher virial coeffi cients or in accord with gas theory of still broader application . 

5 . Appendices 

5 .1. Appendix 1 

For high temperat ure calculations of thermodynamic fun ctions for molecules according 
to the present cluster approach, one might first obtain the ordinary nonquantum cluster in­
tegrals based on potential functions agreeing with empirical spectroscopic constants and 
other known facts, following which , one would wish to combine quan tum corrections based 
on known molecular spectroscopic constants. By taking the ratio b etween the ordinary 
partition function for the molecule and a limiting partition function consistent with it, ob­
tained by reducing the spacing between levels uniformly to zero with a proportionate redu c­
tion in weight per level , one may readily obtain a principal correcting factor for the effect of 
quantization. Since the fragment sub molecules implied in the cluster integral occur at much 
higher energy than the combined molecule, only a small error is introduced by ignoring the 
quantization corrections for these fragments. 

In a well-known system of notation, the logarithm of the ordina.ry partition function, 
with energy referred to the gro und-state level of a molecule, may be wri tten as 

InQ= lnQR+~- :2fd;lll (l -e-u.) -(;~){ ~x;;d;(d;+ 1)e-2u'(1 -e-Ui)-2 
I + 2::; 2::; Xij d;d j e-Uie-Ui(l -e-u,) -1 (l -e-Ui) -l + 2 2::;gjj e-Ui(1-e-u.) - 2 >- + 2::;a i d i e -Ui(l -e-Ui) -1. 

i<j ) i 

(AU) 

H ere QR is the r~tational partition function for the ground vibrational state in classical 
approximation, 01 represents the Stripp-Kirkwood [30] correction for nonlinear molecules or 
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the ;"/( ulhoUand co rrect ion for lin ear molecul es du e to t.he finite spfleing of the rotational levels. 
The variable U i may be expressed in terms of t he usual vibrational constants of 

(A 1. 2) 

accord iug to 

(A 1. 3) 

J n view of the prin ci pal v ibrat ional d ependen ce of the rotational partition function , repre­
sentable by a factor exp :8aivi , ln QR may be r eplaced by In QRe+ !:8cZia i, w here QRe r efers 

i 

to t.he equi librium configuration. Th e derivation of the main part of the vibrational effect 
proceeds as already stated wi th a factor ;\ for the level spacing appearing wherever a quantum 
lIumber factor (v i+ (l; /2) apprars ill t he fundamental expressions: 

In Q(;\) = ~d;ln;\-:8di ln l l -e-Ui(~) l -(!c~~) ;\2 { ~Xii d,(di+ l )e-2lt'(~) (1_e- U ,(A»)-2 

+ ~:8J'ijdi dje-lIi(~)e "i(~) ( l -e-ui(~») - I (1- e-lIoj(~») -1+2:8,. gi te-lti(~) ( l -e-ui(~») -2 } 
i<j 

+;\:8g id i [e-U,(~) (l -e-U,(~») -I+!l (Al.4) 
i 

witlt 

(AI.5) 

The q ualll i ly ln Q(\ = 1) - lIlQ(\ = O) g ives the vibrational quan tization correction, to be 
put in suitable form b.\~ expans ion of tbe various functions , cither directly or g iv ing the form 

Q(;\= 1)/Q(;\ = 0) = { 1 + ]~ ;~ [:8d J d i+ l )Xti+ L1<~did/ry(3-WiWj -l_Wj Wi -1) 

, "'" 1 + 2"'" ] _ ~ (~)2 "'" 1 2+ _ 1_ (he )4["", (51' + 9) 1 4 
,-~j iai ygii 24 leT ~~( iWi 5760 leT ~ G i ~ ( iWi 

(A 1. 6) 

The rotational quanti zation correction is already known, bein g given by the fa ctor 1 + ()l /T 
as indicated earlier above. 

It ma~~ be notcd that the expressio n is in such form as to cbange from a classical treatment 
with energy measmed from the classical Vi = O or potential minimum value to a quantum 
treatment with enelK\~ measured from t he quantum Vi= O or ground-s tate energy. 

5 .2. Appendix 2. 

Additional t h ermocl~~nami c fUllctions and relations for the equ ilibrium gas mixture as 
derived from eq (3 .1 ) arc : 

PV V ( 17r;2(:8Z2C):hE3(N.)" 1 
IIT= V o t :8 (',-} (Dlch;" V: - 2 (:8Z;(1,) ~~v~i(- l)VCsCTZ;Z~a};V [b .('PsT)-g.('PST)] 

(A2.1 ) 

with 

tlJ; = 1~ [ (B~oBo) (:80 8)2+ (0;500) (:80.) 3+ (D~fo) (:80 8)4+ . . .J 
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The depend ence of the dielectric constant D on the gas density using the Clausius­
Mosotti rclation provides as a further contribution2 to PVjRT, the quantity 

(D + 2) (D - I ) (8E) , 
D RT Ionic 

where (8EjRT)lonlc includes the ordinary ionic terms in eq (A2.2), i. e. , the limiting law Dcbye­
Huckel term and the Mayer-Poirier terms for which the dependence on D is of the same form 
as for T. 

(A2.2) 

with 

Ll.E =_ V [T(dB/dT- dBo/dT) ("' C)2+ T (dOjdT- dOojdT) ("' 0)3 
RT Vo Vo k-.J s 2V5 k-.J , 

_H_= V{ (HO) _i 7rY2(L;ZWs)~2E 3 (No)~ 

+ T(dDjd~-;;tDo/clT) (L;Os) 4+ .. J 
RT Vo L; Os RT s 3 (DkT) % V o 

- 2 (~Z; Os) ~~ E~,( - I)'OsOrZ~Z; a};' [ ( l + v) b.(IPsr) - (3- v) g.(IPsr) 1 

(A2.3) 

with 

LlH= V {B- Bo- T (clB/dT- clBo/clT) (L;Os)2 
RT Vo V o 

+ 2(0-00) - T~d~~dT-clOo/dT) CL; Os)3+ 3 (D - Do) - T~d~{dT-dDojdT) CL;Os) 4 • •• } 

S_ V{ [(So) _ _ TJ _ ! 7rY,(L;Z~OS)%E 3 (No)Y2 
R - V o ~Os R s In Os In To 3 (DkT) % V o 

+ 2 (L;1 ; Os) ~~ v~, (-1) ' OsOrZ ;Z;a };V[ (I - v) bv(IPsr) + (3 - v) g,(IPsr) 

(A2.4) 

2 '1'be approximate contribntion to P VIRT dne to the elIect of the dielectric constant shonld apply also to the closely related H I RT and FI RT 
of (A2.3) and (A2.5). EIRT and FliRT are also subject to a small contribution not given here due to the dependence of specific polarlzabilities 
on the temperature. This will also alIect C,/R of eq (A2.6) . 
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with 

+- . . } , - :T=~ { ~Cs [ ( - :;)s-ln Cs- ln TjTo] +7r~' (~;~~~%€3 (~:)~ 

+ (~~2 C ) ~~ ~ (- l)·CsCrZ~Z;a!; ' b.(<'?<T) + ~~CsCr ~o (' ''' (2hsr +~ ~hs r) 
s 8 8 T V= II?, 8 r V 0 J 0 u K 

(A2.5) 

where 

fl( - :T)=-~ {2 (BVoBo) (~ Cs)2+~ (Oy;gCo) (~Cs) 3+~ (Dy;f o) (~Cs)4+ . . . } . 

Cv= V{~ O (C~) + ~C dIn Cs (EO) +l7r~i (~ZWs) ~€3 (No)~2 
R Vo S R s s dIn T RT s 2 (DkT) % V o 

_~ 7rh\(~ZWs) ~€ 3 ( 2 dIn Cs) (No) li 1 _.. , 1- . 2 
2 (DkT)'!' ~ZsCs dIn T Vo +2 (~ZWs) ~~~~,( 1) CsCrZsZrasr [v b.(<'?sr) 

+(V - 1)(V-3) 9, (<'?sr) +h. (<'?sr) 1+2 (~~Ws)2 ~~~?,(- l )·CsCrZ;Z;a!; · [ ~Z;,C./~l~ C~ 

2;;: f,r (~Z;, Cs' ) 1 [vb . (<'?sr ) + (v- 2)g,(<'?sr)1+ ~~CsCr ~J '" [2T~:~ (l+~lt~ ~) 
o 

+ T 2d2hsr] 2 R2 lR +[ 1 h2€2 N o 3 ( h2 )~ N o] C2+ 32 sk3T3 V o} + Cv 
~ 7r srG sr 671" mlc2T 2 Vu -128 7rmlcT Vo 0 15 7r h,3c3 N o fl R ' 

wiLh 

(A2.6) 

L1 C.= _ V ~{ T2 d (B-Bo) (""" C )2+ T 2 d(C-Co) (""" C )3+ T 2 d(D- Do) (""" 0 )4+ . .• }. 
R Vo dT Vo dT L..J s 2V5 dT L..J s 3V g dT L..J s 

For such ion interactions as are taken to have identical radii a sr, the factors ~~CsCrZ~Z~ 
s r 

in (3. 1) and (A2 .1) to (A2.6) can be grouped together as (~CsZ~)(~CrZ} reducing further 

to the form used by Poirier if all are identical. 

5.3. Appendix 3 

Functions relevant to the Coulombic interaction in the close approach region for ions of 
like sign include a co ntribu tion to - AI RT due to hsr given by 

(A 3.1 ) 

wi th 

487 



where 

with 

qo (x) =( l -~ x+~ X2) e -I+~ X3 Ei (-x), 

ql(X) =xqO(X) , 

( ) _ 3 _x+5 2 () q2 X - -8 xe 8 x qo x , 

( ) _ _ l ( ,_ 43 2-1- 223 3) -x+ 343 4 (. ) 
q4 X - 48 x 5 x , 20 x e 2880 x qo x , 

() _ _ 1 ( _ 53 2+ 578 3_ 407 4) -x+~ [, () 
q5 x - 280 x 3 x 15 x 15 x e 1575 x qo x , 

( ) _ 1 ( 249 2+ 1763 3 9043 4+ 17443 5) -x+ 2187 6 () 
q6 X - - 1920 x-T x ----u- x -----m- x 280 x e 170200 x qo x . 

The related contribution to Pl1/ RT is 

A similar contribution to E /RT is given by 

9 +3 -x e1= -2 xqo xe, 

_ 15 2 +(3 +3 2) -r e2--4 x qo 4; x 2 x e , 

_ 343 4 + ( 1 59 2+ 429 3+ 1 .4) -x e4--320 xqo 16 x-80 x 320 x 8 x e, 

_ 224 [, ( 1 23 2+ 41 3 307 4 1 b) -r 
e5- - 525 x qo- 80 x-80 x 50 x - 400 x - 40 x e , 

_ 6561 6 + ( 1 313 2+ 923 3 18029 4+ 14643 .b+ 1 6) -r 
e6- - 44800 x qo 480 x- 3360 x 2240 x - 33600 x 44800 x 240 x e . 
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(A 3. 2) 

(A3.3) 



wi tit 

01' 

or 

The co ntribution to I-l/ RT is given by 

( r) 271" No ""'""'00 3""'h ( ) n T/ -3 -, - L.....JL.....J S Ta sT L..; n XST 'PST , 
I 0 0 S T n ~O 

( 1 5 ') h3= -3x3qo- - x-- x2 - - x3 e- x 
2 2 2' , 

1 _ 343 4 (' 51 2 163 3+' 4) - 7 1~4- -240 X qo+ "8 x-40 x +80 x "8 x e . 

The contribu tion to S jR is 

_ 343 4 +(' 67 2+ 133 3+1 4) -7 
8 4- - ~60 X qo 24 x-fiD x 120 :L "8 x e . 

Th e contribuLion Lo - FjRT is 

Th e contribu tio n of this kind to OJR is 

-l--n "'" Z2 C (d In Os') ] (.) n "'" [ +(d In D) ] ( den ( ») n} , 2 L.. s' s' dIn T v en XST 'PST-~ 1 dIn T v XST d.fsT XST 'PST 
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(A'3.4) 

(A3.5) 

(A3.6) 

(A3. 7) 



--_._- -----------

with the en as glven above, and with xde nfdx obtainable by differentiation , giving relations 
such as 

xdeofdx=-9qo+ (9 - 3x)e-X , 

27 (1 13 27 1 ') Xde3fdx=-- x3q - - x- - x2-- x3+ - X4 e- x 
2 0 4442 ' 

l fd - 343 4 +(1 123 2+1523 3+19 4 1 5) _x 
XG e4 x--20 x qo 16 x- SO x 320 x 8" x - 8 x e . 
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