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Density Formula for Alkali Silicate Glasses From

Annealing to Glass-Processing Temperatures
Leroy W. Tilton

An additive formula is given for the computation of specific volumes of molten and
compacted alkali gilicate binary glasses with modifiers up to 50-mole percent and from anneal-
ing temperatures (400° or 500° C) to 1,400° C. The effective partial volumes, v, for the

silica are postulated as

(1/vs) =2.198+ 7 Cs(1723 —1),

where 74, is the mole fraction of nonsilica and Cs is a constant to be evaluated from glass-

density data.

This is based on the idea that silica networks can contract in volume as

temperatures are lowered provided, and in proportion as, modifier ions are present in the

glass.

The effective partial volumes of R,0O, the nonsilica, are assumed as linear functions

of temperature but not of the fraction of silica present.

Computed and observed densities agree within approximately 1 percent.

The effective

volumes of nonsilica are somewhat smaller than published estimates for the oxides themselves,
as should be expected because of interpenetrations.

Previous formulas for the computation of densities
of glasses have related principally to variations in
composition. The formula proposed by Stevels [1] !
is based on ideas of structure and has very few con-
stants. It assumes for restricted ranges in compo-
sition that volume is independent of the nature of
the cation. As modified by Stanworth [2] it shows
that volume is dependent on the size of the cations,
the glass volumes being larger as cation radii are
larger.

The additive formula proposed by Huggins [3] has
many constants, and it is notably successful. That
work is of considerable interest to anyone interested
in structure because Huggins finds that the addition
of every cation oxide molecule linearly increases the
volume of a glass per oxygen atom, regardless of
previous additions. However, at least for R,O
silicate glasses, it can be shown that the linearity is
not dependent on the referral to oxygen, and his
corresponding partial volumes of nonsilica (not
referred to oxygen) also are found to be linear if
plotted against mole fraction of the added oxide.?

The Huggins formula is of further interest because
the partial volumes used for silica are almost identical
in the presence of various kinds of nonsilicas and are
so treated except for the presence of a few elements,
notably boron. Most interesting of all in connection
with the present paper, his partial molar volumes
(P. M. V.) attributable to silica ® decrease as larger
amounts of modifier are added. The Huggins
stepwise procedure in dealing with the silica compo-
nent is roughly equivalent to the procedure men-
tioned by LeChatelier [13], namely an arbitrary dual

! Figures in brackets indicate the literature references at the end of this paper.

2 Although the Huggins partial volumes for silica (whether or not referred to
oxygen) are more nearly representable by a smooth curve when plotted against
mole fraction of silica than against the Si to O ratio (used by Huggins), their
better representation by segments of straight lines can still be shown. The
Huggins special points of intersection correspond to compositions where there
are integral numbers of cations per cage according to vitron theory [5, 6].

3 2(431zm2%utable from Huggins’ table 1 as P. M. V.=2bsi+csi. See White [8],
p. 24 to 28.

calculation of the volumes attributable to silica,
partly from the density of silica glass and partly from
that of the crystalline silica phases. Biltz and
Weibke [14] proceeded in a slightly less arbitrary
manner and calculated volumes of “average mols”
of glass by the additive rule after taking into account
the specific volumes of certain crystal phases that
could be derived from the equilibrium diagrams and
therefore might be presumed to exist in the liquid
silicates.

_The procedures mentioned are certainly not incon-
sistent with a conclusion from data on annealing [4]
that the nonsilica particles, chiefly in proportion to
their mere number, seem to govern the extent of
partial collapse of the silica framework. A decrease
in the bond angle Si-O-Si, where the tetrahedra are
connected, was suggested. )

The object of this paperis toseeif the additivity of
volumes in alkali silicate glasses at high temperatures
is compatible with the idea of a silica that is con-
tinuously variable in density as a function of both
temperature and modifier content. The following
considerations also are relevant to the development
of the proposed formula:

(1) A bond-angle theory of annealing [4];

(2) Known linear variations of densities of glasses at
equilibrium in the annealing ranges [4];

(3) Shermer’s [7] curves for densities of molten glasses
as functions of composition, showing (qualitatively 4) the
marked increases in expansivities as cation is added to
silica;

(4) White’s [8] finding that densities of molten alkali
silicates vary nearly linearly with temperature over a 400°
C range;

(5) White’s report that the silicon-oxygen structure in
molten silicates is not only similar to that in vitreous
silica but is independent of the kind of cations present; and

(6) White’s report that the partial molar volumes of
silica are identical for the alkali silicates and decrease as
cation is added.

¢ The slopes of Shermer’s density curves from room temperature te 400° C are
about 34 as steep as is indicated by the coefficients in his table 1.
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The basis for development is the well-known
additivity of volumes, so that the specific volume of
a glass may be written:

o1
Vg:E:sw@s—vaR, (1)

where »s and v, are effective partial specific volumes
attributable to the silica network and the nonsilica
modifier, respectively, and s, and 7, are the respec-
tive weight fractions.

For each modifier oxide, the effective density is
assumed as a linear function of temperature

(1/vg)=Ag+Br(1,400—1),
where 1,400° C is used because it will be desired
later to compare directly the empirically determined
A constants with White’s estimates at 1,400° C.

The problem, then, is to find a suitable expression
for vs, the effective volume of the silica. As a first
approximation one might use »s as a constant
independent of temperature and modifier concentra-
tion. If this be done then it is found necessary to
express each of three values of vz not only as a
function of temperature but of modifier content. It
is simpler to assume that only silica volume, vg, is
a function of modifier content.

It is desired that 1/ps have the value 2.198 g/em?
at 1,723° C, the melting point, and at all tempera-
tures in the absence of modifier oxides; also that it
decrease monotonically with temperature for a given
degree of modification, and increase with modifica-
tion at constant temperatures other than 1,723° C.

Hence it is postulated that in the presence of any
alkali modifier

(1/v5)=2.198+7r,Cs(1,723—1), (2)

where r,, is the mole fraction of nonsilica and Cs is
a constant to be evaluated from the glass-density
data.

Other procedures can, of course, be followed in
seeking to express as a continuous function the
changes with temperature and modification that
seem necessary for successfully computing glass
densities. It seems preferable to follow precedent
in attributing the changes mainly to the silica
component [3, 13, 14], as mentioned above.

The assumption of eq (2) leads to much lower and
more reasonable temperature coefficients, B, for
vg than would otherwise be found necessary in eq (3).
Incidentally, the form of eq (2) accords with 1deas
previously expressed [4] concerning the nature of
the structural rearrangements and volume changes
in silicate glasses in their annealing ranges, namely
that the silicon-oxygen bond is temperature sensitive
(undergoes more electron cloud distortion, and be-
comes more angularly directed) in proportion as
nonsilica particles (metal ions) are present. The
operation of formula (1) together with the auxiliary
eq (2) and (3), depends importantly on the use of
the factor 7, as included in eq (2) for evaluating the
effective partial specific volume, 25 of the silica.

In eq (2) the constant (g is the slope or the tem-
perature-contraction rate, —Ad/At¢, for a network
of vitreous silica collapsed as fully as can be accom-
plished by the presence of alkali ions. In other
words, the slopes of a family of curves of the effective
partial densities of silica itself (but permeated with
alkali modifiers) versus temperature are expressed by
—7r, Cs and the partial derivative of such slopes with
respect to 7, 18 —Cs.

From experiments [4] on volume changes of com-
plex glasses in their annealing ranges only, and thus
for an average of numerous types of modifiers, a
value of Cs=4-0.00057 might be expected.® Actu-
ally, for use in eq (2) for computing densities of
alkali silicates in the annealing range and up to
1,400° C, a still lower value of +0.00040 is now
empirically recommended (after several trials with
larger slopes °).

The constants A and B were successively deter-
mined from the glass densities after assuming various
values of Cs. A value Cs=0.00040 was found to give
the best fitting curves when residuals were averaged
for all three modifiers at four temperatures, namely
annealing, 900°, 1,150°, and 1,400° C.

The “observed” values for molten glasses are
computed 7 from those that White [8] tabulated at
1,400° C with coefficients for other temperatures
from near 1,000° to 1,500° C. White shows that his
results at 1,400° C are in fair agreement with those
by Heidtkamp and Endell [9] and those by Shartsis,
Spinner, and Capps {10]. The “observed” values for
compacted glasses at room temperature and at their
critical temperatures are based on the densities
published by Young, Glaze, Faick, and Finn [11]
and on thermal coefficients tabulated by Shermer
[7] and by Schmid, Finn, and Young [12].

The best effective densities, 1/vg, for use in eq (1)
are

1/vgi=1.700-+0.000332 (1,400—1),

1/oye=2.117+0.000416 (1,400—1), (3)
1/vg=2.066+0.000428 (1,400—1).

This implies that the effective densities of the
oxides in the silicates at 1,400° C are 1.70, 2.12, and
2.07 which are 10, 12, and 14 percent higher than the
densities computable for the oxides themselves from
volume estimates as given by White [8] for LiO,
Na,O, and K,O, respectively. These percentages
can be considered to some extent indicative of inter-

5 From eq (1) of the reference cited (An/At)=—0.00010r, and from the Newton-
Laplace relation between refractive index and density, namely (n>—1)=dC, one
finds by differentiation that (Ad/An)=1/0.176. Hence (Ad/At)=——0.00057 7, for
a silica network stabilized by the presence of various metallic ions, and Cs—=
—(02d/otdr »)=+0.00057. This value of Cs extrapolates to a molar volume of
18.7 em? for stabilized silica network at absolute zero, as compared with 27.3 ecm?
for metastable silica glass. This would be silica with 39-percent voids, even if one
may consider oxygen and silicon as solid spheres with radii, 1.31 and 0.29 A,
respectively. Such a condition is then not unreasonable because it is intermediate
between the known conditions for densest packing of spheres (26-%, voids) and for
most open packing (48-%, voids).

6 Tt can be shown that the higher value of Cs=0.00057 can be used if a threshold
value of 7,=—0.12 is assumed for the beginning of configurational thermal expan-
sion. See White [8] p. 106.

7 The computations are in several cases extrapolations from White’s data to
gengp(e}rabures below the liquidii, particularly for lithia and potash glasses at

00° C.
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Table 1.

Comparison of compuled and observed densilies

penetration of the silica network cavities with these
modifiers. Correspondingly, in eq (3) the tempera-
ture coeflicients of density are 6, 8, and 16 percent
higher than those computable from differencing
White’s estimates of oxide volumes at room tempera-
ture and at 1,400° C.

The complete formula yields densities of which
two-thirds agree with observed densities within
one-half percent over the range 1,400° to 400° or
500° C for both molten glasses and those in the
annealing ranges, as shown in table 1.

From the residuals, c-o, in table 1 it is evident
that the proposed density formula fits the data
fairly well over the long range in temperature. This
is illustrated in figures 1, 2, and 3 where, for the three
systems, rough comparisons are also made with data
by observers other than White. The slopes in
figures 1, 2, and 3 show how regularly the expansivi-
ties increase as modifiers are added. The approx-
imate constancy of expansivity f{rom annealing
temperatures to those of molten glasses accords
with the idea that glass structure does not change
fundamentally within these temperature ranges.

When more numerous and more precise data
become available it may be found, for glasses nearly
saturated with modifiers, that observed densities
in the annealing ranges differ systematically from
those computed by this formula as adjusted to fit
densities not only for annealing ranges but for
molten glasses also. This expectation is based on
the postulated characteristics of vitrons. Saturated
cages of vitrons [5, 6] cannot be expected to respond
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Mole Annealing temperature 900° C 1,150 C ’ 1,400° C '
per- BRI ,,7 B RS P |
ent | |
(180 Computed | Observed | (c—0)X10% | Computed | Observed | (c—o0)X10% | Computed | Observed i (e—0) X103 ! Computed i Observed | (e—o0) X103
|
Li,0-8;0, w
10 | 2232 |2239 —7 | 2213 .. | 2183 ‘ 2. 180 DI }
20 2. 263 2. 275 = 1l 2. 215 2. 206 +9 2. 181 2. 187 =6 1 2. 152 2. 169 ; —17 |
30 | 2.283 | 2.298 —15 | 2.208 | 2. 216 —8 | 2164 |2177 | —13 |2120 | 2. 138 —18 |
40 2. 299 2. 313 —14 2. 197 2. 194 +3 2. 138 ‘ 2. 146 —8 | 2.083 2. 098 —15 |
50 2. 298 S S 2.172 2. 167 +5 2.104 | 2. 111 -7 ‘ 2. 040 2. 055 —15
60 S S S 2. 137 2. 108 } +29 2. 062 } 2. 044 | +18 1. 988 ‘ 1. 980 ‘ +8
| | | | |
Naz(,)-SiOz i
. : ‘ ~ .
10 2. 272 2. 276 —4 2. 242 e SR 2. 223 [ R e 2. 202 2. 210 —8
20 2. 342 2. 354 —12 2. 278 2. 271 1= 2.241 | 2. 247 —6 2. 202 2. 222 =40 |
30 2. 404 2. 420 ==1I(5) 2. 306 2. 308 =7 2.252 | 2.259 —7 2. 200 2. 210 =) |
40 2. 457 2. 468 =1l 2. 331 2. 322 +9 2. 263 2. 261 +2 | 2 194 2.201 | -7
50 2. 496 2. 514 =N 2. 344 2. 336 +8 2. 267 2. 264 +3 2. 187 2. 192 =)
60 2. 524 - 2. 352 2. 323 +29 2. 264 2. 243 +21 | 2.176 2. 163 +1¢
|
K,0-5;0,
. EPE S — ‘
| \ w
10 2. 283 2. 282 +1 | 2.242 2. 216 +26 2. 217 “ 2. 216 Sisl ‘ 2. 191 2.216 | —25
20 2.352 | 2.355 =3 2. 271 2. 262 49 2. 225 2. 223 +2 2. 179 2.184 | —5 |
30 2. 413 2. 405 =S 2. 293 2. 284 +9 2. 229 ’ 2. 220 +9 { 2. 166 2. 156 r +10 ‘
40 2. 457 S -~ | 2.307 | 2. 290 SRl 2.230 | 2.213 +17 | 2. 151 2. 136 +15
50 2. 491 — 2. 313 i S S 2. 226 - S 2. 140 I | ’
P e _— o e L S — o e | p— SEEEDT s |

as freely to bond-angle contraction during cooling
as is assumed for unsaturated cages considered in
this simple formula. The resulting stresses that
develop on further cooling may eventually cause
some breaking of bonds so that the delayed bond-
angle contraction can then proceed. Some indication
of such systematic tendencies is shown by the
predominantly positive residuals in the 900° column
of table 1, and the almost exclusively negative
residuals in the annealing-temperature column.

As modifiers are added, there is in these residuals
another and more definite systematic trend. The
computed densities must be regarded as averages
over the composition ranges because the formula
has no terms relating to degree of saturation. The
computed densities are too low at low modifier
content and become too high at higher percentages
of nonsilica particularly for molten glasses at highest
temperatures listed. This is clearly indicated in
figure 4.

It will be noticed that maximum excess of ob-
served densities tends to shift toward higher per-
centage modifications in the order K,O, Na,O, Li,0.
Indeed the maxima for K,O and Na,O occur at
lower percentages than 16.7 and 23.1, respectively,
at which it has been suggested that complete in-
closure of oxygen in the dodecahedral cages should
cease and the breaking of oxygen bridges should
begin. It happens also, that the excesses change to
deficiencies not far from the percentages 28.6, 37.5,
and 50 that have been identified with complete
saturation of the cages.
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Ficure 1. Densities of lithia silicate glasses as functions of

Full lines represent computations by the proposed formula.
represent observed values at room temperature by Young et al. [11].

temperature.
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lines lead to densities computed by formula at the annealing temperatures.
Filled circles represent densities computed for annealing temperatures by use
of room temperature densities and expansivities as measured by Schmid et al. [12]
and by Shermer [7]. The total ranges in White’s [8] observed values, for 20- to
50-mole percent of Li;0O, are indicated by brackets open to the left. The ranges
in observed data by Shartsis et al. [10], 20-odd to 40-odd mole percent of LizO, are
shown by right-face brackets. Shermer’s similar diagram from observed data
suggests a minimum spread in crossings of lines just below 800° C.
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Densities of potash silicate glasses as functions of
temperature.

The brackets indicate data by White [8] for 10- to 40-mole percent of K20.
Shermer’s diagram suggests minimum spread in crossings near 1,100° C.

Figure 3.

Densities of soda silicate glasses as functions of
temperature.

The left-face brackets represent data by White [8] for 20- to 50-mole percent of
NasO. The right-face brackets represent data by Heidtkamp and Endell [9]
for 20- to 50-mole percent of NasO (except at 1,100° C where their modifier range
is only 30 to 50 percent). Shermer’s [7] diagram suggests minimum spread in
crossings just below 1,350° C.

Ficure 2.
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Ficure 4. Comparison of computed and observed densities of

binary silicate glasses at 1,400° C.

Full lines represent computed densities. Dotted lines connect densities
observed by White [8]. Since the simple formula has no terms relating to satura-
tion of the cavities, it is to be expected that (with an average adjustment) excess
of observed values should be found principally at nonsilica contents below 28.6-,
37.6-, and 50-mole percent for K30, NazO, and LizO, respectively, because these
are the percentages tentatively assigned for complete saturation according to
vitron theory [5, 6].

WasuinGgToN, April 10, 1958.

In addition to the results listed in table 1, data
for two ternary glasses investigated by White were
used. Each contained 60-mole percent of SiO, and
20 percent of LiO. For one with 20 percent of
Na,O the computed and observed densities at
1,400° C were 2.147 and 2.155; similarly for one
with 20 percent of K,0, 2.123, and 2.126, respec-
tively.

In resumé the following points are emphasized:

(1) A simple additive formula [1], if written in aceord
with an effective partial value of silica as postulated by
eq (2), represents the data on alkali silicates approximately
as well as they are known. The systematic trends in the
residuals seem qualitatively in accord with expectations
from vitron theory.

(2) The use of a factor 7, in eq (2) is analogous to
Huggins’ [3] use for silica of a parameter variable with
modifier concentration. The need for such a procedure
was indirectly implied by White [8] and by Callow [15].
(See considerations as above listed.)

(3) The empirically determined constant, Cg, for silica
in eq (2) is reasonable in that it is interpretable as a
temperature collapse rate for silica network that extrap-
olates to reasonable volumes at 0° K.

(4) The empirically determined constants for nonsilica
in eq (3) are reasonable in that they approximate the
densities of the oxides and their temperature coefficients
within 10 or 15 percent of estimated values.

It would appear from the analysis in this paper
that to a first approximation the sensitive-bond-angle
concept for silica with alkali modifiers is semi-
quantitatively compatible with our knowledge of the
densities of alklali silicate glasses.
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