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On the Diffraction and Reflection of Waves and 
Pulses by Wedges and Corners 

F. Oberhettinger I 

Variou~ proble m' ari:;ing ill t he theor.\· of [he excitatio n of a pcrfectl.\· refl ecting wedge 
or co rn er b~· a plalle, cylind rical, or 'pherical \\·ave, are dealt with. The inciden t \\·a \·e i, 
represented by a li ne sO Lirce (acOLis tic or electro magnetic) parallel to the edge. T he spherical 
wave is emitted by a n acollstic poi nt source or by a H ertz dipole \\·ith its axis parallel to the 
edge. ThE' ca;-;l' of all incident plane wave field is obtained as the limiting case (for large clb­
t ances of the ,ouree fro m the edge) of t he c~·l i nclrical or spherical waye excitation. 

1. Introduction 

Sommerfeld 's cl~l ss ical problem of the excitat io n of a ]wrfe C' U.\· rdlecting half plall e by a 
pla ne (acoustic o r electromagnet ic) wave field is based upon the t heor.\- of mul t ivalu ed solu tions 
of t ite wave equation [:34).2 Subseque ntl.\· t his method was pxtended to the problem of the dif­
fraction of cylindrical or sphe rical waves b.\- a half plane [3] or b.v a ,,·edge [44] (i n the latter 
case also for a plane in ciden t wave). H er e the incide n t cylindric-al wave is emitted by a line 
source parallel to the edge (of t he half plalle or wedge) a nd lile sph erical wave is emitted h~- a 
po in t source (in the aco ust ic case) or by a H ertz dipole (in l il e electromagnetic case) parallel 
to t ite edge. The solu t ions for t he half plane problem a re given in th e form of integr al expr es­
sions in volving a real ya riable, while the co rresponding wedge probkm sol ut ions a re given as 
co nto ur integrals. 

Th e problems descri bed above have been t rl'i1ted ever sincp ,yi t h the aid of var ious tec ltn iq lies. 
Tilc wedge p ro blem as treated b.\- ~[acDo n a ld [22] requires t he co nve nt ional methods of nine­
teenth ce nt ury m athemat ical ph.\-sics onl.\·. HNC t he solu tion is give n b)- a n infi.n ite seri es a nd 
this is tn\,l\ sfonneclin to v\' iegrl'fe's complex in tegral. For the special case of a half pla ne (angle 
of the wedge equa l to ~ ,,), red uctions Lo in tegrals i llvolv ing a r cal va riabh' are given. AnoLher 
approaeh is a ge ne ralizat ion of t lte met hod of l he images [1, 16, 43] . 

Al fi. rst t he solu l ion for a wedge of an a ngle ,,1m wi th positive intege r m is establish ed as 
t he sum of the efl'ects or the orig in al so urce a nd iLs 2 m-l images. T his sum is replaced by a 
co ntour integral which is extend ed 0 as Lo obtain a formula valid for any pos itive m and hence­
fo rth for a ny angle a of the wedge. Again , the solu tion is given by a co nto ur in tegral. In 
more r ece nt t imes a number of attempts ha ,·e b een made to app l.\· integr al t ransform methods 
[20, 17] and integ ral equation methods [23, 7, 14, 13] to th e half plane diffraction problem. 
Finall.Y, t he problem of t il e diffraction b)T a perfec tly co nducting half plan e of electromagnetic 
waves emitted b.,- all arbi t ra rily orien ted electric or magnetic dipolc has also b een solved [32, 
39, 15]. 

Sommerfeld 's solu tion (plane waves incident on a half plane) is given in a form readily 
available for numerical computation inasm uch as it co nta in s onl~' t lte tabulaled error fun c­
t ion besides elementary fu nctions. The solution of th e otber cases can either be given in th e 
form of infinite series (usuall.\' sui table for t he numerical evaluatio n of Lh e near field) or in the 
form of integral express ions. A l"pdu ction of the latte r to an asymp totic series has to b e carried 
ou t if app roximate express ions a re desired for distances t llat are large compared to the wave 
length . Express ions of t his form h ave been dc'r ived for th e case of the d iffraction of a plane 
wave b.\T a wedge [44, 29]. (An asymp totic exp ans ion which fails to give tbe p roper behavior 
in Ll le neig hborhood o r thl' boundaries of geome tric op t ics is ignored h ere [36].) Th e m ain 
reature of t hese asymptotic series is t hat tllCir terms a re gell eralized error fun ctions. The work 
refe rred to abo ve is co ncern ed only wi t h t ime harmonic problems. 

I Guest workl'r, ~~a.Lional Bureau of Stnnuarcls. from AJllcrican Unh-e l'sity. ]:lrcsent add ress, Oregon Sta.te College, COf\'sllis, Ore. 'fhis 
!,pst'arch was carried out in part IInder Contract ;'\'0. DA- ll-022- 0n 1)- 2059 with the Unh'crs ity or 'Yisconsin. 

, Pigurrs ill brackets indicate the li terature references at the end of this paper. 
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------------- ----------- --

A second group of investigations centcrs around problems in which the dependence upon 
time is not periodic. This is the case of the diffraction of a pulse or a transient wave by a wedge 
or a half plane. This group of investigations was initiated by Sommerfeld [35] . The following 
contributions are listed here: Normal incidence of a plane pulse on a half plane [2 1,11]; two­
dimensional pulse incident on a half plane [12]; plane pulse (unit step function) incident 011 a 
wedge or a corner [19,24, 25]; arbitrary pulse incident on a wedge or a corner [18]; cylindrical 
Dirac pulse incident on a half plane [38]; and spherical pulse (unit step function) incident on a 
half plane [40]. This paper will deal with various problems arising in the theory of the exci­
tation of a perfectly reflecting wedge or cornel' by a plane, cylindrical , or spherical wave field. 

The incident cylindrical wave is represented by an acoustic or electromagnetic line source 
parallel to the edge. The spherical wave is emitted by an acoustic point source or by a Hertz 
dipole with its axis parallel to the edge. The case of an incident plane wave field is obtained as 
the limiting case (for large distances of the source from the edge) of the cylindrical or spberical 
wave excitation. 

In section 2 of this paper, various representations for the time barmonic solution of the 
problems outlined before are given with special emphasis to a representation upon which the 
inyestiga tions of sections 3 to 6 are based . A straigh tforward method is applied based upon tbe 
representation of the incident field in the form of a Kantorovich-Lebedev transform. 

Section 3 contains a detailed discussion of the results obtained in section 2. Relations to 
geometric optics arc discussed. 

Section 4 contains an asymptotic expansion for the far fi eld excited by the incidence of a 
plane wave on a wedge. This expansion is not of the vViegrefe-Pauli type inasmuch as it con­
sists of two error function terms and an asymptotic series with inverse powers of the variable. 
R emarkable is the fact, that this series represents asymptotically (for large distances from the 
edge) the deviation of the V\~edge fi eld from the corresponding half-plane field. 

Section 5 contains expressions for the energy radiated from a H ertz dipole in the presence 
of a perfectly reflecting wedge or corner (antenna and corner refiector). 

Section 6 gives the pulse or transient solutions corresponding to the time harmonic prob­
lems investigated in section 2. It is shown that previously known results can be obtained as 
special cases of the expressions given here. 

2 . Time Harmonic Wedge Diffraction Problems 

The case of the excitation of a perfectly reflecting wedge by a (acoustic 01' electromagnetic) 
line source parallel to the edge of the wedge is considered first. (The solution for the excitation 
by a point source can then be obtained by a further integration. ) Cylindrical coordinates 
(p,4>, z) are introduced such that the z axis coincides with the edge of the wedge and the walls of 
the wedge are bounded by 4>= 0 and 4>= 0'.. Let the locations of the line source and the point 
of observation be characterized by Q(p' ,¢' ) and P (p,4» , respectively (fig. 1). Let the field 
inside the wedge be p eriodiC: of~ the form 

<1> = [T(p,4»exp (iwt ), (1) 

<p=a 

P( .o,<p) 

"--------------+ 'P =o 

FIGURE 1. 
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\vhere 7. - sali fies the L\\-o-dimensional wave equation 

(2) 

_-\. solution of (2) r eprese nt ing divergent waves is of the form 

U = exp (±ivc/»Hv (2) (lep ). (3) 

El, (2)(lep ) is the second Hankel function, and v is an arbitrary parameter. Following a pro­
cedure used elsewhere [26], the subst itution 

lc = 27r!'A = w/c= - iy (4) 

is introcLuced . This mrans that instead of (2) and (1) 

(5) 

is cO ll sidered \\-ilh a parlicular olution cOlTesponding to (3) 

[ . = exp (±ivc/» K v(Yp), (6 ) 

where 
K .(z) = - !i7rexp( -i!v7r )H v (2) (-iz) (7) 

denotes the modified H ankcl fll ncLion . The lrallsi t ion from Ie Lo y amoll IltS to the lnwsi lioll 
from a wave problem to an exporlential decay problem . At first Lhe exponelll ia.L deca~- prob­
lem is solved, and the wave problem soluLion is establish ed by r eLu rning from y to lc. Thi s 
will not only simplify questions with respect Lo convergen ce bu L the innsligations in sec Lions 
4 and 6 are based upon the expo nenLial decay solu tion and not on Lhe time harmonic soluti on . 
The in cident fLCld in P(p,c/» clue to the line som ce Q(p',c/>' ) is giyen h,-

( ) 

Let the total field l/ b e r epresented as a sum of the in cident fi eld [,"i al1d a reflected 
field CT, where CT has no singula ri t ies wiLhin the wedge : 

(9) 

In order to r epresent U i in a form suitable for the problem co nsidered here it is advisable 
to express the modified Hankel function on the 1'. h. s. of (8) not by means of its well-known 
addition theorem [9, p . 44] but by the equivalen t expression ((3A) appendi.-'(): 

(10) 

, .. hich is of th e form (6). Let the r eflected field b e r epresented in the sam e form : 

(11) 

The so far unknown functions il and i2 are to be determined by the boundary conditions. 
Ther e are two cases of boundary conditions: (a) U= O and (b ) o U joc/>= O on the walls 

c/> = O: and c/>= a of the wedge. With electromagnetic waves on a perfect conducting wedge, 
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case (a) refers to the elec tric field , case (b ) refers to the magneti c fi eld . ·With acollstic wan , 
case (a) refers to free \I-all, and case (b ) refers to rigid wall . 

This leads to 

and 

f l +f~= - cosh [v (?T - ;P ' )] 

f lexp (va ) + f zexp (- va) = ~cosh[p ( ?T - 0+ 4>' )] 

jl - 12 = - sinh[v ( ?T - 4> ' )] 

f lexP (va )-f zexp ( - v~) = si IIh[v (?T - 0+ 4>' )]. 

(1 2) 

( I J) 

for cases (a ) and (b ), respectively. It may be noled tha t the boundary condi tions han been 
satisfi ed by putLing the integrand equal to zero_ This can be justified b~- ,-erifring that the 
solution thus obtained satisfi es all necessary conditions [3 1]_ But it ma~- also b e remarked 
that U is represented as a Kontorovich-Leb edey transform [9, p_ 75] . After fl and .t~ haw been 
determined by (12) and (13 ) the solution is theil, h.\- (9 ), (1 0 ), alld (11 ), 

U = 4i?T- 2 ( 00 K iv ('Yp ) K iv ('Yp') s~ n ~ ~?TV~ {cosh [v(a - !4>- 4>' !) ] =F cosh [v (a- 4>- 4>' )] }r!v. (14) Jo SIn av 

The upper a ncllower sign is valid for cases (a) and (b ), respectivcl.\-. The J'ei11tio n ((9A) 
appendix) shows that the convergence of the integral (1 4) at its upper limit for a real and 
pos itive'Y is secured when 

and this region contains the whole region of the wedge. If one returllS 110\\- to tht' \\"il \"t' probh'IU 
replacing'Y br i k according to (4) one aeriYes at the r esult 

The behavior of the integrand at its upp er limit leads b.\- [9 , p. 88, form. 22]lo t he condition 

?T~ !4> =F 4>' ! ~ 2a + ?T . 

This restricts the validity of (15) to the case of a wt'dge of an angle a larger than ?T wi th 
the point of observation P in the gcometric shadow of the source Q. The expression (14 ) 
shall now be transformed into an infinite ·series . For this purpose the elemen tary rela tion 
[2 , p. 368] 

COSl.l[v (a - O)] =~ ~ ~nCOs(n?TO/a) , 
h ( ) L.J (! ) ~o= 1 , ~,,= 2 for n;;:; 1, SIn av a n= O n2+ n ?T a 2 

valid for 0 ~O~ 2a is used . T erm by term integralion ~- ields 

f a> , cosh [v (a-O)] . 1 a> . j' OO v sinh (?Tv) , _ 
K ,v('Yp)K tv('Yp ) . h () smh (?Tv)c!v=-~ ~n cos (n7r&/a) 2+ ( I )' K ,v('Yp )K ,v('Yp)dv. 

o sIn va a n=O 0 V n ?T a -

The integral is known flO, vol. 2, p . 176]. (Xote that this fonnyla is not only ntlid for posit ive 
integers but for R e n > O). H ence 

for p< p' and for p> p' the same formula with p and p' intcrchallged . Therefore, thc field U can 
be written as 

U=~ S ~ ,, { cos [n?T C4>-4» '] =F Cos [ n?T (4) + cf>)' ]}Inrrla('YP)K n1<la('Ypf ) (16) 
a n =O a a . 

:t~tt 

.~-------



for p< p' ,111(1 fO I' p> p' the S;l111(' formliia II-itlt p fl lle! p' iu teJ'ehangccl. The ('xpression (16) is 
Yalid for H.ruitrnril.\' ('ompkx 'Y Hml if 'Y is replfll'c(l by i lr tile solution for tllC co rrcspo nding wave 
pro h 1 ('m 1)(' eom es 

for p< p', ;11lc! for p> p' tltc sam e l'xpJ'('ssio ll is used \\' ilh p and p' inteJ'dtallg('(l. The prcceding 
expressions (16) alld ( 17) represl' llt ra,pidl~- cOllvergent sel'ies if the arguml'llLs of the B essel 
func tions f1.re small. TIt(, exp ressions (16 ) and (17) shall now b e tran sferred hack into another 
integml <'xpress ioll \\' Ilicll is the bas is of the inHstiga tions ill section s 3 and6. For this purpose 
t he product I n'la ('YP )K n'la ('YP' ) ill (16) is rep lac cd by an i ntegra,l l'cpresentat iOIl (( I A) appendix). 
This kfld s to t Itl' f'ollo\\'illg express ioll s. 

00 
s= ~ f ll cos ( I/71'Ola) In~/ a('Yp) Kn'l a ('Yp' ) 

11=0 

= 71' -1 i:, Ell cos (1I7r0/a) j' '''K o['Y (p2+ p' 2_ :Z pp ' eo:; ./, )1 /2] cos (n7r.f/O')d.f 
n=O 0 

- 71' - 1 ± En COS (I/7rO/O') :; in (1171'2/0')1' 00 ('XP (-- Il7r.r/O')K o['Y (p2 + p'2+ 2pp' cos h .1')1/2] (1':t. (18) 
.=0 0 

T he sc('o lHl s lim \'anis ill's lI' it('1l O' = 7r/m, m= 1, 2, :3 , ... . Ti le LII-o s lims 011 tite 1' . h. s. 
of ( 18) arc denoted b~- "I alld gz . 

fllterC'llfLil g in g t ite order of s lImma.tioll a nd illtegratioll o ll e fillds 

(19) 

(20) 

Th e sum in the integrand of (20) <.;all be summed [2, p. 203] fllld the r esu lt IS 

(21) 

8 1 as giyen by (19) can be cxprcsscd as a s um of a filliLe number of terms. The rcsu lL is (appen­
dix) 

81 = O'7r - I~Ko{ 'Y[p2 + p' 2_ 2pp' cos (20'7'+ 8; ] 1/ 2 } . (22) 

Th e limits of the summation in (22) are 

(23) 

wh ere th e w ell-known symbol [7r2~8J m ean s the 'largest positive or negative Humber which 
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is smaller or equal to 7J"~ e. The sum (22) is zero when 1'1 > 1'2 and th e first or last term of the 
L;a 

sum has to be halved wh en 1'1 or 1'2 is an inlcger. With (18) to (33) the expression (16) for the 
fi eld can al so b e writt en as 

U = F (¢- ¢' ) ~ F(¢+ ¢' ) , (24) 

wi th 

(25) 

and 1'1 and 1'2 defi ned by (23) . 

2 .1. Spherical and Plane Field Excitation 

The formula [9, p. 95, formula 53] 

(/"2+Z2) - 112exp[- 'Y (1'2+z2) 1/ 2] = 27r - ll '" K o [r (,),2 + V2) 1/2]COS (zv) dc , (26) 

expresses the generation of a spherical wave function by means of a cylindrical wave function . 
T o obtain the fi eld U corresponding to an inciden t spherical field multiply tIle r. h . s. of (8) 
and (25) by cos(zr), replace')' by (')'2+V2)1 /2 and integrate the resulting expression with respect, to 
v from 0 to cx>. This operation performed on (8) gives, using (26), 

(27) 

i. e., an ineiclen t spherical 1-ielcl originating from a SOUl"r·e point Q(p' , ¢', 0) . The same operation 
performed on (25) gives similar expressions. (For similar procedures, see [42, 5]). It follows 
t hen that in the case of an incident plane, cylindrical or spherical fi eld the fi eld U " 'ithin the 
wedge of an angle a can be written in the form 

r ·=F(¢- ¢' ) ~ F(¢+¢' ) . (28) 

F (e) is expressed as the sum of t\\·o fu nctions FI and Fz: 

(29 ) 

where 
T, 

F1 (e) = .L: j (e+ 2al') , (30) 
1=11 

(31) 

The r epresen tations (28) are also valid for complex values of 'Y with R e ')' ~ 0 and conse­
quently for ,),= ik with 1m k~O. The functionsj and H in (30) and (3 1) depend on the char­
acter of the excitation and are listed below. (The incident plane field case is obtained as the 
limiting case of the incident spherical field case for p' -? cx> .) 
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Functions j and H fol' the e,l:ponential decay problem 

,f(</> - q>' ) 
( incidellt field) 

fl ex) 

1----- ------------------- ------------ - -----
('x p [ 'Ypcos (</> - </>' ) 1 

(plane' fi t'ld ) 
('x p ( - 'Ypco~h ,r) 

-----------------,'------------------------1 
2 i7r- 1 f(o( 'Y/' ) 

(cy lind ri cal fi pld) 

(,,2 + Z2) - 1/2C'X p[ - 'Y ()"2 + Z2) 1/2J 

(~ plH'ri cal fie ld ) 

Functions j and H jor the wave p?'oblem 
---'==== ---

f (<I> - </>' ) 
( incicLP nl fic'lel) 

('xp[ikpcos (<I> - <I>' ) 1 
(plane waH') 

I-lJ2) (k/') 
(cy lind ri cal lI'an') 

()"Z + Z2) - I/Z ('x p [ - ik(/'z + ZZ) I/Z] 

(spheri cal I\'av(') 

(p' + p'2+ z' + 2pp'co"h ,); )-1'2 
. (,x p [ - 'Y(p2 + p' Z + Z2 + 2pp'co~h X)12 J, 

!l ex) 

e'x p ( - ikpco~h x) 

(p2 + p'2 + Z2 + 2pp' cosh ,);) - 1 2 

. ('x p[ - il:( p2 + p' z + 2pp' l'o~ il .r + ,2) I zJ, 

(32 ) 

'1'11(' function .l( </> - </> ' ) reprcse nls Lhe an al:\' Lic cha racLer of thc incidcn L phul(' , c,di nd rical , or 
spheri cal field . The upper or lowcr sigll in (28) h as to be taken according as an inciden t c1ec­
tromagneLic or acousti c fi eld is considercd , The total f[eld C is now J' epl'ese ntedin three dif­
ferent forms, (1 4), (16), (28) and (15) , (1 7), (28) for the expon enti al deca~~ and th e wave prob­
lem , respectively. Since in Lhe following, (28) \\·ill be dca lL with exdus ivel,\~ , the expressions 
for U of the form (l4), (16), (15), and (17 ) corrcsponding to an ineidcnt planc or spherical 
field arc no t listed h cre, They are ob tained in th e same mantleI' , The field as represe nted by 
(28) consists of th e sum of two functions FI and F2 , Each term 1' = 0 of 1"1 represc nts a field of 
the same charac ter as the incident fi eld (1' = 0) bu t originating from one of Lhe im ages of the 
source Q with respec t to the walls of the wedge . The number of the images and their location 
depend on 1'1 and ?'z and henceforth on the configura tion. F2 is given b~r an in tegral expression 
which vanishes when the angle of the wedge is of the form 7f'/m , m = 1, 2, 3, . . . . I t is ea ily 
seen that in this case [ T= F 1(</> - </>') ± FI(</>~ </>' ) is composed of th e effect of the origin al source 
and its 2 m - l images . In case of an inciden t plane fi eld and an angle 27f' (ha.lf plane), F2 ea n 
be redu ced to the errol' in tegral (39). 

3. Discussion of Fl and F2 for Particular Cases 

It is obvioLi Lba L the number of terms of the sum (30) can be made arbitrarjl~~ large if 
a is al'bi trarily sma.Ll , The case 0< a< 7f' shall from now on be referred to as a corner . It will 
be shown now that for a wedge (7f'< a < 27f') the sum (30) consis ts of at most one term. Two 
cases must be distingui shed here : case a , a> 7f' , O< c!> ' < a - 7f', figm e 2 ; and case b , a> 7f', 
a- 7f'< </>' < ta, figlll'r:1, '1'h(' restri ction c!> < t a means no loss of genel'alit~T , 
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, 'P ,Q-7T 
'-

'P,a-7T 
• 

'\ 

o '\ 

...... i 
!..p= 9. .............. 

2 '-

These ca.ses I'ep l'('sell t tlte l\\-O possible eO lifiglll'atioll s . 

'\ 

'\ 

'P2, 2a- 7T -'P' 

CaFe a. Tile direction ¢' of the SOLl1'er () is such, thn,t }), geometric sh adow region exists. 
The bouncln,ry of tlte geometric reflectioll is ¢ 1 = 7r - ¢ ' and the bOlllldn.I·.\T of the geometric 
shadow is ¢ 2= 7r + ¢' . 

CaFe b. The directioll ¢' of tli l' souree () is s ti ch lIw.t 11 0 geomet ric s llaclow regioll exi s ts . 
The boulIcbries of the gcome t ri c l'eApct iOIl II-itil I"l'S]wtt to till' II-a.lls ¢ = 0 a lld ¢ = ex an' ¢ 1 = 7r - ¢ ' 

and ¢ 2= 2ex - 7r - ex' , 1'espect in'l:L 

L et the regio n 0:;2; ¢:;2; ex be subdi\-icled iuto three regio ll s r, U , III hOllllfle(1 h~T the walls and 
the boulldaries of geometric opt ics ¢ = ¢ 1 and ¢ = ¢2 ' The~- an' <\efi ll ed h.c 

find 

Rrgioll 1. 0:;2; ¢:;2; ¢1 

Regioll II. ¢ 1:;2; ¢:;2; ¢ 2 
Regiol] ITI. ¢ 2:;2;¢:;2;ex 

case a, 

¢ 1= 7r - ¢ ' , ¢ z= 2a - 7r - ¢' case h. 

In these cases the limits /'1 , 1'2 of (30) me easi ly fOlilld Lo be as lis tecl lw loll-. 

Case a Case b 

I 
I 

R (' gioll TTT I II III 1 II III 
----~ I 

/'1 ,7'2 0,0 0,0 O , ~ L 0,0 0,0 0,0 
--~- ---~'--------

I 
1' },1'2 0,0 O. ~ l O , ~ L 0,0 

I 
O , ~ l ~ J. ~ J 

I 

(:33 ) 

(34) 

The upper or lower lin e for (1'1,1'2) is valid acco rdin g as O= ¢ - ¢' or 8 = ¢ + ¢'. With tllese 
results on e obtains by (30) for both cases a and h , 

Fl ( ¢- ¢ ' ) ~ ji\ (¢ + ¢ ' ) =.f( ¢- ¢' ) ~.f(¢ + ¢' ) valid in I , 

J!\( ¢- ¢' )~ Fl (¢ + ¢' ) =.f(¢- ¢' ) valid in II , 
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,,-ltile in r eg ioll III 

F I (</> - </>') =j= } \(</> + </>' )= 0 

PI (</> - </>' ) =j= FI (</> + </>') - f(</> - </>' ) =j=f (</> + ¢' - 2a ) 

cas(' •• 

case h . 

(37 ) 

(38) 

Equ ations (35 ) to (:38 ) together with (3 1) give the reprc'sentation for tite field C b~- (28 ) 
a nd (29 ) in agreemellt with the r es ults obtained elsewhere [26]. The casc' of a sou rce within 
a CO l'ner (O< a < 7r) (fig. 4 ) a nd referred to as case c is treated tlte sam e wa.\-. At first 1'1 and 
1'2 are dC't ermin ed h\- (23 ) a il e! then PI by (:1 0). T ogether \\-ith 1"21)\- (;~l ) , the field l r is kno\\"n 
h~r (28) . 

Q 

~-------------------------+ ~~o 

Analogous to the cases it alld b t ite rc' exis t t\\·o direct iolls </>1 a nd </>2 in \\-ltiel1 it plane \\-aye 
field in cid ent all Ll1C' cOrIJer c'm(' rges a,{t er multiple reA C'('( ions 011 tlte \\-a,Us. Tlte.\- arc g i\'('n in 
(50) and (51). 

The second fU11 ctio n 1"2 (0) g iven h.\- thc' i11tegml (:)1 ) ca ll bc' gin"l l'x plicit l.\- \\-h e n a = 27r 
(half plan e) a nd whe11 the in cide11t field is n pla11e field . S i11ce thi s resul L \\-ill h e need ed later 
it is r eprescnted again although k11 0W 11 [:H]. Now, for a plane inc id e11 t f1elel , } (</> - </>' ) 
= oxp l'YP ('os (</> - </> ' )] a lld JI(x)= exp (- 'YP ('osh .r ). For a = 27r, 

F 2 (O)=- 7r- 1 cos (to)J~ OO (,OSh (~.I") (cosh .)' + ('os 0)-1 eXjl (- 'YP cosh J·) d.l' , 

by ( 1). Tlte subst itution cosh X = 1 + 1 gives 

Tllis illtegml is known [10 , vol. I , p . I ;~ 6] . Thus 

F2 (O)=- "! cos ("! e) IsC'c ("! e)! E rfe [(2'Yp)I /21 cos"! el] exp ('YP cos e), (9) 
where 

Erfc (z)= 27r- 1/ 2 r oo c'xp (-ndl. 
• z 

(40) 

Since the h alf pla ne case is r oprese11ted by case a , as described in figure 1, the matching 
exp l'ossio n Jor FI in the thrC'e regions is k110wn by (35) to (37), and the field U (28) excited b y 
an incident plane field on a p erfectly reflect ing half pla ne ca ll b e writte n clO\nl explieitl.\-. It 
call eas ily b e verified that U can b e l'epresen ted b~r an express ion which is valid over the \\-hole 
range of the half pla ne observing that b~T (40) 

479794 ~fH-2 

Err (-z)= 2- Erfc (z), 
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and so e b ecom es 

U= exp [-yp cos (q,- ¢ ' )]{l- t Erfc [(2/,p)1/2 cos (t¢- tq,' )]) 

=f exp [/,P cos (¢ + ¢' )]{ l - t Erfe [(2/,p)1/2 cos (t ¢+ t ¢ ')] }, (42) 

for the expon ential decay problem . T he solution for the wlwe probkm is obtained as 

U= exp [i r.p ros (¢- q,' )]{ I - t Erfc [(2ikp)1 /2 cos a q,- t ¢ ' )]} 

=F exp [ikp cos (¢ + ¢')]{ I - t Erfc [(2ikp )1 /2 cos (t ¢ + ! ¢' )]) . (43) 

(For tnbles of the error fun ction for complex a.rgumen t see [6].) 

III gen E'l'fll ense, Fz consists of It Slim of t\\~O integrals of the form 

(44) 
with 

1(a,.p)= - (2a )-1 J~ <X> H (. f) sin (7rIl-'/a)[ (eosh (7r.r/a)- cos (7r.p/a)j -Idx. (45) 

Obviously \.he denominator of the integra,nd (45) is zero at i ts lower limit ;r= O when 

.p = .pn= 7r ±(¢ ± ¢' )= 2na, 11 = 0,± 1,± 2,. .. (46) 

Bu t th e numeral.or of the integrand yanishes likewise for the smnt' yaIue. . It is easily shown 
[27] that 

lim 1 (a ,.p)= =F ! H (O) (47 ) 
¥o-?±O 

and the behavior of (45) is the same for .p--'>±2na. It may b e noted thai (47 ) does not dep end 
on the a.ngle of the \\"edge. For any configuration is ah-ays 

(48) 

This condi tion r estricts (46) to only two possible directions ¢I and ¢2 which defin e the 
bounda.l'i f's of geometric optics a.s ou tlin ed before. They are defin ed by 

ll1 agreemen t with (36). A choice of values for the parameter 11, other than given above is 
incompa.t.ible with th e configurations under consideration. In order t o tr eat case c it is 
practi ca.l to subdiyide this case according as the angle a of the corner can b e described as 

a = 7r/(2l + 1+ e), l= O, 1, 2, . 

wher e E is a number bet,,-een ° and L Then the r elation (46) leads to 

a nd 

¢l =l w - ¢' 1 

¢2= 11in [a (2- e)- ¢' ,¢' + w] 

¢l =l a (l - e)-¢' 1 

¢z= ::\Iin[a(1 + e)- q, ' ,a (l - e)+¢' ] 
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----------~ ---

an d t is c0l1l1cct('(1 with a by (49) . I n. case t = O, this lcads to 'PI = 'P2 and particularly, 

¢ 1= ¢2= ¢' when a= rr/ (2l ) 

¢1 = ¢2= a- ¢' when a= rr/ (2l+ 1). 

An elenwntary expression for the llpper limi t of I (a, ,p ) can be given. Integrat ion of (45 ) by 
pa,rts gives 

- rrI(al,p)= l-J(.r) arctan [cotan (t rrf/a) ta l1 h (t rr.r/a)] [ 

-100 l-J' (:r) arctan [cotan (t 7rf/a) tanh (t7r.r/a)]dx. 

' inee, with the cx('cpl ion of the plan e wave case, l-J(x )-"70 when X-"7CO it becomes 

(52) 

and hencc 

II (al ,p) I ~ 7r- 1i oo 
Il-J' (1') II arctan [ colan G 7rf/a) tanh (~rr.l'/a) }el.r , 

and, aftcr repla('ing ta,nh (t rr:£/a) by its upper limi t 1, 

(53 ) 

The eq ual sign holds when ,p has one of the values defined by (46) and the accuracy of the 
inequality (53) increases with decn'asing a. Sincc, in general trr,p/a will not lie between ° 
and rr the" reciuced" property 

t rr"i/a= t rr,p/a ± 7rl n , In= O, 1, 2, . .. , 

is introdu ced-and In is such that 1j1rfja is between ° and rr. Th us 

and filla,lly 

4 . Asymptotic Expansions 

(54) 

(55) 

The derivation of an asympto tic expa,nsion of the field U for large dista,nces from the edge 
of the wedge is equiva.lent wi th the r eduction of the integral (31 ) to an asymptotic series. Com­
pamtively simple is the case of a plane field incidence (fig . 5). Then for the exponential decay 
problem 

H (x) = exp ( - 'YP cosh x). (56 ) 

F IG GRE 5. 
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Tn this case 1"2(8) is represented as a Laplace trallsform \\' itlt l'P as parameter. ~lethods 

for the asymptotic development of integrals of thi s type are kllO\nl [8 , p. 45]. Since b~- (44) 
F2 (8) is eomposE'd of two illtegrals of the form (45 ) it is suffieiellt to inn'st igate 

I (a,if/) = -(2a) - 1 s ill (~l/;/a)J, oo [cosh (7rx /rx)- cos (-rrif//a) ]- I exp (- l'P cosh .l')dJ-, (57) 
. 0 

and if/ has olle of tlte values 7r ± (cI> ± cI>' ). The suostitutioll 

cosh 1' = 1 +t (58) 
transforms (57) ill to 

J' OO - 1/2 
I (a,l/;).= - exp ( - 1'P) 0 I K (t) exp (- 1'pt)dt, (59) 

with 

Thus (59) is represented as a Laplace tf'll.llsforl11 . For t he following, the discussion s ball 
be ]'(strict.ed to case a, as described in section 3 and fig. 2. Ca.ses band c, as described in 
sE'et ic n 3, can be treated in the same manner. Now, K (t) as given by (60) reprE'se nts a regular 
functioll ill the v icillity of t= O provided that cI> ± cI>'~7r (colTesponding to if/ ~ O by (46» . The 
singularities of K(t) lie 011 the nega tive axis alld the smallest of thE'ir moduli is equal to 
1'[in [1 + cos (cI> ± cI>' )]. 

The Ta.ylor expallsioll of K (t) ncar the origin is 

00 

K (I) = L: A n(al l/; )t", It I < \[ill[1 + eos(cI> ± 1>') ], (6] ) 
n ~ O 

\\'i til 
(62) 

The first two coeffic ien ts arc 

Ao(a,l/;) = (2a) - I 2 - 1/2eolal1 (t 7rif// a) , 

A l (a , if/) = - (8a) - 12 - 1/2cota ll (t 7rl/;/ a) { 1 + 2 (7r/a )2 [s ill (t 7rl/;/ aWT (63) 

The asympto t ic expans ion of I (al l/;) for large l'P is obtain ed by inserting tlte seriE's (61) 
into (59) and intE'gra t ill g term by krm [8, p . 48 , theorem 6]. Th e result is 

I (a,if/) ~ - exp ( - 1'P) ~An(all/;) r (n + t ) b p) - n - I / 2, - 37r/2< f1rg 1'< 37r/2. (64) 
n ~O 

The cOf'ffieienLs A n LE'nd to infinity when cI> ± ¢' teJJds t o 7r (and hen ce if/ to 0) and the expau­
s ion (64) becomes useless. This is the case wben the configuration is such that one of the 
boundaries of geometric optics is approached. III this case the point t = O becomes a singular 
point of K (t ) and no expansion of the type (61) exists . Tn order to obtain an a.symptotic ex­
pansion which is valid over the whole region one proceeds as follow s. The integralld of (57 ) 
at x = O is equal to -(2a)-1 cotan Ui7rl/;/a ) . In the vicinity of >/, = 0 (t.he boundaries of geo­
metric optics) 

(65) 

a nd tIl{' s iugular part of (65) is independent of Lhe angle a. Let t he field U be 110\\ ' written 
in the form 

U = (U) a~2T+ [U - ( U) a~ 2 T] (66) 

and by (28) , (29), and (35) to (37) 
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Tilr diA'e r(' llce 

is by (65) suc il lil a.t l il l' ill tegra lld of (68) Yallis il l'S idellti call y " 'hell cf> ± cf>' = 7r , a lld Lite 
asymplo lic expalls io n of (68) is givell as the differencc of two series of t.il e type (64) whose 
cocffici(,l ll s A ,,(a, 7r - cf> =f cf>' )- A ,,(27r,7r - cf> =f cf>' ) l l' lld to zero whcn cf> =f cf>' jl'11(18 to 7r. Using (64) 
OIl(' I1 I'1' i \' t's fi t lhl' aS~Tmplolic eXpl1.11 Sioll 

~ - ex p (-'Yp) ~ 13n('YP) - n- }', - :37r/2< iLrg 'Y < 37r/2. (69) 
11=0 

Tlw coeffic ienis 13" are defilled by 

Wit.h lilr A n givc n by (62), (63) . It fo llo,\'s t hcll from (67), (42), [t nd (69) for titefield l'xc it(' d 
by a ll incidcnt plane fidd Oil a perfl'ctly ref/(>cting ,\'ecige of a n angle a for case a (fig . ."i ) 

U = exp [-yp cos (<f>-<f>')]{ I - t l~ rfc[(2'Yp ) 1 /2 cos (H-t<f> ' )]) 

=f exp[-yp cos (cf> + cf»]{ l - t Erfe[(2'Yp) I/2 cos (tcf> + t<f>' ) ] }+S('YP), 

\I'hl're S(-yp) is nsymptot.i cally giv(' 11 by (69). It follo\\' s Llll'n for 1, il e wan' p robl em 

U = cxp [ilc p cos (<f> - cf>')]{1 - tE rfc[ (2ilcp)l/2 cos (t<f> - t<f>')]) 

=f l'XP [ilc p cos (cf> + <f> ' )]{ l - t Erre[(2ilcp)I/2 cos (H + t<f>')]} + S(ikp) , (71 ) 

\I' hcre for lal'gl' lc p 

S (i /cp) ~ - exp (---'ikp - i 7r/4) ~ B "i"(/cp ) -n-" (72) 
,,=0 

a nd these l'xp reSSio ll S }l,re valid over th e whole rcgio ll of the wedge . The plus 0 1' miuus s ign 
has to be Laken accordillg as the aco ustic or the electromaglletic casp is cO llsidel'ed. Obviously 
S l'epl'eSll ll ts tlw deviatio ll of the wlldge field from the half-planll field and the expans iollS (69 ) 
and (72 ) repr esll il t aS~TmpLotic exp ansion s for this deviation term. If ('YP)1/2COS (tcf>±t<f>') and 
(lcp )1/2COS(trp±tct>') are large , i . e., for the far fi eld at large distances from the boundaries 6f 
geometric opt ics one can replace thll error fun ction by its asymptotic llxpansion [9 , p . 147], 

'" Erfc (z) ~7r-l exp (-Z2) ~ (-1)'T (n+t)z-2"-I, -37r/4< arg z<37[/ 4, (73) 
n=O 

and the asymptotic expansion of U is of the same type as the one for S. On the boulldary of 
tJl(l geometric r eflection (ct>+ct>' = 7r), (71) becomes 
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U= exp [i kp cos (<I>- q/ )J{ l - ! Erfc [(2i kp)I /2 cos (H-H' )J}=t= ! exp (- i kp)+S(i kp). (74) 

On th e boundary of the geometric shadow (<I> - <I>' = 7r), 

U= !exp (- i kp ) =t= exp [(ikp cos (<I>+ <1>' )]·{ l - ! Eric [(2i kp )1/2 cos (H + !<I>' )]}+S(1:kp ). (75) 

Using (73) these results can be written as 

U = exp [i kp cos (<I> - <I>' )] =t= ! exp (- i kp)+O[(kp )-I /2], (74a) 

U = !exp (- i kp )+ O[ (kp )- n (75a) 

These equations express the fact that the fa r field on thc boundaries of geometric optics is 
independent of tbe angle of the wedge. 

5. Energy Radiated From a Hertz Dipole and From an Acoustic Point Source 
in the Presence of a Perfectly Reflecting Wedge or Corner 

L et the source Q(p', q>' , 0) be a Hertz dipole with its axis parallel to th e edge. The func­
tionsj(O) and H (x ) are then 

(76 ) 

H (x)= (p2+ p'2 + 2pp' cosh X+Z2)-I/2 exp[- i k (p2+ P'2+ 2pp' cosh X+Z2 )I /2]. (77 ) 

T he function U given by (2S) (taken with the minus sign) represents the vector potential 
A of the electromagneti c field. Its components are 

(78) 

With this rela tion the components Ex, E y, E. of the elec tric fi eld vector E are known and 
the radiated energy can be determined by Poyntings method. The application of this method 
is very difficult in view of the complexity of the expression for U. It is therefore advisable 
to use the so called E . M . F. method for the determination of the radiation resistance R of 
the d ipole [37, p . 457] and [33, p . 134]. R is given by 

R = - (LfJ)R e (E z)D' (79 ) 

H ere Land J are the length and the curren t of the dipole respectively. R e (E z)D is the 
real p art of the z component of the electric field at the location of the dipole Q(p' , <1>' , 0). It 
follows from (7S) for the fi eld, 

(SO) 

C is a constant (real > 0) and is of no importance here since the " reduced" radiation resistance 
RIRo will be determined. This is the quotient of the radiation r esistance R for the complete 
system (dipole plus reflector) and the r adiation resistance Eo of the dipole in free space (with ­
out the presence of the reflector). At first th e contribution of FI (which represents a set of 
dipoles consisting of the original source and a number of images) to E z is considered. From 
(30) and (76) 

UI= F1 (<1> - <1>' ) - FI (<1> + <1>' ) 
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( 2) 

Pl = -["!+ ¢-¢~J ' 
2a 

_ [7r- ¢ + ¢'] p')-- 2a 

_ [7r- ¢ - cf>']. q2-
2a 

It is then easil.\' fOllnd Lilal 

(83) 

with 
dn = 2p' sill (an) , d",= 2p' sin (¢' + am ) 

(84) 

!I (!;) = !;- I s ill !; + !;- 2 cos !; - !;-3 ill !;, g(O) = 2/3. 

The term n= O ill t he sum (83) represents the co nt ribution of the original dipole omoe . 
It 1'01l0\\7s then for t he radiation resistallce of Ute Hertz dipole in free space by (83) and (79) 

Ro= 2L/ (3J )CP. 
The C'oniribuLioll of F~ to U is 

a llci it follows by ( 1) a llci (77 ) 

R [ - 'C(02U2+k2U) ]=(? )-IQ'_1 {? . ( 2/ )1'" g(2kp' cosh x/2) d · e ~ :::. 2 2 ~a Ie ~ sm 7r a h ( /) ( 2/) J 
u Z D 0 eOs 7rX ex - COS 7r a 

' 0> X [ sin [ ;- (7r- 2¢') ] sin [ ;- (7r+ 2¢') ] ]} 
- 9 2kp' cosh 9: + dJ' , J. ( J co,h (Tr{a) - co, [~ «-2<1') ] co,]' (,,-,{a ) - co, [~ (-H~') ] 

(85) 

( 6) 

(87) 

It follows, then , for the quotient of t he radiation re istance R of the dipole in the pre ence 
of the r eflector and t he radiat ion resistallCe Ro of tlle dipole in free space by E'q (79) , (83), (87), 
and (85) . 

{ ( X) 
'" . "12 3 . 2 ' ''' 9 2kp' cosh 2' . 

R/Ro= 3/2 [ ~ g(kdn) - ~ 9(kdm)] -4- 2 sm (7r /a) j h ( /) _ ( 2/ ) dJ, 
n="1 711 = 1711 a 0 COS 7rX a COS 7r a 

'" . .1' [ sin [;- (7r- 2¢') ] sin [ ;- (7r+ 2¢') ] ]} 
- 9 2kp' cosh 9: + dx ' (88) J. ( J c",h (TI{a) - 0", [~ « - 2<1') ] cosh (.x{a) - co, [~ (-H<I') ] 

'rho occurring parameters and g(!;) are givell in (84) . S illce g(!;) vanishes for large!; it is 
clear that if the distance of the dipole from the walls is large (p' -;. (0 ) only the term n = O in the 
sum gives a contribut ion , and t hen 

lim RjRo= 3j2g(O) = 1. 
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The formula (88) is valid for an arbitrflry a . But if a > 7r, i. e., in the case of a wedge 
reflector (figs. 2 and 3), the t\\'o sums OJ] tile 1'. ll . s. of (88) can be given explicitly. By (84) the 
limits n l , 112, ml , m z, of t he sums in case a> 7r are 

Thus 
112 7nz 

L; g (kd n) - L; g (kdm)= 2/3- g (2kp ' sin ¢ ' ), 

= 2/3, 

The anfllysis is exactly the sa.me whell the source Q(p', ¢ ,O) is an acoustic point source . 
In this ca.se tbe plus sign in (28) has to be takcn . The function g(1;) in (84) which character­
izes the coupling term between two H ertz dipolrs (parallel to each other and the line COll­
necting t h·ir cell t ers pcrpendicular t o their axis) has to be r eplaced by th e correspondi ng 
coupling trrm rh O; ) for two llCOllSti c point sources [30J. 

(89) 

In this eli se the eOJTespoll(ling forlllliia for the' relative' radiation resistfl,nce as defined 
bcfOl'e is 

"" ""2 _I{ . 2 f '" g{ 2kp' cOSh ~) 
R/Ro= L; gl(kdn)+ L; gl (kdm) - (2a) 2 sm (7r fa ) h ( /) ( 2 )clx 

n~nl m~ml 0 cos 7rX a - cos 7r ex 

+j'''' (2k' 1 :1')[ sin [; (7r - 2¢' ) ] + sin[; (7r+ 2q>') ] Jd } 
gl p cos 1"2 [J ~ ] x . 

o cosh (7r.r/a ) -eos ; (7r - 2p') cosh (7r.r/a)-eos L; (7r + 2¢ ' ) 

(90) 

~rhe' definition of the n l, n2, m l , m z, dn, elm is t he same as in (84), while gl (I;) is givell by 
(89). If a > 7r, th en fl S before 

nn(l 

nz mz 
L; gl (kdn) + L; gl(kdm)= 1+ g1 (2kp' sin ¢ ' ) , 

= 1, 

6, Transient Solutions 

The results obtaiued in section 2 shall now be used to illvestigatc the corresponding 
pulsc problems. The majority ,of t he cont ribut ions quoted at the beginning of t his paper 
are based upon a direct attack on the time depelldent wave equat ion . Integral t ransform 
methods were used in [38] (Kontorovich-Lebedev transform) and [40] (Fourier transform). 
In the cases considered here the applicat ion of Laplace's transform leads rapidly to the de­
s ired results. Let t lte excitation of the source be rrprrsent cd by a pulse start ing at the time 
t= O. Let. the pulse fun ction be get), and g(t )=O for t< O. Let t he pulse function be such 
t hat it admits its r epresent ation by Laplacr 's 'integml formula : 
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g (t) = (27ri)-l j'C+i'" [J' ''' g(r ) cxp (- 'Yr )d r ] exp ('Yt) d'Y , 
c-i co 0 

(91) 

III sectioll 2 , YH ri ous exp ressiolls U for the l'xpollell Lil11 de c <l~r p rob lem \\ ' (' 1' (' ~in'll . Titis 
c;),se CO IT('SpO llcl ed necorci illg to (5) Lo t hc Lime ciepen ckncy ('XP (I'/) , (p ll t c= I ). It Cflll the /l 
he concluded t it flt fo r 11 p ul s(' ('xe i(.aL ion g(t) as rep n 's(,llt('d by (9 1) Ihl' expn'ss io n fo r tite fidd 
is J'eprescn ted h y 

<P (I) = (27ri) - lj'C+i'" [J' ''' g (r ) cxp (-I'r) <lr ] C exp ('Yt) d'Y' 
c- 1 co 0 

(92) 

Th e solu tioll of I hI' pu lse prohkm is therefo re g in'n :1 S Illl' im' erse Lnplncc i rfln s formu­
t ion of 

U 1'" g(r ) exp (-'Yr)dr , 

6.1. Special Cases for g(t) 

Fo r 11 un it s lep fU llC I iOIl !I (t) = I , t hI' nr lcl (92) h rcom es 

Fo r n " DirI1 (," pulse excitntioll imposeci flt lite time [ = 11> 0: 
g(t) = o(l - i1), oll enncl s fi rs t 

j~'" g (r) exp (- 'Yr)dr= Sa'" o(r - I I) exp (- I'r)d r = rx p (- I' l l) ' 

Till' fi('ld clu e to n " Din)c" pulse exc itatioll becom es t l[(' 11 

If tlw order of illlt'g rntio ll ill (9 2) ca ll he ill terc lm nged , it result s in 

<P (t) = r'" g (r) { (27ri) _ lj 'C+i'" [ T exp [I' (t- r) 1 rl'Y } d r . Jo C-1.co 

(93) 

(94) 

(95) 

(96) 

(97) 

S ince b y (96) t ile illner inLeg ral is t. ile eA'ecL of a " Di rnc " pu lse , ('xcitatioll (97) CI),II h e 
wri Ltcn as 

<p(t) = 1'" g(r) <p D(t - r)dr, (9 ) 

i. e ., Lil e field due to all ('xc itatioll yet) of til(' source Q call i.J (' obtained by all integrat io ll proc­
('ss in volvi ng tite field til/(' Lo a " D irac " pu lse ('xc itatio ll . T lw gC ll eral equat iolls (96), (98) 
shall no\\' he app li ed to tite problem of t il e d iffraction of nrhi t ra ry pulses (plane , cylindri cal, 
a lld spiter im l) incident, 0 11 a perfectly reflcc t ing wedge o r COfneJ' . The case of " D irac" puls(' 
exc itation impo cd at Lhe tim e t = O shall be co ns idered first. T I1{' Laplace ill vers ioll of a 
fUllction h(ry ) with respect to 'Y s hall h e denoted b y h(t), i . ('. , 

(99) 

) I fo ll ows from (9G) alld (28) fo r t.he field <PD dt/(, to fI pla lle , cylindrical or splu' ri cn l " D irac" 
pul se: 
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if>D(t) = F (4>- q/) ::r-F(4)+ 4>') 

=J~J(4)- 4>' + 2an) ~ 71~nJ(4)+ 4>' + 2am) + Sa '" H (x) (G (4>-4>' ) ::r- G(4)+ 4>')]dx', (100) 

where 

The respective Laplace inversions f (O) and H (x) are for a plane pulse : 

f (O) = o(t+ p cos 0) 

H (:r.)= o(t - p cosh x), 
For a cylindrical pulse one has 

](0) = 2i 7r- I(t2_ p2_ p'2 + 2pp' cos 0)-1 /2, 

= 0, 

H (x)= 2i 7r- I(t2- p2- p'2- 2pp' cosh J, )-1 /2, 

= 0, 

Finally, for a sphericfll puIs!' 

for t> (p2+ p'2_ 2pp' cos 0)1/2, 
otherwise. 

for 2pp' cosh X< t2_ p2_ p'2, 
otherwise , 

(101) 

(102) 

(103) 

(104) 

(105) 

.f(0) = (r2 + 72)-1 /2 5(t - ( 1'2 + Z2) 1/2] (1 06) 

H (x)= V + pt2 +z2+ 2pp'cosh x )-1 /25(t -(p2+ p'2+z2+2pp'cosh X)1/2]. (107) 

The Laplace ill\"ersions for .1(0) and H (':!, ) are obtai ned from (95) for t he plane and for the 
sphcrical pulse , while (10, vol. 1, p, 277 , formula S] gives the inversion for the cylindrical 

pulse. It does not seem possible to pxprpss the intpgral Sa'" H (x)G (O)dx ill a closed form in the 

case of a cylindrical pulse. To obtain the field due to a pulse excitation get), the equations 
(9S) and (100) have to be used. For a plane and a spherical pulse the integration process in 
(9S) can be performed immediately. The results a['e 

m ~ 

if>(t) = L: g[t + p cos (4)- 4>' + 2an) ]::r- L: g[t + p cos (4)+ 4>' + 2am)] 
n=nt m= ml 

+ SaCOShC=tIP {/(t - p cosh x)(G (4>- 4>' ) ::r- G (4)+ 4>' )]dx , (lOS) 

for the pla ne pulst'. 

n2 m2 
if>(t )= L: R --;, Ig (t - R n)::r- L: R.;;, ly (t - Rrn) 

n=nl 

for the spherical pulse. 

The upper limit Xl of the integral is given by 

2pp'cosh xl = f - p2 _ p' 2_ Z2 for (109) , and cosh Xl= tjp for (lOS). (110) 
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The other properties are given in (101). Again in the case of a ,,"edge (a > 7r), t he prop­
erties n l , n 2, m l , Tn2 arc given in section 3. The representation of the cyli lld rical pu lse field 
leads to a double integral. For the special case of a half plane, however, the integral occurring 
in (100) can be solved . In the following some special cases are cOllsidered in which t lte solutio n 
for the transient fidd l)ecome elementary . 

6 .2 . Special Cases 

a . Cylindrical Pulse and Half Plane 

The case of a line source Q parallel to the edge of a perfectly reflecting half plane is con­
sidered . The regions I , II, III as described in section 3 are indicated in figure 6. For H half 
plane (a = 27r), one obtains from (101), 

G(e) = - 7r- l co (~·e) cosh (tx) (cosh x+ cose)-' . (J 12) 

It follows theu for acyl indrical " Dirac" pulse by (105), 

ill 

The upper limit Xl of the integral i given by 2pp' cosh XI = t2 _ p2_ p' 2, and from (105) it 
is obvious that the integral is only different from zero when t> p+ p' . The substitu tion cosh 
X= 1 +v2, cosh (tx)dx= 21 /2dv gives for th e integral 

So'" H (x) G(II )ch= -i7r- ' cos (t e) I sec (t e) I (t 2_ p2_ p'2+ 2pp' cos e) - 112, if t > p+ p', 

= 0, otherwise. (113) 

It follows then from (100) by means of (35), (36), (37), (104 ), and (113) for the field due 
to a cylindrical " Dirac" pulse incident on a half plane 

<PD (t )= 2i7r- ' { (t2 - 1m -'/2 =F (t2- Rn - I/2- t [ (t2-RD- ' /2 =F (t2 - RD-' /2)} for region I , 

= 2i 7r- ' { (t2- RD-'/2- t[ (t2-RD- ' /2± (t2- RD-' /2)}, for region II, 

for region III , (114) 

where 
(115) 

In (114), (t2- R L2)-1/2= 0 for t < p+ P' when this expression is within the brackets; other­
wise zero for t< R I ,2. The expression (114) is elementary in all the three regions. Former 
investigations [38) established <PD (t ) as an infinite series involving Legendre functions. (It 
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can be sholn] that this se ries call be summed and leads to the exp rpss ions in ( 114).) From 
(ll 4) an d (98) it fo11o\\'s for tit(, field if> clu e to a n ('xc itation get ), 

{l·t-II I 1t-II., 
if> (t) = 2i 7r - 1 0 [ (t - T)2 - R il - 1/2g(T)dT =f 0 - [( t - T)2-R~] - 1 /2g ( T )dr 

if> ( t ) = 2i 7r - 1 {J~t - Ill [( t - T)2- Ril - 1/2g ( T)dT 

- t 1t
-

p
-

p f [((t-T)2_ RD-I /2± ((t-r)2- RD - l /2]g (T)dT} ' region II . 

l'egion III. (116) 

b. Plane Unit Step Function Pulse and Wedge or Corner 

~O\\', g(t) = 1 for t> 0, ami g(I) = O fOI' 1< 0. Then the terms of the slims on the 1' . h . s . 
of (l 08) arc cithcr zcro or OIlC a,cco rding as th (' argllm(,llt of g is negat.ive or posit ivc. The 
,,'c11-];;:lIo\\'n formula 

f [( 1 + a)l !2 ] [cos h (b.:c) - a] - ldx= 2b- 1(1- a2) - 1/2 arctan I - a tanh (H·r) 

gin's for t hc intcgral ill (l08) by (101 ) 

for t> p and ('qual to ze ro for t< p. Tlrus t hc fil'lcl (108) fol' a unit sLl'p flillction ('xcitatioll 
[19, 24] is ell'Dwnt.ary. 

c . Spherical Unit Step Function Pulse and Half Plane 

The Cl'IlLer of the spherical pulse is Q (fig . 6) . Again, gCt) = 1. The t'xcitt'cl fidd IS 
givcll by (l09) a lld G(8) is give n by (112). Thl' integml occuring in 109) is of the form 

l Xl (p2+ p' 2+ 2pp cosh :1') - 1/2G (8) dx 

= - 7r- 1 cos (!8) J:Xl cosh (!x) (cosh x+ cos 8)- 1(p2+ p'2 + Z2+ 2pp' cosh x) - 1/2d:r 

USing t Ill' substitution cosh x = 1+ v2, cosh (!x) dx = 2),:l du. The upper limit VI is givcll by 
vl= [t2-(p + p'F- Z2]t . Again th is integral isell'mentary. Each sum in (l09) reduces to at 
most one elementary tt'rm (sec the tables in scetioH 3), a nd thl' resulting field [40] is cll'mentary. 

It should be remembered that the previous investigations were basl'd on the assumption 
that. the velocity of the field is unity. The t ime param eter t has t.hel;cfort' to be replaced by 
ct whel1 the velocity of the field is equa.l to c. The expression U for the t,ime harmOllic field aE 
given in sectioll 2 can easily be regained a.s the limiting case of a trails ~('nt field if> clue to a)1 
cxcit.ation g(t)= exp (iwt). 
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8 . Appendix 
To proY<:' 

7r/ ,,(a) l{,(b) = r ~ l{0[(a2+ b2-2ab cos I) 1/ 2) cos (vt) dl -sin (To V) 
~ 0 

' So'" exp (-v l)l{o[(a2+ b2+ 2cLb cosh t)1 /2) rl t , a < b, (AI ) 

l{,(a)l{,(b) = So'" l{o[(CL2+ b2+ 2ab cosh t )I/2) cosh (vt) rll , (A2) 

one us('s t.he formul as 

1Tlv (z)= So r. exp (z cos t ) cos (v t ) dt - sin (To v) So '" exp (-z cosh t -vt) <II [P, p . 21), (A4) 

(AS) 

[9, p. 5:3). (A6) 

8.1. Proof of (A I) 

Starting with (A6) and replacing the modified BessPl function 111 the integrand by (4), 
one obtains, in tel'changing the order of int('gmt ion, 

I r~ [ r'" ( a,2+ b2- 2ab cos I) I ] I 1TI,(a)l{p(b)='i Jo cos (v t ) Jo X-l exp -x 4x ( .1' (t 

The inner integrals on the r. h. s. are known by (AS) . This proyes (AI ) . 

8.2. Proof of (A2) 
The relation 

l{,(z) = ! To sec ( To v) [L,( ,) - I "(z»), 

together with (AI ) gives (A2). 

8.3. Proof of (A3) 

Replace in (A2) v by iv and obtain by Fourier's inn'rsion theorem 

l{o[(a2+ b2+ab cosh t) l/21 = 21T- l So '" l{,,(a) l{i,(b) cos (vI) dv. 
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Replace here t by i (7r -t/>1 and obtain (A3). The rcstriction 0 ::::;Re t/>::::;27r is necessary to 
ensure convergenec of thrintegra.1 in (A3) nt its upper limit, s ince for fixed 1'ra.1 x and ]ll,rge 
positive v »x [9, p. 88, fo rmula 19] , 

K ;v(x) = (27r)1/2(,,2_X2)-1 /4 exp ( -~ 7r"){ sin[[v coSh -l(v;.t)_(,,2_ :C2)1 /2+~]+ O(,,-1) } . (A9) 

8.4 . Evaluation of S I Defined in (19) 

Using the fornni1a, 

"r 
~€n cos (n y) 
n=O 

sin [(2N+ l )y/2] 
siu (y/2) , 

one obtains instead of (19) 

{
Sill[2: (2l\'+l)V+ £J)] sin[d: (2N ])(.,. -£J) ]} 

. + rI.!'. 

sin [2: (.r+ £J)] sin [ 2: (.r - £J) ] 

ubstitllte ill t il(' first intl'gra.1 7r (x + £J)=-2ai and in the sC'cond 7r (;r- £J)= 2al . It follows 
t hen t,lu l L 

where t 1=-,)7r (7r + £J) and t2= ')7r (7r - £J). :A" 0\\ ' 81 is il Dirichlet in Lrgral and it,s vnIue follows 
_·a .a 

irnmC'diately [2 , p . 492) as I'r.prcsentC'd in (22). 

' V ASHI;\ G'I'OX, D . Q. , JnnuHY ] 4 , 1958 . 
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