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On the Diffraction and Reflection of Waves and
Pulses by Wedges and Corners

F. Oberhettinger '

Various problems arising in the theory of the excitation of a perfectly reflecting wedge
or corner by a plane, eylindrical, or spherical wave, are dealt with. The incident wave is
represented by a line source (acoustic or electromagnetic) parallel to the edge. The spherical
wave is emitted by an acoustic point source or by a Hertz dipole with its axis parallel to the
edge. The case of an incident plane wave field is obtained as the limiting case (for large dis-
tances of the source from the edge) of the cylindrical or spherical wave excitation.

1. Introduction

Sommerfeld’s classical problem of the excitation of a perfectly reflecting half plane by a
plane (acoustic or electromagnetic) wave field is based upon the theory of multivalued solutions
of the wave equation [34].2 Subsequently this method was extended to the problem of the dif-
fraction of cylindrical or spherical waves by a half plane [3] or by a wedge [44] (in the latter
case also for a plane incident wave). Here the incident eylindrical wave is emitted by a line
source parallel to the edge (of the half plane or wedge) and the spherical wave i1s emitted by a
point source (in the acoustic case) or by a Hertz dipole (in the electromagnetic case) parallel
to the edge. The solutions for the half plane problem are given in the form of integral expres-
sions involving a real variable, while the corresponding wedge problem solutions are given as
contour integrals.

The problems described above have been treated ever sinee with the aid of various techniques.
The wedge problem as treated by MacDonald [22] requires the conventional methods of nine-
teenth century mathematical physics only. Here the solution is given by an infinite series and
this is transformed into Wiegrefe’s complex integral. For the special case of a half plane (angle
of the wedge equal to 2 7), reductions to integrals involving a real variable are given. Another
approach is a generalization of the method of the images [1, 16, 43].

At first the solution for a wedge of an angle 7/m with positive integer m is established as
the sum of the effects of the original source and its 2 m-1 images. This sum 1s replaced by a
contour integral which is extended so as to obtain a formula valid for any positive m and hence-
forth for any angle « of the wedge. Again, the solution is given by a contour integral. In
more recent times a number of attempts have been made to apply integral transform methods
[20, 17] and integral equation methods [23, 7, 14, 13] to the half plane diffraction problem.
Finally, the problem of the diffraction by a perfectly conducting half plane of electromagnetic
waves emitted by an arbitrarily oriented electric or magnetic dipole has also been solved (32,
39, 15].

Sommerfeld’s solution (plane waves incident on a half plane) is given in a form readily
available for numerical computation inasmuch as it contains only the tabulated error func-
tion besides elementary functions. The solution of the other cases can either be given in the
form of infinite series (usually suitable for the numerical evaluation of the near field) or in the
form of integral expressions. A reduction of the latter to an asymptotic series has to be carried
out if approximate expressions are desired for distances that are large compared to the wave
length. Expressions of this form have been derived for the case of the diffraction of a plane
wave by a wedge [44, 29]. (An asymptotic expansion which fails to give the proper behavior
in the neighborhood of the boundaries of geometric optics is ignored here [36].) The main
feature of these asymptotic series is that their terms are generalized error functions. The work
referred to above is concerned only with time harmonic problems.
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A second group of investigations centers around problems in which the dependence upon
time is not periodic. This is the case of the diffraction of a pulse or a transient wave by a wedge
or a half plane. This group of investigations was initiated by Sommerfeld [35]. The following
contributions are listed here: Normal incidence of a plane pulse on a half plane [21,11]; two-
dimensional pulse incident on a half plane [12]; plane pulse (unit step function) incident on a
wedge or a corner [19,24, 25]; arbitrary pulse incident on a wedge or a corner [18]; eylindrical
Dirac pulse incident on a half plane [38]; and spherical pulse (unit step function) incident on a
half plane [40]. This paper will deal with various problems arising in the theory of the exci-
tation of a perfectly reflecting wedge or corner by a plane, cylindrical, or spherical wave field.

The incident cylindrical wave is represented by an acoustic or electromagnetic line source
parallel to the edge. The spherical wave is emitted by an acoustic point source or by a Hertz
dipole with its axis parallel to the edge. The case of an incident plane wave field is obtained as
the limiting case (for large distances of the source from the edge) of the cylindrical or spherical
wave excitation.

In section 2 of this paper, various representations for the time harmonic solution of the
problems outlined before are given with special emphasis to a representation upon which the
investigations of sections 3 to 6 are based. A straightforward method is applied based upon the
representation of the incident field in the form of a Kantorovich-Lebedev transform.

Section 3 contains a detailed discussion of the results obtained in section 2.  Relations to
geometric optics are discussed.

Section 4 contains an asymptotic expansion for the far field excited by the incidence of a
plane wave on a wedge. This expansion is not of the Wiegrefe-Pauli type inasmuch as it con-
sists of two error function terms and an asymptotic series with inverse powers of the variable.
Remarkable is the fact, that this series represents asymptotically (for large distances from the
edge) the deviation of the wedge field from the corresponding half-plane field.

Section 5 contains expressions for the energy radiated from a Hertz dipole in the presence
of a perfectly reflecting wedge or corner (antenna and corner reflector).

Section 6 gives the pulse or transient solutions corresponding to the time harmonic prob-
lems investigated in section 2. It is shown that previously known results can be obtained as
special cases of the expressions given here.

2. Time Harmonic Wedge Diffraction Problems

The case of the excitation of a perfectly reflecting wedge by a (acoustic or electromagnetic)
line source parallel to the edge of the wedge is considered first. (The solution for the excitation
by a point source can then be obtained by a further integration.) Cylindrical coordinates
(p,¢,2) are introduced such that the z axis coincides with the edge of the wedge and the walls of
the wedge are bounded by ¢=0 and ¢=a. Let the locations of the line source and the point
of observation be characterized by @)(p’,¢") and P(p,¢), respectively (fig. 1). Let the field
inside the wedge be periodic’of,the form

d=U(p,p)exp (iwt), (1)
p=a
P(pp)
r
Q(pp)
> =0
Ficure 1.
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where U satisfies the two-dimensional wave equation

. Lo 10U 1 o
2 — I e 2
AURU= o0 75 0p Tp? 04

+kU=0. (2)

A solution of (2) representing divergent waves is of the form
J=exp(Five)H,® (kp). (3)

H,? (kp) is the second Hankel function, and » 1s an arbitrary parameter. Following a pro-
cedure used elsewhere [26], the substitution

k=2rA\=w/c=—1y (4)
is introduced. This means that instead of (2) and (1)
AU—y2U=0, &= U(p,p)exp(yct) (5)
is considered with a particular solution corresponding to (3)

U=exp(+ivp)K,(vp), (6)
where
K, (z2)=—%imexp(—izvm)H,® (—12) (7)
denotes the modified Hankel function. The transition from k to v amounts to the transition
from a wave problem to an exponential decay problem. At first the exponential decay prob-
lem is solved, and the wave problem solution is established by returning from ~ to k. This
will not only simplify questions with respect to convergence but the investigations in sections
4 and 6 are based upon the exponential decay solution and not on the time harmonic solution.
The incident field in P(p,¢) due to the line source ) (p’,¢") 1s given by

DYy
Ut=H,y® (kr) == Ky{y[o™+0"*—200" cos (¢—¢)]"/2}- (8)

Let the total field U7 be represented as a sum of the incident field % and a reflected
field (77, where U7 has no singularities within the wedge:

U=U'~-U". 9)
In order to represent U7 in a form suitable for the problem considered here it is advisable

to express the modified Hankel function on the r. h. s. of (8) not by means of its well-known
addition theorem [9, p. 44] but by the equivalent expression ((3A) appendix):

- 2 ’ 7 ¢
I,f’:,?? Ko{v[p*+p"2—2pp" cos (¢—¢")]'/2}

:4?77r‘2j;m Ki(vp) Ky (vp') cosh [v(r—|p—¢'|)]d, (10)

which is of the form (6). Let the reflected field be represented in the same form:
U'=4ir?2 J; K, (vp) K (70") [f1 (v) exp (v¢) + f2 (v) eXp(—r¢) [dw. (11)

The so far unknown functions f; and f, are to be determined by the boundary conditions.
There are two cases of boundary conditions: (a) U=0 and (b) 0U/0¢=0 on the walls
¢—0and ¢=a of the wedge. With electromagnetic waves on a perfect conducting wedge,
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case (a) refers to the electric field, case (b) refers to the magnetic field, With acoustic waves,
case (a) refers to free wall, and case (b) refers to rigid wall.
This leads to
it fo=—coshlp(r—$")]

frexp (va) =+ foexp (—va) = —cosh[v(r—a+¢)] (12)
and

fi—rs :‘—Sinh[u(‘n’—¢'>]
frexp (va) —foexp (—va) =sinh[y(r — a-+ ¢')]. e

for cases (a) and (b), respectively. It may be noted that the boundary conditions have been
satisfied by putting the integrand equal to zero. This can be justified by verifying that the
solution thus obtained satisfies all necessary conditions [31]. But it may also be remarked
that U is represented as a Kontorovich-Lebedev transform [9, p. 75].  After f; and £, have been
determined by (12) and (13) the solution is then, by (9), (10), and (11),

bt fK 0fe) Kr (Vo 7%%0“1 [v(a—|¢—¢"])] F cosh[v(a—¢—¢')] }dv. (14)

The upper and lower sign is valid for cases (a) and (b), respectively. The relation ((9A)
appendix) shows that the convergence of the integral (14) at its upper limit for a real and
positive v is secured when

0= [¢pF ¢'| = 20,

and this region contains the whole region of the wedge. If one returns now to the wave problem
replacing y by ik according to (4) one arrives at the result

sinh () ¢

Slllh ( ) LO%IL [ (a_1¢_¢ID]:F('OSh [V(a—d)_d),)]’/V (13/

J=—i ﬁ " exp () HR (ko) H (kp')

The behavior of the integrand at its upper limit leads by [9, p. 88, form. 22| to the condition
TS |pF o' | S 2a+.

This restricts the validity of (15) to the case of a wedge of an angle « larger than = with
the point of observation P in the geometric shadow of the source . The expression (14)
shall now be transformed into an infinite series. For this purpose the elementary relation
[2, p. 368]
cosh[v(@—0)] v &\ e,co8(nmb/a)

i p =1, =2 fornzl,
sinh (av) anzo - (nmfa)? @=-, € for n=1,

valid for 0 <0 <2« is used. Term by term integration yields

f K, (vp) K (Vo) 00211111[11}1(2, )6)] sinh (m/)dvﬁ Ze” cos mr@/a)J

& n=0

v sinh (7v) K

v 4 (N )2 (Y ) K (Vo) d.

The integral is known {10, vol. 2, p. 176].  (Note that this formula is not only valid for positive
integers but for Re n>0). Hence

sinl ) " 1 ’
jo y2+1(7;ﬂ.(/7r; K“’('YP)K“'(’YP )(]V:§ 7r2 rur/a(’yp)Kmr/acyp)

for p<<p” and for p> p’ the same formula with p and p” interchanged. Therefore, the field 7 can
be written as

25 o { cos[ 2 0=0) Jeos[ 7 646)" |} Lusatr0) Kot (16)
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for p<<p’ and for p=>p’ the same formula with p and p’ interchanged. The expression (16) is
valid for arbitrarily complex v and if v is replaced by ik the solution for the corresponding wave
problem becomes

U- " ,,{m[ (p— ¢>)]*m\[n (¢p+o') ]} urta(kp) H 2, o (kp”) (17)
n=f

for p<<p’, and for p=>p’ the same expression is used with p and p’ interchanged. The preceding
expressions (16) and (17) represent rapidly convergent series if the arguments of the Bessel
functions are small.  The expressions (16) and (17) shall now be transferred back into another
integral expression which is the basis of the investigations in sections 3 and 6. For this purpose
the product 7,./.(yp)K,r/a(yp’) in (16) is replaced by an integral representation ((1A) appendix).
This leads to the following expressions.

§=2 €, €08 (nw0/a) L ,z/a(Yp) K, r/a(¥p’)

n=0

71> €, COS (urﬂ/’a)J KoY (p*+p"2—2pp" cos x)'7?] cos (nmwrfa)dr
0

n=0

—q! Z €, COs (nmh/a) sin (’”W‘l’/d)J exp (—nwrjea) KoY (p*+p"*+2pp" cosh )2 dx.  (18)
0

n=0

Q

The second sum vanishes when a=a/m, m=1,2,3, . . . . The two sums on the r. h. s,
I'l | I | j il 2, 8%

of (18) are denoted by s and s,.
Interchanging the order of summation and integration one finds

&= (27) "' hm J “ K[Y(p*+p'2—2pp’ cos ) Ze,, {(‘()Sl:llr(.l'*f’ﬂ)]+C()S l:n 7r(,:——4‘}):|} du,
N> 0 n=0 «@ «&
(19)
o= —7" J Koy (o4 p"*+2pp" cosh r)'7?]

. 2(‘“)(*11#.;-/({) sin[n? (- 0)]—{ sinl:nz (r—B,)]}(I.r, 20)
n=1 C

The sum in the integrand of (20) can be summed [2, p. 203] and the result is

so=— (27) ! J Ko [y (p*+ p"2 200" cosh 0)17]
0

\ml— (m— 0]

cosh (rr/a)~<n\|: (r— 0):|

\ml: 1r+0):|

N
cosh (rr/a) —cos l: (74 0)]
s, as given by (19) can be expressed as a sum of a finite number of terms. The result is (appen-
dix)
Si=ama Z[&(,{ [p2+p"2—2pp’ C()S(2a1'+9/]”2}~ (22)

fi==T)

The limits of the summation in (22) are

 Jp— W—rg DR
n=—[%20) %] )

where the well-known \\ml)ol[ ] means the largest positive or negative number which

347



. ==l .
is smaller or equal to =5~ The sum (22) is zero when r, >7, and the first or last term of the
a0

sum has to be halved when r, or 7, is an integer.  With (18) to (23) the expression (16) for the
field can also be written as

U=F(¢—¢") T F(o+9¢'), (24)

with

F(0)=21r"1! ZBO vip *p'z—pp'('()s(Za/'Jrﬁ)]”2:}'—ionr"f K[y (p*+p"2+2pp" cosh x)!/3
0

sm[ (r— 0)] L sin I:;r (w+0):|

dr, (25)
cosh (Wl/a)—(()\l: (r—8) (osh (mr/c) —(0@[ (r+6) ]

and 7, and 7, defined by (23).
2.1. Spherical and Plane Field Excitation
The formula [9, p. 95, formula 53]

2

(r*+22) ~2exp[—Y (r*4-2?) ”?]:‘ZW”J K, [r (v*+v? % cos (zv)dv, (26)
0

expresses the generation of a spherical wave function by means of a eylindrical wave function.
To obtain the field (7 corresponding to an incident spherical field multiply the r. h. s. of (8)
and (25) by cos(zz), replace v by (¥*+9*)'/* and integrate the resulting expression with respect to
» from 0 to . This operation performed on (8) gives, using (26),

QI'W‘IJ wKo [r (V242212 cos (zv)dv=1 (r*+22) ~texp[—7(r2+422) /%] (27)
0

i. e., an incident spherical field originating from a source point (/(p’,¢’,0). The same operation
performed on (25) gives similar expressions. (For similar procedures, see [42, 5]). It follows
then that in the case of an incident plane, eylindrical or spherical field the field U within the
wedge of an angle « can be written in the form

U=F(p—¢')FF(o+¢). (28)

F(0) is expressed as the sum of two functions F; and Fy:

F(0)=F\(6)+F,(0), 29)
where
F.(0)= Z FO-+2ar), (30)
sml: (1r 0)] %ml: (r+8) ]
F,0)=— Qo) '| H@<{ —— . dr. (31)
0

cosh (rx/a) —cos [ (1r 0):| co~h(7rf/a) —C0s [— (m +0):|

The representations (28) are also valid for complex values of v with Re y=0 and conse-
quently for y=1ik with Im £ <0. The functions f and /7 in (30) and (31) depend on the char-
acter of the excitation and are listed below. (The incident plane field case is obtained as the
limiting case of the incident spherical field case for p’—w.)
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Funetions f and H for the exponential decay problem

flo—9') ‘ H(zx) {
\‘ (incident field) 4
f— v — S — - = it |
exp[ypcos(p —¢')] |

(plane field)

‘ 21K (yr)
| (eylindrical field)

‘ (eEet)le e (B (Al

9

(spherical field) s exp[—v(p?+ p'2+ 22+ 2pp cosh x)1/2]. |

Functions f and H for the wave problem

(incident field)

— — = = == |
|

’ flo—9e') | H(x) \

i explikpcos(p —o')] exp(—1kpcosh x)

| (plane wave)

H® (kr) Hg? [k(p>+ p"2 4 2pp’ cosh 2)17]
(cylindrical wave)
(pastsiea)SliaNex == I (nas =] (pr e A = F 2y el @)=
! (spherical wave) cexpl—ik(p*+ p’2+ 2pp’cosh -+ 22)172]. !
. I . ~ |
r=[p*+p"*—2pp’ cos (¢—¢")]'2. (32)

The function f(¢—¢") represents the analytic character of the incident plane, evlindrical, or
spherical field. The upper or lower sign in (28) has to be taken according as an incident elec-
tromagnetic or acoustic field is considered. The total field {7 is now represented in three dif-
ferent forms, (14), (16), (28) and (15), (17), (28) for the exponential decay and the wave prob-
lem, respectively. Since in the following, (28) will be dealt with exclusively, the expressions
for U of the form (14), (16), (15), and (17) corresponding to an incident plane or spherical
field are not listed here. They are obtained in the same manner. The field as represented by
(28) consists of the sum of two functions /), and F,. Each term »=0 of /) represents a field of
the same character as the incident field (»=0) but originating from one of the images of the
source ) with respect to the walls of the wedge. The number of the images and their location
depend on 7, and 7, and henceforth on the configuration. £, is given by an integral expression
which vanishes when the angle of the wedge is of the form w/m, m=1,2,3,. . . . Itiseasily
seen that in this case U=F(¢—¢') -+ Fi1(¢pT¢') is composed of the effect of the original source
and its 2 m—1 images. In case of an incident plane field and an angle 27 (half plane), F, can
be reduced to the error integral (39).

3. Discussion of F, and F, for Particular Cases

[t is obvious that the number of terms of the sum (30) can be made arbitrarily large if
a is arbitrarily small. The case 0<a<_r shall from now on be referred to as a corner. It will
be shown now that for a wedge (r< a< 2w) the sum (30) consists of at most one term. Two
cases must be distinguished here: case a, a >, 0<¢'<a—m, figure 2; and case b, a>m,
a—7n< ¢’ < La, ficure 3. The restriction ¢<_3a means no loss of generality.
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Ficure 2.

\ Lpz:za-v_go'

| Ficure 3.

3

These cases represent the two possible configurations.

Case a. 'The direction ¢” of the source 4 is such, that a geometric shadow region exists.
The boundary of the geometric reflection is ¢,=7—¢’ and the boundary of the geometric
shadow 1s ¢o=7+¢'.

Case b. The direction ¢” of the source ¢/ is such that no geometric shadow region exists.
The boundaries of the geometric reflection with respect to the walls ¢ =0 and ¢=a are ¢, =7—¢’
and ¢,=2a—7r—a’, respectively.

Let the region 0 < ¢ =<« be subdivided into three regions I, [T, ITI bounded by the walls and
t=] e b .
the boundaries of geometric optics ¢=¢; and ¢=¢,. They are defined by:

Region 1. 0Lp<

Region II. ¢, <¢= ¢,

Region 111, ¢, <¢=<a
and

o=m—¢’, ¢=m+¢ case a, (&)
o=1—¢', ¢.=2a—m—¢’ case b, (34)

In these cases the limits 7, 7, of (30) are easily found to be as listed below.

! Case a | Case b
— ,
Region | T | 1II Im | 1 | II 111

IS |

| | |

\ ‘ ; a \
l 1,0 ‘ 0,0 | 00 0,—1 | 0,0 | 00 0,0

I

— I | O I
L ‘ 0,0 0,—1 | 0,—1 || 0,0 \ =1 || =iy
\

The upper or lower line for (r,7,) is valid according as §=¢—¢’ or 6=¢+¢’. With these
results one obtains by (30) for both cases a and b,

Fi(¢—9¢" ) FFi(p+¢ )=Fflo—¢")Fflo+¢") validin I, (55))
Fi(¢—¢") FFi(o+¢" ) =Ffl¢—9¢") valid in 11, (36)
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while in region IT1
Fi(o—o¢") FFi(o+¢")=0 case a 37)
Fi(¢—¢') FFi(o+¢")=f(¢9—¢") T flo+¢'—2a) caseb. (38)

Equations (35) to (38) together with (31) give the representation for the field {7 by (28)
and (29) in agreement with the results obtained elsewhere [26].  The case of a source within
a corner (0<a<_m) (fig. 4) and referred to as case ¢ is treated the same way. At first 7, and
o are determined by (23) and then /), by (30). Together with /, by (31), the field 7 is known
by (28).

p-a P

FiGure 4.

Analogous to the cases a and b there exist two directions ¢, and ¢, in which a plane wave
field incident on the corner emerges after multiple reflections on the walls.  They are given in
(50) and (51).

The second function /4, (8) given by the integral (31) can be given explicitly when a=2r
(half plane) and when the incident field is a plane field. Since this result will be needed later
it is represented again although known [34]. Now, for a plane incident field, f(¢—¢")
=exp [yp cos (p—o¢’)] and H(z)=exp(—vp cash x). For a=2r,

* o

.y 1 !
Fy(0)=—="" cos (%B)J cosh (‘) .r) (cosh z-+cos 8)~ " exp (—vp cosh x)dr,
0

&

by (31). The substitution cosh z=1-t gives

; ; 10 N
F,0)=—=x"12"12 cos (;)0) exp (—-YP)J 171721+ cos 041)~"' exp (—vpt)dt.
A 0

This integral is known [10, vol. 1, p. 136]. Thus

Fy(0)=—1% cos (3 0) [sec (3 8)|Erfe [(2yp)' 2] cos £ 6]] exp (yp cos 6), (39)
where
Erfe (:)i27r“"'~‘( exp (—#)dt. (40)

Since the half plane case is represented by case a, as described in figure 1, the matching
expression for /) in the three regions is known by (35) to (37), and the field {7 (28) excited by
an incident plane field on a perfectly reflecting half plane can be written down explicitly. 1t
can easily be verified that {7 can be represented by an expression which is valid over the whole
range of the half plane observing that by (40)

Erf (—z)=2—Erfc (2), (41)
351
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and so {7 becomes
U=exp [yp cos (9—¢")]{1—3 Erfe [(2yp)'/* cos (36—3¢")]}

TFexp [yp cos (¢-+¢)]{1—3 Erfe [(2vp)"* cos(3 ¢+3¢")]}, (42)
for the exponential decay problem. The solution for the wave problem is obtained as
U=exp [ikp cos (¢—¢")]{1—3 Erfe [(2ikp)* cos (3 ¢— 5 ¢')]}

TFexp [ikp cos (¢+¢")]{1—3 Erfe [(2ikp)' cos (3 o+3¢")]}-  (43)

(For tables of the error function for complex argument see [6].)

In general case, F, consists of a sum of two integrals of the form

Foy0)=I(a,m—60)+I(a,x+6), (44)
with

o) = — (2a) J " Hi(@) sin' (ry/a)[(cosh (az/a)—cos (mpfe)]-'dz. (45)
0

Obviously the denominator of the integrand (45) is zero at its lower limit #=0 when
Yy=y,=7r+(p+¢)=2na, n=0,+1,4+2, ... . (46)

But the numerator of the integrand vanishes likewise for the same value. It is easily shown
[27] that

lim /(ay)=F 3 H(0) (47)

y—o+0

and the behavior of (45) is the same for y—+2na. It may be noted that (47) does not depend
on the angle of the wedge. For any configuration is always

0<p+¢'<2a, 0<|p—¢'|<a. (48)

This condition restricts (46) to only two possible directions ¢, and ¢, which define the
boundaries of geometric optics as outlined before. They are defined by

case a: ¢=m1—¢',(n=0); P=m+¢,(n=0),
caseb: ¢=1—¢', n=0); ¢,=2a—71—9¢, (n=1),

in agreement with (36). A choice of values for the parameter n other than given above is
incompatible with the configurations under consideration. In order to treat case ¢ it is
practical to subdivide this case according as the angle « of the corner can be described as

a=7/(2l+¢€), [=1,2,3, ... casec
(49)
a=w/(2l41+¢€),1=0,1,2,. . . case cy
where € is a number between 0 and 1. Then the relation (46) leads to
1= |ea—¢'|
case ¢, (50)
¢o=Min [a(2—e)— ¢, ¢’ +€ql
and
o=|a(l—e)—¢'|
case ¢, (51)

do=Min[a(1+€)—¢’,a(l —e)+¢’]
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and e 1s connected with « by (49). 1In case e=0, this leads to ¢,—=¢, and particularly,
o= =0¢’ when a==/(2[)
d=¢—=a—¢’ when a=x/(2(-}1).
An elementary expression for the upper limit of /(a,¢) can be given. Integration of (45) by

parts gives

|

—nl(aw) =H(xr) arctan [cotan (3 my/a) tanh (3 mr/a)] |

0

—J H'(r) arctan [cotan (3 m¢/a) tanh (Fmr/a)]dz.
0

Since, with the exception of the plane wave case, F (z)—0 when z—« 1t becomes

“ 1 1 )
Tew)=r— | H'(@) arcta [ tan ( )u h(lry )] Iz, 52
() =7 j; (r) arctan | co f1n<21n///a( an 1<2r:,a d.r (52)

1 : 1 \ ],
arctan [cmzm (;)- /a) tanh (3 e ):Iifl.r,

and, after replacing tanh (37z/a) by its upper limit 1,

I (ayy)| | H(0)||arctan[cotan (3ry/a)]| 71 (53)

and hence

i e J H @)
0

The equal sign holds when ¢ has one of the values defined by (46) and the accuracy of the
imequality (53) increases with decreasing «.  Since, in general 3my/a will not lie between 0
and 7 the “reduced” property

Lry/a=3irylatwl, 1,=0,1,2, ... (54)
is introduced and /, is such that %'mz'/a 1s between 0 and =. Thus

[I(eny)| 7' |H(0)||arctan[cotan Ay,
and finally

[ (ery)| <3[H(0)[[1—¥/al. (55)
4. Asymptotic Expansions

The derivation of an asymptotic expansion of the field U for large distances from the edge
of the wedge is equivalent with the reduction of the integral (31) to an asymptotic series.  Com-
paratively simple is the case of a plane field incidence (fig. 5).  Then for the exponential decay
problem

H (z)=exp(—vp cosh z). (56)

petp!

—©=0 FIGURE 5.

y>2=7r+ " p=a

353



In this case F,(8) is represented as a Laplace transform with yp as parameter. Methods
for the asymptotic development of integrals of this type are known [8, p. 45]. Since by (44)
F,(0) is composed of two integrals of the form (45) it is sufficient to investigate

I y)=— (2a) 7! sin (mp/a)J [cosh (mr/a) — cos (mp/a)] ! exp (—vp cosh x)dux, (57)
0
and ¢ has one of the values 7+ (¢+¢"). The substitution
cosh y=1-t¢ (58)
transforms (57) into
v _1/2
I (a,y) = —exp (—yp)J t  K(t) exp (—ypt)dt, (59)
0

with
K(t)=(2a) ' sin (7¢/a)(24+1)72 {cosh [r/a log (1 +1t+4 (2+42¢)}|— cosh (zy/a)} ™. (60)

Thus (59) is represented as a Laplace transform. For the following, the discussion shall
be restricted to case a, as deseribed in section 3 and fig. 2. Cases b and ¢, as described in
secticn 3, can be treated in the same manner. Now, K(f) as given by (60) represents a regular
function in the vicinity of t=0 provided that ¢+ ¢’ (corresponding to ¢ 0 by (46)). The
singularities of K(#) lie on the negative axis and the smallest of their moduli is equal to
Min [1+cos (p+¢/)].

The Taylor expansion of K(¢) near the origin is

K (1) :i A, ()t |t <Min[1+cos(¢+9")], (61)
n=0
with
A () =) Hd"K () (dt™)],—,. (62)

The first two coefficients are
Ap(ay) = Ra) 127 2cotan(31¢/a),
A(a,p) =— (8a) 27 2cotan(3ay/a) { 1 +2(7/a)? [sin(3m¢/a)]2}. (63)

The asymptotic expansion of 7 (ay) for large vp is obtained by inserting the series (61)
into (59) and integrating term by term [8, p. 48, theorem 6]. The result is

Hay) ~—exp(—vp) A4, (@) T (n+-3) (yp) "2, —3m[2<arg y< 3m/2. (64)

n=0

The coeflicients A, tend to infinity when ¢+¢’ tends to = (and hence ¢ to 0) and the expan-
sion (64) becomes useless. This is the case when the configuration is such that one of the
boundaries of geometric optics is approached. In this case the point =0 becomes a singular
point of A(¢) and no expansion of the type (61) exists. In order to obtain an asymptotic ex-
pansion which is valid over the whole region one proceeds as follows.  The integrand of (57)
at =0 is equal to —(2a)7! cotan (3my¢/a). In the vicinity of ¢y=0 (the boundaries of geo-
metric optics)

—(2a)leotan(3my/a) = — (7)) '+ 0Y) (65)

and the singular part of (65) is independent of the angle «. Let the field {7 be now written
in the form

ZY:((v)a:Qn'_}'[lv_(l')a=2x] (66)
and by (28), (29), and (35) to (37)
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U= (D) acont Fo(¢—¢") — [Fo(0—¢")aer F {Fo(¢+¢') — [Fa(d+ ) ]asn ). (67)
Now, ({7)a_sy is given by (42), and by (44)
Fy(¢+£¢)—[Fy(¢+d)ac2r=1(a,r—¢F¢') =127, 7 —¢F ¢') + I(a,r+ 0+ ") — IQm, 7+ o+ ).
The difference

Iamr—oF¢")—IQ2r,m—dF¢’)

J ‘)a) \m[ (7r oo} ):I (47r)_1 COS (; %

= exp (—vpcoshur)de  (68)
cosh (rr/a) —c 0:[ (7r oT ¢ ):|

")
cosh (3r) —sin (1¢+ 1)

1s by (65) such that the integrand of (68) vanishes identically when ¢-+¢’ ==, and the
asymptotic expansion of (68) is given as the difference of two series of the type (64) whose
coefficients A, (a,7r—0¢F¢")—A,27,m1—¢F¢’) tend to zero when ¢F¢’ tends ton.  Using (64)
one arrives at the asymptotic expansion

Fo(¢—¢')—[Fy(0—0") acort {F2(@+0") —[Fo(d+ ") |ac2r} =S (Vp)
~~uxp<4p)”ij“ B.(vo) "%, —3r/2< arg v<3m/2. (69)
The coefficients B, are defined by
B,=T(n+3){Ad(ar—¢+¢)—A,2rr—¢+¢") +A(art+é—¢)—A,2rr+¢—¢)

Fldlar—o—¢)—A,Q2rr—¢—9¢") + Ad(art¢ +¢')—A,Qrat+ote)]}  (70)
With the A, given by (62), (63). It follows then from (67), (42), and (69) for the field excited
by an incident plane field on a perfectly reflecting wedge of an angle a for case a (fig. 5)
U=-exp [yp cos (¢—¢')]{1—FErfc[(2vp)'? cos (3¢—3¢")]}
TFexplvp cos (¢+¢)]{1—5Erfe[(2yp)'2 cos (3643071} +S(vp),
where S(yp) is asymptotically given by (69). It follows then for the wave problem
U=exp [ikp cos (¢—¢")[{1—3Erfc[(2ikp)'* cos (3¢ —39¢")]}
T exp [ikp cos (6-+6")1{1—§Erfel(2ikp)"2 cos 36+ 36"} +SGike), (71)
where for large kp

S (thkep) ~ —exp (—ikp—im/4) Z B (kp) " (72)
n=0

and these expressions are valid over the whole region of the wedge. The plus or minus sign
has to be taken according as the acoustic or the electromagnetic case is considered.  Obviously
S represents the deviation of the wedge field from the half-plane field and the expansions (69)
and (72) represent asymptotic expansions for this deviation term. If (yp)2cos(3é+3¢’) and
(kp)'*cos(3e+%¢") are large, 1. e, for the far field at large distances from the boundaries of
geometric optics one can replace the error function by its asymptotic expansion [9, p. 147],

Erfe (z2) ~7 ' exp (—2? i (—D)"T(n+3)z"2*"1, —3n/4< arg 2<3x/4, 73)
: n=0

and the asymptotic expansion of U/ is of the same type as the one for S.  On the boundary of
the geometric reflection (¢+¢ =), (71) becomes
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U=-exp [ikp cos (9—¢")]{1—3 Erfc [(2ikp)'* cos (36—3¢')]} T4 exp (—ikp)+S(ikp). (74)
On the boundary of the geometric shadow (¢—¢'=),
U=1jexp (—ikp)Fexp [(ikp cos (¢+¢")]-{1—3 Erfe [(2ikp)"/2 cos (3¢-+34")]} +S(kp).  (75)
Using (73) these results can be written as
U=exp [ikp cos (6—¢")|F 3 exp (—ikp)+O[(kp)~""], (74a)
U=3exp (—ikp)+O[(kp)~3]. (75a)

These equations express the fact that the far field on the boundaries of geometric optics is
independent of the angle of the wedge.

5. Energy Radiated From a Hertz Dipole and From an Acoustic Point Source
in the Presence of a Perfectly Reflecting Wedge or Corner

Let the source @ (p’, ¢’, 0) be a Hertz dipole with its axis parallel to the edge. The func-
tions f(0) and H(z) are then

J0)=(r*+2%)"""* exp[—ik (r*+2*)""*], (76)
r=(p*+p"*—2pp" cos 0)'7,
H(z)=(p*+p'*+ 200 cosh a-+22)12 exp[—ik s+ p'*+ 200’ cosh 2+ 22)1/2]. (7)

The function 7 given by (28) (taken with the minus sign) represents the vector potential
A of the electromagnetic field. Its components are

i =iy L= (78)

With this relation the components F,, £, I, of the electric field vector £ are known and
the radiated energy can be determined by Poyntings method. The application of this method
is very difficult in view of the complexity of the expression for 7. It is therefore advisable
to use the so called E. M. F. method for the determination of the radiation resistance R of
the dipole [37, p. 457] and [33, p. 134]. R is given by

R=—(L[J)Re(E.)p. (79)

Here L and J are the length and the current of the dipole respectively. Re(E,), is the
real part of the z component of the electric field at the location of the dipole Q(p’, ¢/, 0). It
follows from (78) for the field,

o

ol +Ic2U>- (80)

E,=—iC
('is a constant (real > 0) and is of no importance here since the “reduced” radiation resistance
R/R, will be determined. This is the quotient of the radiation resistance R for the complete
system (dipole plus reflector) and the radiation resistance £, of the dipole in free space (with-
out the presence of the reflector). At first the contribution of #, (which represents a set of
dipoles consisting of the original source and a number of images) to £, is considered. From
(30) and (76)

Ui=F,(¢—¢') —Fi(¢+9¢')

=33 (r2+22) " exp [(—ik (2420 V2] — 3D (r+29) ~ 12 oxp [— ik (r2+29) 1, (81)
P=nm =q

r3=p*+p’2—2pp’ cos (¢—¢'-+2ap)
356



=p*+p'?—2pp’ cos (¢+¢'+2aq) (82)

plz—l:wid)—d)':l' i o+

20 2a

_ [rrete] . [r—o—¢
‘o 2« | = 2a

It 1s then easily found that

[—zc (‘)—’“'Jrkw ) ]_~( el 32 gted)— 3D giid,) 83)

n=mn; m=my

with
d,=2p" sin (an), d,=2p" sin (¢’ +am)

m=—[3/a], ny=[3m/a],
9 i/ 4/
my=— W'T,;?‘]’ Mo== o ,)ad)— ) (84)

g(§)=¢tsin ¢+H¢ 7 ecos (—Psin g, g(0)=2/3

The term =0 in the sum (83) represents the contribution of the original dipole source.
It follows then for the radiation resistance of the Hertz dipole in free space by (83) and (79)

Ry=2L/(3.J) Ck3, (85)
The contribution of £, to U/ is
U,=Fy(¢p—¢') —Fy(¢+¢) (86)
and it follows by (31) and (77)
. b l N o 7 g(2kp’ cosh z/2)
sl =50 —(22) =103 < 25 2 B U\ </ DCOB L =) o
RLI: o0 ),:I (20) ~Cl 2 am (a/a) o cosh (7z/a) —cos (7%a) ¢

cosh (mr/a) —cos [— (m—2¢’ ):I cosh (rr/a)—cos[ (r+2¢ ):I

o sin [I (7r—2¢>’):| Qm[ (m+2¢ ):I
——J g (2kp’ coshi')— S, .
0 4

+ (87)

It follows, then, for the quotient of the radiation resistance £ of the dipole in the presence
of the reflector and the radiation resistance ; of the dipole in free space by eq (79), (83), (87),
and (85).

Illg ‘o (Z’tp cosh 5)
RIR,—3/2 2 s (/«/,,l)] 2 sin (/o) J A
0

= S cosh (mr/a) —cos (7%a)

—J;mg(%p’ cosh é) smI: (r— ~¢)] " sin I:lr (,r+2¢/)]

dx - (88)
LOsll (m/a)—cos[ (m— ‘?¢>)] cosh (mz/a) —cos[ (m+2¢")

The occurring parameters and ¢(¢) are given in (84). Since ¢g(¢) vanishes for large ¢ it is
clear that if the distance of the dipole from the walls is large (p’— ) only the term n=0 in the
sum gives a contribution, and then

lim R/Ry=3/2¢(0)=1.
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The formula (88) is valid for an arbitrary a. But if a >, i. e., in the case of a wedge
reflector (figs. 2 and 3), the two sums on the r. h. s. of (88) can be given explicitly. By (84) the
limits ny, ny, my, my, of the sums in case « >7 are

i ==t = =0 for 0< ¢’ < %,
ny=n,=m;=0, m,=—1 forir<¢p'<3a.
Thus

35 gl — 35 glhd,) =2f3—g (ko' sin @), it 0<4'< b,
=2/3, if ¢/

The analysis is exactly the same when the source Q(p’,4,0) is an acoustic point source.
In this case the plus sign in (28) has to be taken. The function ¢(¢) in (84) which character-
izes the coupling term between two Hertz dipoles (parallel to each other and the line con-
necting their centers perpendicular to their axis) has to be replaced by the corresponding
coupling term ¢,(¢) for two acoustic point sources [30].

(§)={""sin ¢ (89)

In this case the corresponding formula for the relative radiation resistance as defined

before is

" {/1<2kp’ cosh —é)
2 sin (wz,/a)f

o cosh (mr/a)—cos (r*a)

B/Ro=32 gu(kd,)+ 33 g1 (k) — (2a) !

n=mn m=in!

+ﬁwgl<2kp/ ol é) sml: (r—2¢' )] . sm[ (m+2¢’ )]

cosh (mrja) —cos [ (1r—‘)p’):| cosh (m/a)—-(os| = (v4+2¢’ ):I
(90)

The definition of the n,, ny, my, m,, d,, d,, is the same as in (84), while ¢,(¢) is given by
(89). If a>m, then as before

M=Ne=";="m=0 for 0 <¢'<3m,

Ny=ny=m;=0, me=—1  for 3r<¢'<3a

and

35 qlkd)+ 3 gilled,)=1+g,2kp’ sin ¢),  0<¢'< b,

n=n m=1my
S 1 ’ 14 1
=1, 3’ << Ga.

6. Transient Solutions

The results obtained in section 2 shall now be used to investigate the corresponding
pulse problems. The majority of the contributions quoted at the beginning of this paper
are based upon a direct attack on the time dependent wave equation. Integral transform
methods were used in [38] (Kontorovich-Lebedev transform) and [40] (Fourier transform).
In the cases considered here the application of Laplace’s transform leads rapidly to the de-
sired results. Let the excitation of the source be represented by a pulse starting at the time
=0. Let the pulse function be g(#), and ¢(t)=0 for < 0. Let the pulse function be such
that it admits its representation by Laplace’s integral formula:
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‘c+iw UES
g(t)= (Qm',)‘lj I:J q(7) exp (- —’yr'):/r] exp (vt)dv. (91)
c—1 0

In section 2, various expressions {/ for the exponential decay problem were given.  This
case corresponded according to (5) to the time dependency exp (y¢), (put ¢=1). It can then
be concluded that for a pulse excitation ¢g(f) as represented by (91) the expression for the field
is represented by

*cti®

®(t)=(2m) ! I:J.m'(/(T) exp (—7r7) llT] U exp (vt)dv- (92)

c—iw

The solution of the pulse problem is therefore given as the inverse Laplace transforma-
tion of

[,'J:mg/(r) exp (—y7)dr, (93)
with respeet to .
6.1. Special Cases for g(¢)
IFor a unit step function ¢(¢) =1, the field (92) becomes
e
(=) | Uvtexp (rt)dv. 94)

For a “Dirac” pulse excitation imposed at the time t=t, >0:
g(t)=2a(t—1t,), one finds first

J g(1) exp (—’Yr):/r:j o(r—t) exp (—yr)dr=exp (—7¢)). 95)
0 0

The field due to a “Dirac” pulse excitation becomes then

otiw

d),)(ff~f,):(27ri)*‘J U exp [rit—t)] dv. 96)

c—1ioo

If the order of integration in (92) can be interchanged, it results in
t =} =

o votiw
‘I)(f):j g(7) { (2m2) ! U exp [Y(t—1)] 4/’)’}(/7'. (97)
0 c—io
Since by (96) the inner integral is the effect of a “Dirac’ pulse, excitation (97) can be
written as

q’(i)——J g(r)®p(t—7)dT, (98)
0

1. ¢., the field due to an excitation ¢(t) of the source @ can be obtained by an integration proc-
ess involving the field due to a “Dirac” pulse excitation. The general equations (96), (98)
shall now be applied to the problem of the diffraction of arbitrary pulses (plane, cylindrical,
and spherical) incident on a perfectly reflecting wedge or corner.  The case of “Dirac” pulse
excitation imposed at the time ¢=0 shall be considered first. The Laplace inversion of a
funection h(y) with respect to v shall be denoted by %(t), i. e,

ct+i®

h(t) = (2mi) ! hexp (vt)dy. (99)

c—ioc

1t follows from (96) and (28) for the field @, due to a plane, cylindrical or spherical “Dirac”
pulse:
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®p(t)=F(op—¢) FF(o+¢)

72 — mz -

=> flo—¢'+2anm) T > j‘(¢+¢'+2am)+£m TI(bn)[(}(qs—(;s')?G(¢+¢>’)]d‘z-, (100)

n=ni m=my
] — |:7r+¢-r-¢ |: T—¢—¢
e L0 t2= ‘)a

sin [ = 0)] sin [I (r%@)]
L

: (101)
cosh m/a)—*um[ (r—#8) | cosh (W.[/a)—COSI: (7r+0:|

where

G =—1{2a) "

The respective Laplace inversions 78 and H(zx) are for a plane pulse:
F(8) =6(t+p cos 0) (102)

[7(.‘:) =d(t—p cosh z). (103)
For a cylindrical pulse one has

?(0) =2im (82— p*—p"?+2pp” cos 9)7172 for t > (p*+p’*—2pp’ cos )12,
=0} otherwise. (104)

ITI(.I') =207 (12— p*—p'*—2pp’ cosh 1)1 for 2pp’ cosh x<t*—p*—p’?,
=)} otherwise. (105)

Finally, for a spherical pulse

F(0) = (r*+ )12 5[t — (r*++22)172] (106)
H(x)=(p*+p'*+ 22+2pp’cosh &)~ '/28[t— (p*+ p’*+ 22+ 2pp’cosh z)12]. (107)

The Laplace inversions for f(6) and F(a) are obtained from (95) for the plane and for the
spherical pulse, while [10, vol. 1, p. 277, formula 8] gives the inversion for the cylindrical

pulse. It does not seem possible to express the integral f H(2)@(6)dz in a closed form in the
0

case of a cylindrical pulse. To obtain the field due to a pulse excitation ¢(f), the equations
(98) and (100) have to be used. For a plane and a spherical pulse the integration process in
(98) can be performed immediately. The results are

My

<I>(t)—Z glt+pcos(¢—o¢' +2an)| T >3 glt+p cos (6+¢ ' +2am)]

m=nmi

cosh r=t/p
+ J g(t—p cosh D)[G(6—e) FG(o+¢)1dz,  (108)
0

for the plane pulse.

g ma
(I)U):Z B)—"Ig(t'—Rn)q: Z [‘)';1."/("—1‘)'")

n=mn m=m

+ J " (00 4224207 cosh ) 712 glt— (924 p/H 224 20p” cosh 1) 2 {6 (9— ') F G(o+¢) 1z,
0

(109)
for the spherical pulse.
The upper limit #;, of the integral is given by
2pp’cosh z;=1*—p*—p’*— 2% for (109), and cosh z,=#/p for (108). (110)
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Ry.=[p*+p"*+2—2pp’ cos (p—¢'+2an)]'?

Ry=[p"+p"*+22—2pp" cos (¢+ ¢’ +2am)]'/2.

(111)

The other properties are given in (101). Again in the case of a wedge (a_>m), the prop-
erties my, my, my, m, are given in section 3. The representation of the eylindrical pulse field
leads to a double integral. For the special case of a half plane, however, the integral occurring
in (100) can be solved. In the following some special cases are considered in which the solution
for the transient field become elementary.

6.2. Special Cases
a. Cylindrical Pulse and Half Plane

The case of a line source @ parallel to the edge of a perfectly reflecting half plane is con-
o =y

sidered. The regions I, 11, IIT as described in section 3 are indicated in figure 6. For a half

plane (a=2m), one obtains from (101),

G(0)=—r" cos (20) cosh (3z)(cosh z-+cosh)". (112)

It follows then for a cylindrical “Dirac’ pulse by (105),

g =T Q(p ')
I
I
/ I
0,=+p’ Q'(p-tp')
Ficuvre 6.

co_‘ ) ) z '2__ 212 ’ Cl N=Vo
f H(x) GO)de=—2ir"2 cos (30) " cosh (32) Ul sl p\p cosh ) — da.
0 0 cosh z-+cos 6

The upper limit z;, of the integral is given by 2pp’ cosh z;=*—p*—p’?, and from (105) it
is obvious that the integral is only different from zero when ¢>p-+p’. The substitution cosh
r=1-0% cosh (3x)de=2"%dp gives for the integral

f ﬁ(.l“) GO dz=—inr"" cos (10)| sec (30)|(t2—p2—p’2>-+2pp’ cos 0) 12, if ¢t >p+p’,
0
=0, otherwise, (113)

1t follows then from (100) by means of (35), (36), (37), (104), and (113) for the field due
to a cylindrical “Dirac’ pulse incident on a half plane

®p(t)=2ix " { (—R)T'2F (=R 2= 3[(E—R)2F @— R3]} for region I,

—2ix 1 (P—RI)2—}[(—R2) "2+ (2— R}, for region TI,
=i (12— R3)~*F (12— R%) "1/, for region ITI, (114)
where
t=p*tp"*—2pp cos(p—¢’), Ri=p*+p'—2pp cos(¢+¢’). (115)

In (114), (#—R5,)""*=0 for t<_p+p’ when this expression is within the brackets; other-
wise zero for t< R;,. The expression (114) is elementary in all the three regions. Former
investigations [38] established ®,() as an infinite series involving Legendre functions. (It
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can be shown that this series can be summed and leads to the expressions in (114).) From
(114) and (98) it follows for the field ® due to an excitation g(f),

“t—R, 1—R,
d)(f)—f.)iﬂ'_l{J [({—7‘)2-Rﬂ’”%](T)l/TIf [(t—7)2— R3] ~2¢g(7r)dr
0 0
_%J o [((;_T>2—1.’;-’>4/21((,«—7)?—1.’3)1/2},,(7)«17}, region I.
0

®(f)=2ir™ {J;[_Rl [(t—r)>— R3] 2g(s)dr

O ==y’
-—%J ’ [(t—7)*—R}) 12+ ((t—7)*— 1’5)‘1/2]!/(7)417}) region I1.

0
q»_m:zflj T (=) — RV F (t—1)2— R2) -2 g(r)dr,  region IIL. (116)
0

b. Plane Unit Step Function Pulse and Wedge or Corner

Now, g(t)=1 for t>0, and g(t)=0 for t< 0. Then the terms of the sums on the r. h. s.
of (108) are either zero or one according as the argument of ¢ is negative or positive. The
well-known formula

R
f[cosh (bx) —a] 'dx=2b"'(1—a? ~'/* arctan [(—}v_—&> / tanh (3 b.r):l

cives for the integral in (108) by (101)

cosh z=t/p [f+ (12_p2)1/2]r/a_ pr/a [ e \
8)dr=—="" arctan< Lo e
J; G(6)dr ! arc qn{[H—(t2—p2)”2]’”“+p"/“ cotan| , - (m 0{)]

g [t+({2:P2)1//2]W/a_pr/a‘ ) T
7' arctan [t+(t2~p2)’/2]"/a+p”/ﬂ(Ot‘m 2a(1r+0)

for t >p and equal to zero for t<7p. Thus the field (108) for a unit step function excitation
[19, 24] is elementary.

c. Spherical Unit Step Function Pulse and Half Plane

The center of the spherical pulse is @ (fig. 6). Again, ¢g(t)=1. The excited field is
given by (109) and G(6) is given by (112). The integral occuring in 109) is of the form

fll (p*+p"2+2pp cosh x) 712G(6) dx
0
271
=—7!cos (%B)J cosh (32) (cosh z+cos 0) ~1(p>+p’2+22+2pp” cosh )~ 2dx
0

——912:=1 cos (%Q)J l (1+COS 0-+2%) _1[(p+p')2+22+2pp'1‘2]>”2’/l',
0

using the substitution cosh z=1+4* cosh (Fz)de=2"% do. The upper limit »; is given by
n=[t?— (p+p")?*—2%*. Again this integral is elementary. Each sum in (109) reduces to at
most one elementary term (see the tables in section 3), and the resulting field [40] is elementary.

It should be remembered that the previous investigations were based on the assumption
that the velocity of the field is unity. The time parameter ¢ has therefore to be replaced by
¢t when the velocity of the field is equal to ¢. The expression U for the time harmonic field as
given in section 2 can easily be regained as the limiting case of a transient field ® due to an
excitation ¢(t) =exp (iwt).
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8. Appendix

To prove

7l (a) K, (b) = ‘ WK'(,[((L?—F b*—2ab cos t)'?| cos (vt) dt—sin (7v)
0

f exp (—wt) Ky[(a®+b*+2ab cosh )2 dt, a<b,
0

K, (o) K,(b)= K[ (a®+b2+2ab cosh ¢)'2] cosh (vt) dt,

0
K[ (@*+b*—2ab cos ¢)'7?] 27r“j K (a)K,,(b) cosh [v(m—|¢|)]dv, 0=ZReop=2mr,

one uses the formulas

v o

r]v(z):f exp (z cos t) cos (vt) dt—sin (”)J exp (—z cosh t—wt) dt [9, p. 21],
0

0

K., (2) :;L x~7"! exp <——.r—i 22/.r)<l.1', [9, p. 82],

o 2. p2
I,V(’(z{)Ky(b)z;lij T oxp(—;r—-“ Zrb )L (%Gb/-f>l’l"; [9, p. 53].

0

8.1. Proof of (Al)

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

Starting with (A6) and replacing the modified Bessel function in the integrand by (4),

one obtains, interchanging the order of integration,

rL(ar)Ky(b)Z% J;T cos (vt) [ﬁm g oxp(—.r a*+b’— E{?b cos t > ]
= - opper o
- sin (WV)f exp (—wt) I:f r~!exp (—— _a@*+b 7&6 cosh I)
2 o Y

The inner integrals on the r. h. s. are known by (A5). This proves (Al).

8.2. Proof of (A2)
The relation
K,(z2) =% sec(mv)[I_,(z)—L,(2)],
together with (A1) gives (A2).
8.3. Proof of (A3)

Replace in (A2) » by iv and obtain by Fourier’s inversion theorem

K[ (a>+b*+ab cosh t)‘”]z?w“fm K,,(a)K;,(b) cos (vt) dv.
0
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Replace here t by i (r—¢) and obtain (A3). The restriction 0 <Re ¢<27 is necessary to
ensure convergence of the integral in (A3) at its upper limit, since for fixed real z and large

positive » >z [9, p. 88, formula 19],
K, (1) = (2m)12(2—a?) /4 exp (-;‘SW){ sin [[V msh-u;,,/.r)—(V?_.1=2)1/2+§:|+0(_v—1) } (A9)

8.4. Evaluation of s, Defined in (19)

Using the formula

N . sin [(2N—+1)y/2]
,‘;.,E" cos (ny)=— sn @2

one obtains instead of (19)

§1=(2m) _‘hmj K[y (p*+p'>—2pp" cos x)'/?

Now
sin[z 2N+1)( H—O:I 5111[2 (ZA\TI)(/—HI:I /
e ax.

Sm[§5 (.1'—*0‘;:' sin ':~ (:—0)]

—2at and in the second 7(xr—80)=2at. It follows

Substitute in the first integral #(z-6) =

then that
. ty . . , v Sin 2N+1 t
s;=ar *lim J[ Iﬂo{v[pl~{-p'“’—2pp cos (0-+2at/m)]}'? (m 7 ) 7
1 S

N-ow

where t,=— (7rT0 and 1‘27 (7r 6). Now s, is a Dirichlet integral and its value follows
immediately [ p. 492] as 10})1(\@01“0(1 in (22).

WasningTox, D. €., January 14, 1958.
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