Pseudoternary System Calcium Oxide-Monocalcium Aluminate (CaO Al_2O_3)-Dicalcium Ferrite (2CaO Fe_2O_3)

Terry F. Newkirk ^{1,2} and R. D. Thwaite ²

The system CaO-CaO·Al₂O₃-2CaO·Fe₂O₃ is of importance to portland cement chemistry because it provides information on the composition of the iron-bearing phase in cement clinker.

Iron-bearing solid solutions in the system were found to exist as a continuous narrow band extending from 2CaO-Fe₂O₃ to 6.45CaO-2.31Al₂O₃-F₂O₃. Additional tie lines were established to show the composition of the iron-bearing solid solution phase (Fss) and liquid phases during the course of crystallization of mixtures within the system. Isotherms have been located for the regions of principal interest. Compatibility relations differ somewhat from those reported by previous investigators. The composition of the iron-bearing phase in equilibrium with CaO and 3CaO·Al₂O₃ at the ternary invariant point proved to be lower in Fe_2O_3 than that reported by Swayze. Other results are in general agreement with the work of Swayze and of Yamauchi.

1. Introduction

In its effect on the constitution of portland cement clinker, Fe_2O_3 is next in importance to the three principal components CaO, Al₂O₃, and SiO₂. Le Chatelier [1]³ postulated the existence in portland cement clinker of a ternary compound of calcium, aluminum, and ferric oxides having a possible formula 3CaO·Al₂O₃·Fe₂O₃. In their pioneering work on the system CaO-CaO·Al₂O₃-CaO·Fe₂O₃, Hansen, Brownmiller, and Bogue [2] discovered a continuous series of solid solutions between the compound $2CaO \cdot Fe_2O_3$ and what appeared to be a compound, $4CaO \cdot Al_2O_3 \cdot Fe_2O_3$. The latter phase $(Al_2O_3/Fe_2O_3$ weight ratio 0.64) was believed to constitute the end of the solid-solution series. Commercial portland cements are ordinarily of higher Al_2O_3/Fe_2O_3 ratios than 0.64. The existence of a series of solid solutions in the region of lower ratios was, therefore, not of primary interest to portland cement chemists at that time, because it appeared that the iron-bearing solid solutions would rarely, if ever, be found in clinker.

Based on this earlier work, Lea and Parker [3] investigated the system CaO-2CaO·SiO₂-5CaO· $3Al_2O_3$ ⁴-4CaO·Al₂O₃·Fe₂O₃, treating all of the calcium aluminoferrite phases as having the composition $4CaO \cdot Al_2O_3 \cdot Fe_2O_3$.

Further work on the ternary system CaO-CaO. Al₂O₃-4CaO·Al₂O₃·Fe₂O₃ was done by McMurdie [6] who studied in detail the extent of solid solutions within that system. His compositions and two of the temperatures for the ternary invariant points differ from those reported [2] earlier. Certain discrepancies noted between the calculated and observed compositions of the iron-bearing phase in some commercial clinkers led to independent investigations by Yamauchi [7] and by Swayze [8] of the system CaO-5CaO·3Al₂O₃-2CaO·Fe₂O₃ and by Swayze [9] of the quaternary system $CaO-5CaO\cdot3Al_2O_3$ - $2CaO \cdot Fe_2O_3$ - $2CaO \cdot SiO_2$ and of the same system as modified by 5 percent of MgO. These investigators discovered that the solid solution between 2CaO. Fe₂O₃ and a hypothetical 2CaO·Al₂O₃ extended beyond $4CaO \cdot Al_2O_3 \cdot Fe_2O_3$, in which the molar $Al_2O_3/$ Fe₂O₃ ratio is unity. This discovery was of importance to the cement industry because it showed that the composition of the principal iron-bearing phase in most commercial clinkers is not fixed but may vary with the chemical composition of the clinker. Changes in the compositions of these iron-bearing solid solutions can affect significantly the constitution and properties of the clinker. Swayze [8, 9] reported that the solid solutions of interest are confined to the pseudoternary system CaO-5CaO-3Al₂O₃-2CaO·Fe₂O₃. His diagram for the ternary system differed in a number of respects from those of the earlier investigators.

Although the extension of the iron-bearing solidsolution series in the ternary system to higher Al_2O_3/Fe_2O_3 ratios than $4CaO \cdot Al_2O_3 \cdot Fe_2O_3$ has been confirmed by several investigators, there is some disagreement among them as to the limits of this series. Swayze placed the high-Al₂O₃ limit at the composition $6CaO \cdot 2Al_2O_3 \cdot Fe_2O_3$ (molar Al_2O_3/Fe_2O_3 ratio of 2.0) whereas Yamauchi [7] and Malquori and Cirilli [10] placed it at a ratio of 2.2 and 2.3, respectively.

Solid solution was pictured by Swayze as being limited to a straight line extending from 2CaO·Fe₂O₃ to the composition 6 Ca $O \cdot 2Al_2O_3 \cdot Fe_2O_3$ in the ternary system. Yamauchi referred to the solid solution series as being confined to a "swelled straight line." The composition $4CaO \cdot Al_2O_3 \cdot Fe_2O_3$ is a solid solution on this line [7, 10]. Some solid solution departing from the line is also indicated in the data of McMurdie [6] who noted that $4CaO \cdot Al_2O_3 \cdot Fe_2O_3$ can

 $^{^1}$ Present address, General Electric Company, Power Tube Department, Schenetady, N. Y. 2 Research Associate, Portland Cement Association Fellowship, National Bureau of Standards.

³ Figures in brackets indicate the literature references at the end of this paper. ⁴ Studies by Büssem and Eitel [4], and by Thorvaldson and Schneider [5], indicate that the correct formula for this compound is 12CaO-7Al₂O₃. The latter formula is used in the present work except in references to the work of earlier authors

take into solution up to 5 percent of $3CaO \cdot Al_2O_3$, $5CaO \cdot 3Al_2O_3$, or $CaO \cdot Al_2O_3$.

Because the composition of the iron-bearing phase is variable, it is necessary for the investigator to depict on the phase diagram the changing composition of these crystals as crystallization (or melting) proceeds by means of the lines or conodes. Two the lines were given by Swayze in each of the diagrams representing the ternary, quaternary, and quinary systems. The number is not sufficient, however, to permit one to follow the course of crystallization within each system.

The present study was undertaken in order to reconcile differences in published data on the ternary system. It also has the purpose of obtaining additional information on the system, especially the establishment of a sufficient number of tie lines to permit computation of the approximate composition of the calcium aluminoferrite phase throughout the crystallization of mixtures within the system. This information has an important bearing on the constitution of portland cement.

2. Experimental Methods

2.1. Preparation of Mixtures

All compositions were synthesized from reagent grade calcium carbonate S. L. (low-alkali type), Fe_2O_3 , and Linde type-B alumina (99.9% Al_2O_3). These materials were dried and then weighed in the correct amounts to give 10-g samples on ignition. After an initial mixing for several hours in glass jars, the mixtures were ground in an alumina mortar to pass a No. 325 sieve. Each mixture was heated for three periods of at least 2 hr in the range $1,100^{\circ}$ to 1,310° C before being studied. Following each burn, the sample was ground, screened, and remixed. Composition gradients within the individual crystals, because of changes in the liquid composition during crystallization, were unlikely because the temperature of first liquid formation for nearly all mixtures studied was above 1,310°. The exceptions, five mixtures with compositions in the CaO·Fe₂O₃ compatibility regions, were heated 15 hr or more at 1,180° C to insure homogeneity. These mixtures were used for quenching experiments and for differential thermal analysis. Further heat treatment was given selected compositions prior to examination by X-ray diffraction methods.

2.2. Temperature Measurement and Control

Temperatures in the furnace were measured with a platinum-platinum-10%-rhodium thermocouple calibrated at melting points defined as follows: CaMgSi₂C₆, 1,392°C and BaO·2SiO₂, 1,418°C. The furnace was maintained at constant temperature within ± 0.5 °C by means of a controller of the type developed by Mauer [11].

2.3. Methods of Investigation

Phase relations in this system were investigated by differential thermal analysis (DTA) and the standard quenching technique. The DTA studies made use of a pellet method [12] developed in the Fellowship laboratory. In the quenching technique, presintered mixtures of oxides were held in platinum envelopes at constant temperature for 2 hr until equilibrium was reached between solid and liquid phases, and then quenched in water. The identification of phases was based on the results of microscopic examinations and X-ray powder diffraction patterns made with a Philips high-angle diffractometer using $CuK\alpha$ radiation.

For studying final products of crystallization, small quantities of 17 glasses with compositions in the vicinity of the iron-bearing solid solution region, and near invariant points, were collected by quenching from above the liquidus. After devitrification in platinum capsules at 1,300° C for approximately 40 hr, the charges were removed from the furnace and mixed by grinding in a boron carbide mortar. This procedure was used to insure attaining equilibrium among the solid phases. A portion of each sample was then mixed with 5 percent by weight of pure tungsten powder as an internal standard prior to X-ray powder diffraction study. The diffraction patterns showed that all samples were well crvstallized as a result of their heat treatment. The important portions of each pattern were scanned at a speed of 1/8°/min over the range 15° to 110° (2θ) using a 0.003-in. receiving slit, and a time constant that was small as compared with the time width [13] of the slit.

Tie lines in the system were determined by microscopic study and X-ray powder patterns of selected mixtures. Chosen compositions in the primary-phase region for the calcium aluminoferrite solid solution (Fss) were quenched at a temperature about 1° C below that at which the secondary crystalline phase appears, after being held long enough to reach equilibrium. By measuring d_{hkl} for a series of peaks found in the patterns, and correlating these with d_{hkl} values determined for the solidsolution series, the composition of the solid solution in equilibrium with the liquid and the secondary phase was determined. The tie line through points in the phase diagram representing the original mixture and the solid-solution phase intersects the boundary of the Fss primary-phase region at the liquidus temperature corresponding to the appearance of the secondary phase in crystallization of the original mixture.

3. Results and Discussion

3.1. General Information on the System

The phase diagram for the condensed ternary system CaO-CaO·Al₂O₃-2CaO·Fe₂O₃ developed in the present investigation appears as figure 1. The diagram contains a considerable amount of new information on tie lines, isotherms, compatibility regions, and the extent of the calcium aluminoferrite solid solutions in the system. The binary invariant points for CaO-C₃A, C₃A-C₁₂A₇, and C₁₂A₇-CA were determined by Rankin and Wright [15], and that for CaO-C₂F by Swayze [8]. Experimental data on which the diagram is based are given in table 1.

FIGURE 1. Equilibrium diagram of the pseudo-ternary system CaO-CaO·Al₂O₃-2CaO·Fe₂O₃ showing isotherms, tie lines, and the fields of the primary crystalline phases.

Mixture	(W	Composition reight perce	n nt)	Quenching tempera-	enching npera- ture Phases present		emperature nges (DTA)
No.	CaO	CA	C_2F	ture		First liquid formation	Other phase changes
			Mi	xtures having	caO·Al ₂ O ₃ as primary phase		
73	16	79	5	$\left\{\begin{array}{c} \circ \ C \\ 1,428 \\ 1,425 \\ 1,411 \\ 1,401 \end{array}\right.$	All glass Glass+rare CA Glass+some CA Glass+CA+much $C_{12}A_7$.	° C	° C
74	12	75	13	$\left\{\begin{array}{cc} 1,429\\ 1,427\\ 1,403\end{array}\right.$	$\begin{array}{l} All \ glass_{}\\ Glass+a \ little \ CA_{}\\ Glass+CA+much \ C_{12}A_{7}_{}\end{array}$		
72	2	59	39	$\left\{\begin{array}{cc} 1, 395 \\ 1, 390 \\ 1, 389 \end{array}\right.$	All glass Glass+very rare CA Class+some CA		
70	3	56	41	$\left\{\begin{array}{ccc} 1,361\\ 1,358\\ 1,356\\ 1,352\\ 1,331\end{array}\right.$	All glass. (CA liquidus)		
68	9.56	65. 17	25. 27	$ \left\{\begin{array}{ccc} 1,375\\ 1,370\\ 1,365\\ 1,357\\ (1,402)\end{array}\right. $	(CA liquidus) Glass+very rare CA Glass+trace CA Glass+small amount of CA	1, 335	
64	7.35	62.01	30. 64	$\left \begin{array}{c}1,396\\1,395\\1,390\\1,355\\1,350\\1,348\end{array}\right $	(CA liquidus)	1, 345	

TABLE 1. Quenching and DTA data for mixtures in the system CaO-CaO·Al₂O₃-2CaO·Fe₂O₃

TABLE 1.	Quenching and	DTA	data fe	or mixtures	in the	system	CaO-	$-CaO \cdot Al_2O_{3^-}$	-2CaO	·Fe ₂ O ₃	-Continued
----------	---------------	-----	---------	-------------	--------	--------	------	--------------------------	-------	---------------------------------	------------

Mixture	(W	Composition eight perce	n nt)	Quenching tempera-	Phases present	Observed temper of phase changes (
No.	CaO	CA	C_2F	ture	i naco proche	First liquid formation	Other phase changes	
			Mixtu	res having 120	CaO·7Al ₂ O ₃ as primary phase			
52	18.99	67.01	14	$\left\{\begin{array}{c}1,377\\1,376\\1,375\\1,356\\1,338\\1,335\end{array}\right.$	All glass. $(C_{12}A_7 \text{ liquidus})$. $(Glass+rare C_{12}A_7$. $Glass+moderate amount of C_{12}A_7Index of C_{12}A_7 = 1.614\pm0.004.Glass+much C_{12}A_7.Not sintered in packet.$			
60	11.59	69. 41	19.0	$\left\{\begin{array}{c} 1, 393 \\ 1, 391 \\ 1, 389 \\ 1, 387 \\ 1, 338 \end{array}\right.$	$\begin{array}{c} (C_{12}A_7 \ liquidus) \\ Mostly \ glass+rare \ C_{12}A_7 \\ (C_A \ appears \ as \ second \ phase) \\ Glass+C_{12}A_7+rare \ C_A \\ Glass+C_{12}A_7+rare \ C_A \\ \end{array}$] 1, 333		
54	13. 19	67.81	19.0	$\left\{\begin{array}{c} 1,351\\ 1,349\\ 1,346\\ 1,336\\ 1,333\end{array}\right.$	All glass. (C ₁₂ A ₇ liquidus) Glass+very rare C ₁₂ A ₇ . Glass+C ₁₂ A ₇ +Fss. Not melted.			
67	11,99	67. 61	20. 40	$\left\{\begin{array}{ccc} 1,352\\ 1,351\\ 1,349\\ 1,336\\ 1,334\\ 1,333\end{array}\right.$	$\begin{array}{l} \mbox{All glass.} \\ (C_{12}A_7 \mbox{ liquidus}) \\ \mbox{Glass+rare $C_{12}A_7$} \\ \mbox{Glass+C_{12}A_7$+CA+Fss.} \\ \mbox{First liquid} \\ \mbox{Not sintered; $C_{12}A_7$+CA+Fss.} \\ \end{array}$	1, 335		
69	13	64	23	$\left\{\begin{array}{c} 1,358\\ 1,357\\ 1,356\\ 1,342\end{array}\right.$	All glass $(C_{12}A_7 \text{ liquidus})$ $Glass+trace C_{12}A_7Glass+C_{12}A_7 + Fss + trace CA+quenchgrowths.$			
			Mixtu	ures having 30	ZaO·Al₂O₃ as primary phase			
43	24.89	70.11	5.00	$\left\{\begin{array}{c}1,466\\1,465\\1,460\\1,381\\1,377\\1,375\end{array}\right.$	Estimated C ₃ A liquidus Glass+rare C ₃ A Glass+some C ₃ A (C ₁₂ A ₇ appears as second phase) Glass+C ₃ A+trace C ₁₂ A ₇	1, 338		
44	20, 81	74. 19	5.0	$\left\{\begin{array}{c} 1,402\\ 1,400\\ 1,399\\ 1,395\\ 1,394\\ 1,392\end{array}\right.$	All glass (C_3A liquidus) Glass+small amount of C_3A Glass+C_3A (C_{12A7 appears as second phase) Glass+C_3A+C_{12A7}			
45	20. 59	69.41	10	$\left(\begin{array}{c} 1,405\\ 1,401\\ 1,400\\ 1,379\\ 1,379\\ 1,375\\ 1,372\\ \end{array}\right)$	$\begin{array}{l} \mbox{All glass}, \\ (C_3A \mbox{liquidus}), \\ \mbox{Glass+CaR}, \\ \mbox{Glass+C_3A}, \\ \mbox{Index } C_3A = 1.715 \pm 0.002, \\ (C_{12}A_7 \mbox{appears as second phase}), \\ \mbox{Glass+C_3A+very rare } C_{12}A_7, \\ \end{array}$			
9	23.57	66. 43	10	$\left\{\begin{array}{c} 1,356\\ 1,352\\ 1,348\end{array}\right.$	$\begin{array}{l} Glass+C_{3}A \\ (C_{12}A_7 \text{ appears as second phase}) \\ Glass+C_{3}A+\text{much } C_{12}A_7 \end{array}$	1, 333		
13	22.26	62.74	15	$ \left\{\begin{array}{c} 1,353\\ 1,352\\ 1,344 \right. $	Glass+lots of $C_3A_{$	1, 335		
53	18.49	62.78	18.73	$\left\{\begin{array}{c} 1,366\\ 1,365\\ 1,364\\ 1,348\\ 1,348\\ 1,347\\ 1,346\end{array}\right.$	All glass. $(C_3A \text{ liquidus})$ $Glass+rare C_3A$. $Glass+C_3A$. $(C_{12}A_7 \text{ appears as second phase})$. $Glass+C_3A+C_{12}A_7+\text{quench growths}$.			
46	19. 37	60. 63	20	$\left\{\begin{array}{c} 1, 384\\ 1, 383\\ 1, 381\\ 1, 356\\ 1, 355\\ 1, 355\\ 1, 354\end{array}\right.$	All glass (C_3A liquidus) Glass+rare C_3A Glass+moderate amount C_3A (Fss appears as second phase) Glass+C_3A+a few Fss crystals			
8	20. 95	59, 05	20	$\left\{\begin{array}{c} 1, 392\\ 1, 390\\ 1, 388\\ -1, 355\end{array}\right.$	$\begin{array}{l} \mbox{All glass}_{}\\ (C_3A \ liquidus)_{}\\ \mbox{Glass}+C_3A+\mbox{quench growths}_{}\\ \mbox{Glass}+C_3A+\mbox{Fss}+\mbox{quench growths}_{$	1, 338	1, 353	
61	29.77	62.23	8	$ \left\{\begin{array}{c} 1,515\\ 1,514\\ 1,512 \end{array}\right. $	All glass C ₃ A+glass Glass+much C ₂ A			

Mixture	(V	Compositio Veight perce	n ent)	Quenching tempera-	Phases present	Observed temperature of phase changes (DTA)		
No.	CaO	CA	C_2F	ture	The of present	First liquid formation	Other phase changes	
			Mixtu	res having 3C	aO·Al ₂ O ₃ as primary phase		1	
62	26.56	57. 44	16	$\left\{\begin{array}{c} 1,486\\1,483\\1,481\\1,375\\1,373\\1,371\end{array}\right.$	All glass G_3A liquidus) $G_4A = 4 ew C_3A crystals G_4A = 4 ew C_3A crystals G_4A = 4 ew C_3A crystals G_4A = 4 ew C_3A crystals$	} 1, 339	1, 344	
14	19.65	55. 35	25	$ \left\{ \begin{array}{c} 1,384 \\ 1,382 \\ 1,380 \\ 1,366 \end{array} \right. $	All glass. $(C_3A \text{ liquidus})$. $Trace C_3A+glass$. $Fss+C_3A+glass$.			
57	18.36	56. 64	25	$\left\{\begin{array}{c} 1, 384\\ 1, 382\\ 1, 380\\ 1, 372\\ 1, 371\\ 1, 370\end{array}\right.$	$\begin{array}{l} \label{eq:alpha} \mbox{All glass} \\ (C_3 A \mbox{liquidus}) \\ \mbox{Glass+rare } C_3 A \\ \mbox{Glass+rare } C_3 A \\ \mbox{(Fss appears as second phase)} \\ \mbox{Glass+rare } C_3 A + Fss \\ \mbox{Slass+rare } C_3 A + Fs \\ \mbox{Slass+rare } C_3 A + $			
63	23.74	50. 26	26.0	$\left\{\begin{array}{c} 1,444\\ 1,442\\ 1,440\\ 1,387\\ 1,385\\ 1,383\end{array}\right.$	All glass_ (C_3A liquidus)_ Glass+trace of C_2A . Glass+much C_3A . (Fss appears as second phase)_ Glass+much C_3A +some Fss			
47	18.94	51.06	30	$\left\{\begin{array}{c} 1, 383\\ 1, 382\\ 1, 378\\ 1, 377\\ 1, 370\end{array}\right.$	All glass. (C ₃ A liquidus). (Glass+small amount C ₃ A. (Fss appears as second phase). Glass+C ₃ A+Fss+quench growths			
24	25. 10	46.90	28	$\left\{\begin{array}{cc} 1,439\\ 1,439\\ 1,438\\ 1,438\\ 1,436\end{array}\right.$	All glass. $(C_3A-CaO iquidus)$. Trace CaO+trace C_3A+glass. C_3A+glass+few quench growths	1, 389		
65	19. 6	46. 4	34	$\left\{\begin{array}{c} 1, 394\\ 1, 392\\ 1, 390\\ 1, 387\\ 1, 385\\ 1, 384\end{array}\right.$	All glass. $(C_3A$ liquidus) Glass+rare C_3A +quench growth Glass+rare C_3A . (Fss appears as second phase). Glass+ C_3A +Fss.	1,369	1, 381	
66	20	44. 3	35.7	$\left\{\begin{array}{c} 1, 391\\ 1, 390\\ 1, 389\\ 1, 387\\ 1, 386\\ 1, 384\end{array}\right.$	All glass_ (C_3A liquidus)_ Glass+rare C_3A . ($G_{3S}+rare C_3A$. (Fss appears as second phase)_ Glass+ C_3A+Fss] 1, 388		
28	20. 77	42. 60	36. 63	$\left\{\begin{array}{c} 1,402\\ 1,395\\ 1,392\\ 1,389\end{array}\right.$	$\begin{array}{l} \mbox{All glass}.\\ \mbox{Glass+quench growths}.\\ \mbox{(C_3A liquidus)}.\\ \mbox{Glass+a little } C_3A{+}Fss{+}quench \\ \mbox{growths}. \end{array}$	1, 389		
]	Mixtures havi	ng CaO as primary phase			
21	35. 92	63, 08	1	$\left\{\begin{array}{c} 1,611\\ 1,525\\ 1,522\\ 1,520\end{array}\right.$	CaO in glass. Liquidus not deter- mined. Glass+CaO (C_3A appears as second phase) Glass+CaO+rare C_3A			
22	31. 77	58. 23	10	$\left\{\begin{array}{c} 1,618\\ 1,615\\ 1,611\\ 1,500\\ 1,497\\ 1,494\end{array}\right.$	All glass (CaO liquidus) (Glass+rare CaO Glass+CaO (C_3A appears as second phase) Glass+CaO+small amount of C_3A			
23	27.44	52. 56	20	$\left\{\begin{array}{c}1,520\\1,517\\1,515\\1,472\\1,470\\1,468\end{array}\right.$	All glass] 1, 383		
29	25.62	39, 99	34. 39	1, 532	CaO+glass			
25	21. 57	40, 43	38.00	$ \left\{\begin{array}{c} 1, 398\\ 1, 397\\ 1, 396\\ 1, 305 \end{array}\right. $	All glass. (CaO liquidus) Trace CaO+glass	1, 388		

TABLE 1. Quenching and DTA data for mixtures in the system CaO-CaO·Al₂O₃-2CaO·Fe₂O₃--Continued

TABLE 1. Quenching and DTA data for mixtures in the system $CaO-CaO-Al_2O_3-2CaO-Fe_2O_3-Con$	-Continued
--	------------

Mixture	(W	Composition eight percer	nt)	Quenching tempera-	Phases present	Observed temperature of phase changes (DTA)		
No.	CaO	CA	C_2F	ture	i nases present	First liquid formation	Other phase changes	
			Mi	xtures having	g CaO as primary phase			
G64 ¢	21. 20	38.80	40, 00	$\left(\begin{array}{c} 1,380\\ 1,384\\ 1,388\\ 1,390\\ 1,394\\ 1,400\end{array}\right)$	Barely sintered, X-ray shows Fss + C ₃ A. do. Little glass+much Fss+rare CaO +C ₂ A+growths. Little glass+Fss+little CaO+C ₃ A +growths. Mostly glass+rare CaO+little Fss +growths. Mostly glass+rare CaO, no Fss seen			
48	23.18	28.32	48. 50	$\left\{ \begin{array}{c} 1,473\\ 1,470\\ 1,468 \end{array} \right.$	All glass (CaO liquidus) Glass+a little CaO	} 1, 387	1, 399	
32	21.13	28.99	49.88	$\left\{\begin{array}{c} 1,455\\ 1,453\\ 1,451\end{array}\right.$	All glass (CaO liquidus) Glass+a little CaO] 1, 389	1,402	
49	19.59	18.11	62.3	$\left\{\begin{array}{c} 1,530\\ 1,498\\ 1,480\end{array}\right.$	Glass+trace of CaO+quench growths_ Glass+trace of CaO Glass+small amount of CaO	1, 415		
35	16.73	18.74	64. 53	$\left\{ \begin{array}{c} 1,542 \\ 1,536 \\ 1,532 \end{array} \right.$	Glass+quench growth (CaO liquidus) Glass+trace of CaO+quench growths.	} 1,416		
50	12.63	10.37	77	$\begin{cases} 1,539 \\ 1,534 \\ 1,520 \end{cases}$	Glass+very rare CaO+quench growtbs. Glass+rare CaO+quench growths Glass+CaO+quench growths	1,425		
51	4		96	$\left\{ \begin{array}{c} 1,449 \\ 1,440 \end{array} \right.$	Glass+quench growths Glass+CaO+quench growths	} 1,438	0	
-			Ν	Aixtures havin	ng Fss as primary phase			
58	17.77	62. 23	20	$\left\{\begin{array}{c} 1,370\\ 1,355\\ 1,351\\ 1,351\\ 1,341\\ 1,340\\ 1,339\end{array}\right.$	All glass. (Fss liquidus). Glass+rare Fss. Glass+Fss. ($C_{12}A_7$ appears as second phase). Glass+Fss+trace of $C_{12}A_7$			
78	12.46	62.01	25, 53	$\left\{ \begin{array}{c} 1,359 \\ 1,356 \\ 1,352 \end{array} \right.$	All glass (Fs: liquidus) Glass+Fss			
71	8.0	58	34	$\left\{\begin{array}{c} 1,379\\ 1,374\\ 1,370\end{array}\right.$	All glass (Fss liquidus) Glass+a little Fss			
7	18.34	51.66	30	$\left\{\begin{array}{c} 1,384\\ 1,383\\ 1,381\\ 1,377\end{array}\right.$	All glass	1,334	1, 367	
75	16.2	50. 0	33.8	$\left\{ \begin{array}{c} 1,400\\ 1,397\\ 1,395\\ 1,393 \end{array} \right.$	All glass. (Fss liquidus). Glass+small amount of Fss. Glass+Fss.		••••••	
15	17.03	47.97	35	$\left\{\begin{array}{c} 1,390\\ 1,389\\ 1,386\\ 1,370\end{array}\right.$	$\begin{array}{l} All glass_{-} \\ (Fss liquidus)_{-} \\ Glass+Fss_{-} \\ Glass+Fss+C_3A_{-} \end{array}$] 1, 338	1,366	
76	15.8	48.3	35, 9	$\Big\{\begin{array}{c} 1,411\\ 1,374 \end{array}$	All glass Glass+much Fss			
36	18.45	43.84	37.71		•	1,385		
39	17.24	44. 49	38. 27	$\left\{\begin{array}{c} 1,400\\ 1,396\\ 1,393\\ 1,391\\ 1,391\\ 1,389\end{array}\right.$	All glass. (Fss liquidus). Glass+Fss+quench growths. (G_{4A} appears as second phase). Glass+Fss+C ₂ A+quench growths] 1, 385		
C_6A_2F	16.02	45.15	38, 83	$\left\{\begin{array}{c} 1,398\\ 1,397\\ 1,396\\ 1,388\end{array}\right.$	All glass (Fss liquidus) Glass+a little Fss Glass+much Fss	} 1,367	1, 389	
40	13.50	46.50	40			1,332	1,356	
27	11.06	47.81	41.13	1,381	Glass+Fss+quench growths	1,342	1,382	

^a Made by M. A. Swayze.

Mixture	(V	Compositio Veight perce	n ent)	Quenching tempera-	Phases present	Observed t of phase cha	emperature inges (DTA)
No.	CaO	CA	C^2F	ture		First liquid formation	Other phase changes
			M	lixtures havin	g Fss as primary phase	1	1
6	15.72	44.28	40	$\left\{\begin{array}{cc} 1,403\\ 1,397\end{array}\right.$	All glass Glass+quench growths	} 1,371	1, 386
26	21.18	38.82	40	$ \left\{\begin{array}{r} 1, 394 \\ 1, 393 \\ 1, 386 \end{array}\right. $	All glass Glass+Fss+CaO+quench growths No glass, $Fss+C_3A+quench$ growths	1,388	
16	14. 41	40.59	45	1, 410	All glass	1, 383	
5	13. 10	36. 90	50	$\left\{\begin{array}{c} 1,420\\ 1,418\\ 1,416\end{array}\right.$	All glass (Fss liquidus) Glass + Fss] 1, 399	
31	16.20	30.79	53. 01	$\left\{\begin{array}{c}1,411\\1,408\\1,406\\1.405\end{array}\right.$	All glass Glass+quench growth (Fss liquids) Glass+ranc Fss	1, 390	1,401
37	14	31.61	54.39	(1, 405		1, 388	1, 399
C_4AF	11. 54	32. 52	55. 94	$\left\{\begin{array}{cc} 1,426\\ 1,424\\ 1,422\end{array}\right.$	All glass (Fss liquidus) Glass+trace of Fss	} 1,403	
55	8.82	33. 51	57. 67	$\left\{\begin{array}{c} 1,410\\ 1,409\\ 1,408\\ 1,400\end{array}\right.$	All glass. (Fss liquidus). Glass+Fss+quench growths Glass+Fss+quench growths	1, 338	1, 399
30	6.35	34.41	59.24	$\left\{ \begin{array}{c} 1,410 \\ 1,361 \end{array} \right.$	Glass+quench growths Glass+some Fss+quench growths	} 1, 323	1,366
4	10.48	29.52	60	$\begin{cases} 1, 434 \\ 1, 421 \end{cases}$	Glass+quench growths Glass+Fss+quench growths		
17	9.17	25.83	65	$ \left\{\begin{array}{c} 1, 423\\ 1, 421\\ 1, 419 \right. $	Glass+few quench growths (Fss liquidus)_ Glass+Fss+quench growths] 1,412	1,422
3	7.86	22.14	70			1, 428	1, 433
34	11. 73	19.87	68. 40	$ \left\{\begin{array}{c} 1, 425 \\ 1, 416 \\ 1. 414 \\ 1. 412 \right. $	Glass+quench growths Glass+Fss+quench growths (CaO appears as second phase) Class = Foct_CaO L capacity growths] 1, 416	
38	9. 89	20.28	69.83	$ \left\{\begin{array}{c} 1,412\\ 1,418\\ 1.417\\ 1,416 \end{array}\right. $	Glass+Fss+quench growths CaO appears as second phase Glass+Fss+a little CaO+quench- growths.	1, 415	1,423
41	8.65	20. 57	70.78			1, 418	
$\mathbf{C}_{6}\mathbf{A}\mathbf{F}_{2}$	7.40	20.85	71.75			1,427	
42	4.57	21.48	73.95			1,420	* * * * * * *
33	1.74	22.12	76.14			1, 206	1,409
18	6.55	18.45	75 .			1, 421	1,428
59	6.04	15.96	78	$\left\{ \begin{array}{cc} 1,421 \\ 1,400 \\ 1,391 \end{array} \right.$	Glass+Fss+quench growths Glass+Fss+quench growths Glass+Fss+small CaO crystals	$\left. \right\} = 1,423$	
77	7.0	11	82	$\left\{\begin{array}{cc} 1,430\\ 1,422\\ 1,421\\ 1,420\end{array}\right.$	Glass+very rare CaO Glass+Fss+quench growths (CaO appears as second phase) Glass+Fss+CaO+quench growths		
19	3.92	11.07	85			1, 426	1,430
1	2.62	7.38	90	$\left\{ \begin{array}{c} 1,464 \\ 1,457 \end{array} \right.$	Glass+quench growths Glass+quench growths		·
20	1.31	3.69	95			1,430	
C_2F			100			1, 439	

TABLE 1.	Quenching and .	$DTA \ data \ for$	mixtures in t	he system Ca($O-CaO Al_2O_3-2Ca$	$aO_{2}Fe_{2}O_{3}$ —Continued
----------	-----------------	--------------------	---------------	---------------	---------------------	--------------------------------

Temperatures reported are accurate within $\pm 5^{\circ}$ C. Experience with repeated determinations of temperature for the same phase change indicates that the temperatures are reproducible within $\pm 2^{\circ}$ C. In order to conserve space, not all of the data are prethe phase relations. The compositions of mixtures studied are shown in figure 2.

Primary phase regions occur for CaO, 3CaO·Al₂O₃, 12CaO·7Ål₂O₃, CaO·Al₂O₃, and calcium aluminofer-rite solid solutions (Fss). The three calcium alumisented here but only those that suffice to establish | nates contain small amounts of CaO and Fe₂O₃ in

FIGURE 2. Equilibrium diagram of the pseudo-ternary system CaO-CaO·Al₂O₃-2CaO·Fe₂O₃ showing compositions studied and primary phases.

solid solution. The approximate limits of the calcium aluminate solid solutions, shown in figure 1, are taken from data reported by McMurdie [6] and by Yamauchi [7].

In general, phase boundaries and two of the invariant points determined are close to those reported by Swavze [8]. Some minor differences (table 2) exist in the compositions and temperatures of the invariant points at which (1) CaO, 3CaO·Al₂O₃, and a calcium aluminoferrite solid solution (Fss) and (2) 3CaO·Al₂O₃, 12CaO·7Al₂O₃, and Fss may occur in equilibrium with a liquid phase. To recheck differences between previously published data and the present work, a direct comparison has been made between mixture G64 synthesized by Swavze as the eutectic composition, and our No. 26 which has almost the same composition. The results are listed in table 1. In our study of Mix G64, all samples were held at temperature for 2 hr as described in the section headed Experimental Methods.

The composition determined in the present work for a third invariant point $(E_3, fig. 1)$ at which 12CaO·7Al₂O₃, CaO·Al₂O₃, and Fss can coexist with liquid is in reasonable agreement with that of McMurdie [6], although the temperature is approximately 10° higher than that reported by him.

The diagram presented in Swayze's report depicts a primary phase region for $6\text{CaO}\cdot2\text{Al}_2\text{O}_3\cdot\text{Fe}_2\text{O}_3$ distinct from the region of variable Fss composition. In the present work, however, the composition of the calcium aluminoferrite phase in equilibrium with liquid was found by X-ray powder diffraction measurements to change continuously with temperature over its primary phase region, and no second ironbearing phase appeared. Along the E₂-E₃ boundary (fig. 1), however, the change in the Fss composition was so slight that it was not considered in constructing the diagram.

The compositions of the Fss phases in equilibrium at the invariant points and the assemblages of final crystallization products also differ from those reported by previous investigators [2, 6, 8]. These results will be discussed in greater detail in the sections that follow.

3.2. Calcium Aluminoferrite Solid Solutions

In figures 1^5 and 3, a single-phase region of calcium aluminoferrite solid solutions is designated by the shaded area extending from 2CaO·Fe₂O₃ toward the CaO-CaO·Al₂O₃ boundary of the system.

X-ray powder diffraction patterns of devitrified glasses with compositions along the line X–Y (fig. 3) confirmed $3\text{CaO}\cdot\text{Al}_2\text{O}_3$ and Fss to be the final products of crystallization for $6\text{CaO}\cdot2\text{Al}_2\text{O}_3\cdot\text{Fe}_2\text{O}_3$ and neighboring glasses with higher CaO contents. These compositions are, therefore, not in the singlephase (solid solution) region, but are on the high-CaO side of it. Mixtures No. 40 and 27, on the other hand, each showed CaO·Al₂O₃ and Fss as devitrification products and are on the low-CaO side of the Fss band.

In figure 4 the ratios of intensities of selected diffraction peaks for $3CaO \cdot Al_2O_3$ or $CaO \cdot Al_2O_3$ to those of a peak of the tungsten internal standard in the same pattern have been plotted against the

 $5 For reasons of limited space, compounds and phases are referred to by symbols. For example: C=CaO; A=Al_2O_3; F=Fe_2O_3; and Fss=calcium-alumino-ferrite solid solution. Thus, C_4AF=4CaO\cdotAl_2O_3\cdotFe_2O_3.$

TABLE 2. Invariant points for the pseudoternary system CaO-CaO-Al₂O₃-2CaO-Fe₂O₃n

Phases	Authority		Tempera-					
	v	CaO	Al ₂ O ₃	${\rm Fe_2O_3}$	CaO	CaO·Al ₂ O ₃	$2CaO \cdot Fe_2O_3$	ture, ±5° C
Ca0–C ₃ A–Fss (or C ₄ AF) _–	W. C. Hansen, L. T. Brownmiller, and R. H. Bogue. H. F. McMurdie. M. A. Swayze. Present investigation.	$54 \\ 53 \\ 51.4 \\ 51.1$	$37 \\ 32 \\ 25.0 \\ 26.5 \\$	9 15 23. 6 22. 4	20.8	41.0		$^{\circ}$ C 1, 340 1, 370 1, 380 1, 389
$\begin{array}{c} C_3A-C_{12}A_7 \ (or \ C_5A_5)-Fss\\ (also \ C_4AF \ or \ C_6A_2F). \end{array}$	W. C. Hansen, L. T. Brownmiller, and R. H. Bogue. H. F. McMurdie. M. A. Swayze. Present investigation.	47 48 48.5 48.4	$\begin{array}{c} 43 \\ 38 \\ 40.5 \\ 40.3 \end{array}$	$10 \\ 14 \\ 11. 0 \\ 11. 3$	18.3	62.4	19.3	1,335 1,335 1,335 1,336
$C_{12}A_7$ (or C_5A_3)-CA-Fss (or C_4AF).	W. C. Hansen, L. T. Brownmiller, and R. H. Bogue. H. F. McMurdie. Present investigation	42 45 45. 1	40 40 40, 6	18 15 14.2	12.8	63. 0	24.2	1, 320 1, 315 1, 335

240

FIGURE 3. Calcium aluminoferrite solid-solution regions in the pseudo-ternary system CaO-CaO-Al₂O₃-2CaO-Fe₂O₃ with tie lines and typical crystallization paths.

FIGURE 4. Relationship between the CaO content and the relative intensities of selected 3CaO·Al₂O₃ and CaO·Al₂O₃ peaks as compared with standard tungsten peaks in X-ray powder diffraction patterns of devitrified glasses with compositions along the line XY (see fig. 3).

percentage of the CaO component for these devitrified glasses. The approximate width (2% CaO)of the solid-solution band in this region has been determined by extrapolating the two curves obtained by the above procedure to a zero ratio. A similar treatment (fig. 5) gives the approximate width of the Fss band along line P–Q (fig. 3) at 4CaO·Al₂O₃·Fe₂O₃.

For compositions on the line R–T in figure 3, the secondary phase on the low CaO side of $6\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot2\text{Fe}_2\text{O}_3$ is $\text{CaO}\cdot\text{Fe}_2\text{O}_3$ (with a small amount of $\text{CaO}\cdot\text{Al}_2\text{O}_3$ in solid solution). Most of the principal diffraction maxima for the latter compound correspond closely to those for some members of the calcium-aluminoferrite solid-solution series. Because of this interference the low CaO limit of the Fss band could not be determined as closely in this region by the X-ray diffraction method. It was observed (table 1), however, that the differential

FIGURE 5. Relationship between the CaO content and the relative intensities of selected CaO and CaO Al_2O_3 peaks as compared with standard tungsten peaks in X-ray powder diffraction patterns of devitrified glasses with compositions along the line PQ (see fig. 3).

FIGURE 6. Selected interplanar spacings (d_{hkl}) characteristic of the iron-bearing solid-solution phase for mixtures along the line C_2F -L (fig. 1).

Dotted lines show compositions of Fss phase at ends of tie lines.

temperature curves in DTA patterns of mixtures with compositions found by the X-ray method to be near but outside of the solid-solution band contained two peaks, whereas curves of mixtures within the band contained only one. This characteristic made it possible to define more closely than by the X-ray method the limit of solid solution in the $6CaO \cdot Al_2O_3 \cdot 2Fe_2O_3$ region in the direction away from the CaO vertex.

Unit-cell dimensions for the Fss phase in completely crystallized mixtures with compositions in or near the single-phase (solid-solution) band are plotted as a function of composition in figure 6. These dimensions are based on interplanar spacings obtained from X-ray powder diffraction patterns by the authors, together with indices reported by Malquori and Cirilli [10]. A change in the slopes of the curves for a_0 , b_0 , and c_0 in figure 6 occurs near the composition $6\text{CaO}\cdot\text{Al}_2\text{O}_3$. 2Fe₂O₃, which may represent an ordering of the structure. Lattice parameters continue to change with further compositional changes to point L, however, and the region is, therefore, shown on the phase diagram as one of continuous solid solution.

478151 - 58 - 2

TABLE 3. Significant calcium aluminoferrite solid-solution compositions for the pseudoternary system $CaO-CaO \cdot Al_2O_3-2CaO \cdot Fe_2O_3$

Designation	Authority	CaO	Al_2O_3	$\mathrm{Fe_2O_3}$	CaO	$CaO \cdot Al_2O_3$	$2 CaO \cdot Fe_2O_3$	Molecular formula
1. Solid solution limit (high- Al ₂ O ₃ end).	W. C. Hansen, L. T. Brownmiller, and R. H. Bogue	46.1	21.0	32.9	11.4	32. 6	56.0	$4 CaO \cdot Al_2O_3 \cdot Fe_2O_3$
C_6A_2F	M. A. Swayze	48.07	29.12	22.81	16.0	45.1	38.8	$6 CaO \cdot 2Al_2O_3 \cdot Fe_2O_3$
Solid solution limit Solid solution limit	G. L. Malquori and C.			20.5			34.9 by weight.	$6.2 \mathrm{CaO} \cdot 2.2 \mathrm{Al}_2 \mathrm{O}_3.\mathrm{Fe}_2 \mathrm{O}_3$
Solid solution limit Point L (fig. 1).	Present investigation	47.78	31.13	21.09	15.7	48.0	36.3	$6.37 CaO \cdot 2.28 Al_2O_3. Fe_2O_3$
2. Composition at CaO- C ₃ A-Fss invariant point:								
Point B (fig. 1) Point VIII C4AF	Present investigation M. A. Swayze W. C. Hansen, L. T. Brownmiller, and R. H. Bogue.	$\begin{array}{c} 45.\ 95\\ 45.\ 57\\ 46.\ 1\end{array}$	$\begin{array}{c} 23.06 \\ 18.01 \\ 21.0 \end{array}$	$\begin{array}{c} 30.\ 99\\ 36.\ 42\\ 32.\ 9\end{array}$	$11.\ 50\\10.\ 07\\11.\ 4$	35.75 27.92 32.6	52.75 62.00 56.0	$\begin{array}{l} 4.3 CaO \cdot 1.1 Al_2O_3 \cdot Fe_2O_3 \\ 4 CaO \cdot Al_2O_3 \cdot Fe_2O_3 \end{array}$

In figures 1 and 7, point L designates the limit of solid solution, determined in the present investigation, in the direction of the CaO-CaO-Al₂O₃ boundary. The composition represented by point L agrees well with those reported by Yamauchi [7] and by Malquori and Cirilli (see table 3). It contains less ferric oxide than the composition 6CaO·2Al₂O₃·Fe₂O₃. Composition L is the solid solution in equilibrium at invariant points E_2 and E_3 . The solid solution in equilibrium at point E_1 corresponds to point B (table 3).

The changing composition of the calcium-aluminoferrite solid-solution crystals (Fss) in equilibrium with liquid with changing temperature is depicted on the phase diagram (figs. 1 and 3) by a series of tie lines.

Throughout the Fss primary region, large variations in composition have little effect on liquidus temperatures. This behavior causes the composition of the liquid formed in a mixture in this region to reach a primary-phase boundary only a few degrees below the liquidus temperature. The tie lines of importance, therefore, are those that indicate the compositions of the Fss phase in equilibrium with liquids on the phase boundaries and at invariant points that bound the Fss region. Seven such tie lines have been established in this investigation.

FIGURE 7. Final products of crystallization in pseudo-ternary system CaO-CaO-Al₂O₃-2CaO-Fe₂O₃.

3.3. Crystallization in the System

In the pseudoternary system CaO-CaO·Al₂O₃- $2CaO \cdot Fe_2O_3$ there are 11 areas in which compositions may fall with regard to their final products of equilibrium crystallization. These are designated in figure 7. In only 4 of these regions is crystallization completed (or melting begun) at an invariant point. These are the composition triangles ⁶ with their respective invariant temperatures:

- (1) $CaO-3CaO \cdot Al_2O_3-Fss(B)$ 1.389° C.
- 1,336° C. (2) $3CaO \cdot Al_2O_3 - 12CaO \cdot 7Al_2O_3 - Fss(L)$ 1.335° C.
- (3) $12CaO \cdot 7Al_2O_3 CaO \cdot Al_2O_3 Fss(L)$
- (4) $CaO \cdot Al_2O_3 Fss(B) CaO \cdot Fe_2O_3$

(Invariant point outside pseudosystem limits.)

Mixtures with compositions in any one of the above four triangles will, on heating under equilibrium conditions, begin to melt at the temperature indicated. The composition of the first liquid formed will be that of the invariant point (table 2 and fig. 1) at which the three designated crystalline phases can exist in equilibrium with liquid. Conversely, on cooling these mixtures, the last bit of liquid will have the composition of the invariant point and will disappear at the invariant temperature. The specimen will then consist of the three crystalline phases at the vertices of the triangle.

Compositions in 6 of the areas complete their crystallization on a phase boundary. These two-phase areas are designated in figure 7 by their final products of equilibrium crystallization, viz:

- (1) $CaO \cdot Al_2O_3 + Fss(L-B)$
- (2) $3CaO \cdot Al_2O_3 + Fss(L-B)$
- (3) $CaO + Fss(B-C_2F)$
- (4) $CaO \cdot Fe_2O_3 + Fss(B-C_2F)$
- (5) 2 solid solutions $(3CaO \cdot Al_2O_3 + 12CaO \cdot 7Al_2O_3)$
- (6) 2 solid solutions $(12\text{CaO}\cdot7\text{Al}_2\text{O}_3 + \text{CaO}\cdot\text{Al}_2\text{O}_3)$.

⁶ As indicated in figures 1 and 7, all of the compounds listed, except CaO, con-tain some material in solid solution. The variations in composition are small, however, and of little importance in comparison with the range of calcium alumi-noferrite solid solutions (Fss). For convenience the symbol "sa", indicating a solid solution, is used in the text only to designate the calcium aluminoferrite context on single compositions (this solid solution). series, or single compositions in this series.

In each of the six areas, the temperature at which a liquid is first formed on heating, or disappears on cooling, varies with composition. At least one of the products of crystallization, however, will consist of a solid solution whose composition will also vary with the composition of the mixture.

Thus for the triangle labeled "C+Fss(B-C₂F)" (fig. 7), the products at complete equilibrium crystallization will consist of CaO and a calcium aluminoferrite solid solution whose composition is between point B and C₂F.

For a given mixture in one of the six 2-phase areas, the final composition of the Fss phase is determined by a line from the composition of the other crystallization product through the composition of the mixture, and extended to the boundary of the *singlephase* Fss area (largest shaded area). The point at which the line intersects this boundary is the composition of the Fss crystallization product. An example in figure 3 is composition G; a line from the CaO vertex through G intersects the boundary of the shaded area at H, the composition of the Fss phase in mixture G when crystallization is completed.

In the 11th area, the shaded Fss area, all compositions after crystallization consist of one phase, a calcium aluminoferrite solid solution having the same composition as the original mixture.

In addition to the 11 areas discussed above, shading near $3CaO \cdot Al_2O_3$ and $12CaO \cdot 7Al_2O_3$ in figures 1, 7, and 8 indicates solid solutions along the lines $3CaO \cdot Al_2O_3$ -V and $12CaO \cdot 7Al_2O_3$ -W respectively. There is also a small shaded area near $CaO \cdot Al_2O_3$ representing a ternary solid solution just beyond the pseudosystem boundary. The product of crystallization of compositions in each of these regions is also a single solid solution.

Compositions in the shaded portions of the diagram complete their crystallization at temperatures for corresponding points on the solid-solution solidus. These points are below the projected liquidus surface in figure 1, and for those regions the solidus temperatures cannot be determined from the figure. All mixtures studied do have Fss as an equilibrium product of crystallization and the first liquid formation temperature is the solidus temperature for the Fss phase that is present. The temperatures of first liquid formation are given for most of the mixtures in table 1, and for mixtures in the Fss primary phase region these solidus temperatures can be compared directly with the corresponding Fss liquidus temperatures.

The pseudosystem CaO-CaO·Al₂O₃-2CaO·Fe₂O₃ is unusual inasmuch as it contains examples of most of the major types of equilibrium crystallization. Furthermore, the system contains an extensive series of ternary solid solutions with intermediate and end members (B and L, respectively, fig. 1) that exhibit some of the characteristics of incongruently melting compounds. These complicate the crystallization process.

It should be noted in figures 1, 3, and 8 that the liquidus maximum on the phase boundary separating the $3\text{CaO-Al}_2\text{O}_3$, and the Fss primary phase regions

occurs not at the intersection of the boundary with the line V-B, but at a nearby point where the tie lines from V and from the single-phase Fss region (the large, shaded area) become collinear. Similarly, the maximum on the boundary between CaO·Al₂O₃ and Fss regions occurs at the point where the tie lines to Z and the single-phase Fss region become collinear. A similar configuration was reported by Roy and Osborn [14] for the system Li₂O·SiO₂-Li₂O·Al₂O₃.4SiO₂-SiO₂.

Almost any composition to be encountered in the ternary system can be classified under one of four types of crystallization to be discussed here. The exceptions are compositions in the shaded regions

FIGURE 8. A portion of the equilibrium diagram showing paths of crystallization followed by typical mixtures within the system.

 C_3A and $\mathrm{C}_{12}A_7$ solid solutions are treated as having the constant composition V and W.

(figs. 1 and 7) for which, as mentioned previously, only approximate liquidus temperatures and final crystallization products can be determined from the ternary diagrams.

For convenience, the equilibrium crystallization of compositions in the system will be discussed in terms of cooling chosen mixtures from a temperature at which they are completely melted to a temperature at which all liquid disappears. It will be assumed that equilibrium exists in all phases throughout the process, although this situation may be difficult to approximate in actual practice.

As the first example, consider the composition (fig. 8) represented by point K in the triangle CaO-C₃A-B. On cooling this mixture, crystals of CaO appear at the liquidus temperature. With continued cooling, CaO continues to crystallize and the composition of the liquid moves along the line K-K₁ until it reaches the point K₁ on the CaO-Fss phase boundary. With further cooling, the composition of the liquid follows the CaO-Fss phase boundary from K₁ to the eutectic at E₁. Both Fss and CaO are in equilibrium with liquid in this temperature range. After the liquid composition has reached E₁ (at the eutectic temperature, $1,389^{\circ}$ C), crystals of 3CaO·Al₂O₃ appear. At the minimum heat content, the charge will be completely crystallized and will consist only of CaO, Fss(B), and 3CaO·Al₂O₃.

The crystallization of a composition M (Mix No. 22, table 1) in the triangle V-W-L follows a somewhat more complex pattern. On cooling M from its liquidus temperature of 1,615° C, CaO crystallizes as the primary phase and the liquid composition moves directly away from the CaO vertex along a line M-M₁. At M₁, 3CaO·Al₂O₃ appears as a secondary crystalline phase. With further cooling, the liquid composition then moves down the boundary between the CaO and 3CaO·Al₂O₃ regions until it reaches point M_2 . In the temperature range in which the liquid composition is changing from M_1 to M_2 . the mean composition of the solid phases is changing from CaO to $3CaO \cdot Al_2O_3$. Neglecting the small amount of solid solution in the calcium aluminate. the mean composition of the solids at any temperature in this range is obtained by drawing a line from the corresponding liquid composition M_{12} through M (the composition of the mixture) to the point M'_{12} at which it intersects the system boundary CaO-3CaO·Al₂O₃. When the composition of the liquid reaches M_2 , all of the crystalline CaO will have dissolved and the composition of the solid phase present will be $3CaO \cdot Al_2O_3$. On further cooling, therefore, the composition of the liquid will move directly across the 3CaO·Al₂O₃ primary phase region along the line M-M2-M3. At M3 crystals of a calcium aluminoferrite solid solution having the composition indicated by point M'_3 at the end of the interpolated tie line, M_3 - M'_3 , will then begin to crystallize. As the temperature is lowered, the composition of the liquid will move along the 3CaO·Al₂O₃-Fss phase boundary to E_2 at 1,336° C at which point crystal-lization will be completed. Mixture M will then be composed of crystals of 3CaO·Al₂O₃, 12CaO·7Al₂O₃, and Fss (L).

During crystallization, the changing liquid compositions for mixtures in the Fss primary phase region may be represented on the phase diagram by curved lines. The curvature results from the fact that in this region the composition of the solid (Fss) phase is also changing with temperature.

In figure 3, a portion of the approximate crystallization path for mixture J in the Fss primary-phase region and the composition triangle CaO-B-C₂F is designated by the dotted line J-J₁. This path is typical of those for other mixtures in the same region. Additional crystallization paths in the same area are not shown inasmuch as compositions in this area form liquids having compositions on the CaO-Fss phase boundaries at only a few degrees below the respective liquidus temperatures of the mixtures.

The composition J_1 is defined by that member of the indicated family of the tie lines which passes through J. After reaching J_1 , the composition of the liquid on further cooling will follow the CaO-Fss phase boundary in the direction of decreasing temperature until the solid solution, as defined by the family of tie lines, reaches a composition J'_2 on the straight line defined by J and the CaO vertex. The

liquid composition at the conclusion of crystallization is the end of the tie line from J'_2 , or the point J_2 . The final products of equilibrium crystallization for mixture J will thus be CaO and an Fss phase having the composition J'_2 .

Other tie lines in the phase diagram designate compositions of the Fss phase found to coexist with designated liquid compositions along the phase boundaries. For intermediate points (such as D_1 , fig. 8), the approximate compositions of the coexisting liquid and solid phases can be determined by graphical interpolation of the given tie lines. For each mixture in a two-phase area, the point which represents the composition of the liquid when crystallization is completed will be on the phase boundary at the end of the tie line that connects with the composition of the final Fss crystallization product for the mixture.

Mixture D (fig. 8) represents another typical composition in a two-phase area. Here $3\text{CaO}\cdot\text{Al}_2\text{O}_3$ is the primary phase and it continues to crystallize as the temperature is lowered until the liquid reaches the phase boundary at D₁. At this point, an infinitesimal amount of Fss having approximately the composition D'₁ (on an interpolated tie line, D'₁-D'₁) begins to crystallize. The liquid composition then moves along the C₃A-Fss boundary until the solid solution composition reaches a point D'₂ defined by the straight line through V and D. At the completion of crystallization, the liquid composition is D₂, the end of the tie line from D'₂. Mixture D is then composed of $3\text{CaO}\cdot\text{Al}_2\text{O}_3$, and Fss of composition D'₂.

4. Application to Portland Cement Chemistry

The extent to which information on the ternary system can be applied directly to the manufacture of portland cement clinker containing many components is, of course, limited. Nevertheless, because of similarity of the phases actually observed in commercial clinkers to some of those appearing in simpler systems, useful extrapolations of phase relations in these systems can help to explain the behavior of the more complex compositions.

It is generally conceded, as a result of previous investigations [2, 7, 8, 9], that the principal ironbearing phase in portland cement clinker is essentially a calcium aluminoferrite of variable composition. In commercial clinkers it is likely that this phase contains also small amounts of additional components in solid solution. As a first approximation, however, its composition can be considered as falling within the limits of the shaded single-phase Fss area on the phase diagram in figure 1.

It is evident from figures 1 and 7 that even the composition of the final Fss phase, formed by complete equilibrium crystallization, can vary widely with different mixtures in the system. This variability results from the fact that there are wide ranges of composition (the six 2-phase areas) for which crystallization is completed on a phase boundary, rather than at an invariant point. The variability applies to the temperature at which liquid is first formed or disappears in the different mixtures as well as to the composition of the Fss phase.

Only in the single-phase Fss region and the twophase CaO-Fss region will the Al_2O_3/Fe_2O_3 ratio of the Fss phase always be the same as that of the original mixture.

The one- and two-phase areas in the ternary system (fig. 7) may be expected to bound analogous regions in multicomponent clinker systems in which both the final composition of the Fss phase and the solidus temperature will vary with the composition of the mixture. Even if equilibrium were attained, therefore, for commercial portland clinkers the temperature at which liquid is first formed during burning, the quantity of liquid produced in the hot zone of the kiln, and the constitution of the clinker can differ considerably for cement raw mixtures of different Al₂O₃/Fe₂O₃ ratios. The Al₂O₃/Fe₂O₃ weight ratio in the iron-bearing phase can presumably vary with different mixtures from 0 to 1.476, with accompanying effects on the percentages of the other clinker constituents.

Although the presence of Fe_2O_3 in the mix causes the formation of a liquid phase at a lower temperature than if it were absent, increasing the percentage of Fe_2O_3 in the raw mix does not necessarily cause easier burning, but may even have the opposite effect. Study of figure 1 reveals that mixtures whose crystallization is completed along the CaO-Fss phase boundary, or at E_1 (eutectic temperature, 1,389° C) will be more difficult to burn than mixtures completing their crystallization at invariant points E_2 and E_3 .

Optimum conditions for proportioning and burning given raw materials of known chemical compositions to produce clinker of the desired constitution and burning characteristics cannot be determined from the phase diagram for the ternary system alone. Additional work is still required on portions of the quaternary system CaO-Al₂O₃-Fe₂O₃-SiO₂. Specifically needed in the four-component system are additional tie lines showing the compositions of the Fss phase in equilibrium with liquids along phase boundaries, and a further subdivision of the system into composition spaces that define the final products of crystallization within each region. Such a subdivision provides information on the quaternary system analogous to that given in figure 7 for the ternary system.

The authors are indebted to M. A. Swayze for his generous cooperation in making available to them for reference, his slides, mixtures, and notes on the ternary system CaO-5CaO·3Al₂O₃-2CaO·Fe₂O₃. They also express thanks to A. C. Bonanno and R. L. Wadlinger for their help in obtaining X-ray and quenching data presented in this paper.

5. References

- H. LeChatelier, Experimental researches on the constitution of cements and the theory of their setting, Compt. rend. 94, 867 (1882).
- [2] W. C. Hansen, L. T. Brownmiller, and R. H. Bogue, Studies on the system calcium oxide-alumina-ferric oxide, J. Am. Chem. Soc. 50, 396 (1928); PCAF Paper 13.
- F. M. Lea, T. W. Parker, Investigations on a portion of the quaternary system CaO-Al₂O₃-SiO₂-Fe₂O₃: The quaternary system CaO-2CaO·SiO₂-5CaO·3Al₂O₃-4CaO·Al₂O₃-Fe₂O₃, Phil. Trans. Royal Soc. [A] **234** (731) 1 (1934).
- [4] W. Büssem, and A. Eitel, The structure of pentacalcium trialuminate, Z. Krist. 95, 175 (1936); W. Büssem, X-rays and cement chemistry, proc. symposium on chemistry of cements, Stockholm, p. 141 (1938).
 [5] T. Thorvaldson and W. G. Schneider, the composition
- [5] T. Thorvaldson and W. G. Schneider, the composition of the "5:3" calcium aluminate, Can. J. Research [B] 19, 109 (1941).
- [6] H. F. McMurdie, Studies on a portion of the system CaO-Al₂O₃-Fe₂O₃, J. Research NBS 18, 475 (1937) RP 987.
- [7] T. Yamauchi, A study on the celite part: I. The system CaO-Fe₂O₃, J. Japan Ceram. Assoc. **45**, 279; II. On the brownmillerite, p. 361-75; III. The system $3CaO-Al_2O_3-2CaO-Fe_2O_3$, p. 433-46; IV. The system $5CaO-3Al_2O_3-2CaO-Fe_2O_3$, p. 614-31; V. The system $3CaO-Al_2O_3-5CaO-3Al_2O_3-2CaO-Fe_2O_3$, p. 880-96 (1937); VII. The systems CaO-Al_2O_3-Fe_2O_3 and CaO-Al_2O_3-Fe_2O_3-SiO_2, J. Japan Ceram. Assoc. **46**, 66 (1938).
- [8] M. A. Swayze, A report on studies of (1) the ternary system CaO-C₅A₃-C₂F, (2) the quaternary system CaO-C₅A₃-C₂F-C₂S, and (3) the quaternary system as modified by 5% magnesia, part I, Am. J. Sci. 244, 1 (1946).
- [9] M. A. Swayze, A report on studies of (1) the ternary system CaO-C₅A₃-C₂F, (2) the quaternary system CaO-C₅A₃-C₂F-C₂S, and (3) the quaternary system as modified by 5% magnesia, part II, Am. J. Sci. 244, 65 (1946).
- [10] G. L. Malquori and V. Cirilli, the ferrite phase, Proc. Symposium on Chemistry of Cement, p. 120 (London, 1952).
- [11] F. A. Mauer, an analytical balance for recording rapid changes in weight, Rev. Sci. Instr. 26, 598 (1954).
- [12] T. F. Newkirk, Differential thermal analysis above 1200° C, J. Am. Ceram. Soc. 41, 409 (1958); PCAF Paper 72.
- [13] Harold P. Klug and Leroy Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, p. 716 (John Wiley & Sons, Inc., New York, N. Y., 1954).
- [14] R. Roy and E. F. Osborn, The system lithium metasilicate-spodumene-silica, J. Am. Chem. Soc. 71, 2086 (1949).
- [15] G. A. Rankin and F. E. Wright, The ternary system CaO-Al₂O₃-SiO₂, Am. J. Sci. **39**, 1 (1915).

WASHINGTON, July 1958.