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Transmission and Reflection of Electromagnetic
Waves in the Presence of Stratified Media

James R. Wait

A general analysis is presented for the electromagnetic response of a plane stratified
medium consisting of any number of parallel homogeneous layers. The solution is first
developed for plane-wave incidence and then generalized to both cylindrical and spherical-
wave incidence., Numerical results for interesting special cases are presented and discussed.
The application of the results to surface-wave propagation over a stratified ground is con-
sidered in some detail.

1. Introduction

In the analysis of antenna radiation and kindred problems, it is usually necessary to
consider the inhomogeneous nature of the surrounding media. A good example is when an
antenna is located over the surface of the earth. In many cases such as this, it is permissible
to regard the ground as a semi-infinite medium with a plane surface. Furthermore, this half-
space can often be idealized as a homogeneous medium. As long ago as 1907, Zenneck [1]*
showed that a solution of Maxwell’s equation could be obtained for such a region by matching
certain wave functions at the interface separating the two half-spaces. His solution was
characterized as a wave which propagated along the interface without change of waveform
with a velocity greater than that of light and was exponentially attenuated with height above
the interface (towards the air).

In 1909 Sommerfeld [2] presented an elegant solution for the fields of dipole sources
(electric and magnetic) which were located in the air over a homogeneous flat earth. In the
final reduction of the integrals to a form suitable for computation, a small but significant error
was made. This error was first pointed out explicitly by Norton [3], but not before many
had accepted the earlier solution. To compound the confusion, it turned out that Zenneck’s
surface wave was very similar to Sommerfeld’s solution in his 1909 paper. Since that time
a large number of papers have appeared treating this subject. The confusion that remains
is largely due to the differences in terminology.

The discussion given here relates to three related aspects of this problem. The first is ¢
general analysis of reflection of plane waves from a parallel stratified medium consisting of
M homogeneous slabs, the second is the extension to a line source over the stratified medium,
and the third is the generalization to dipoles or current elements over the stratified medium.
A special case of the latter is when the number M becomes 1, corresponding to the Sommerfeld
problem for a half-space.

2. Plane-Wave Incidence

A plane wave with a time factor exp (iwt) is incident at an angle 6 on a stratified medium
composed of M homogeneous layers. The electric vector is in the plane of incidence (zz plane).
The situation is illustrated in figure 1 where the ¥ axis is out of the paper. The electrical
constants of the layers are oy, en, and w, where the subseript m indicates the mth layer below
the surface.

From symmetry it can be seen that the magnetic field has only a ¥ component and for
the mth layer, it is a solution of the equation

(Vz""YZm)Hmy:O: (1)
where

DT 2
Y m=U0m Mm@ €Eplp .

1 Figures in brackets indicate the literature references at the end of this paper.
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The general solution is of the form
[Imu: [am()fumz_}r_bnleltmz](,—ixxy (2)

where
UE=N+72,

and N can take any value. The incident field /™ can be written

I{mo _‘I{O()—‘yo cos §-2 Xe—‘y"sin 01.

Therefore, in eq (2) ae” "%~ ™ can be identified with H%y if ap=/I, and i\=v, sin . Con-
sequently, bye0?e=™ is a reflected wave, and the angle of reflection is 6.

The boundary conditions at the interface z=0, z=z,, . . ., z=z,-, are that the tangential
fields should be continuous. Now since

one=— (0, 1we,,) 1 —= II"“’ (3)
this means that the boundary conditions can be written
Ifm-l,.l/:Hm.:u
(01t 1wepm_1) OH — =LV (g, Twem) %’ ’ @
it =21

where m=0, 1,2, . . . M-2, M-1.

Imposing the condition that only outgoing waves are permissible in the lowest layer
(which is semi-infinite) it follows that b,,=0. The boundary conditions then lead to 2(M-1)
equations that are linear in a,, and b,, to solve for 2(M-1) unknowns in terms of the known
coefficient a,. The solution ? is

bo K,—7 5
KO+ZI e
where
» 1 Zy+ K, tanh uh,
Z=K, K,+Z, tanh uh,
Z=K," 7+ K, tanh » tanh wh, ©)

K,+Z, tanh uh,
?The quantity A should not be confused with the wavelength.
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Ficure 2.  Transmission line analogy for the stratified medium of M layers.

Zm—H_\LKm tanh u’mhm
Km+Z7/L+I tanh umhm

KM +KM— il tanh Upr—1har—

Zm:Km

7\[—1:K\I—1ﬁ |
- U Kor1+ Koy tanh wye_ihyy
where
K,=—2"" , and U= (N2N2) 2.
m o’—{—’l,(_oem a 1,

(Note that f,, is the thickness of the mth slab).

The quantity bo/a, is the ratio of the amplitude of the reflected wave to the amplitude
of the incident wave. It is denoted by R to indicate that the electric field of the incident
wave (and also that of the reflected wave) is in the plane of incidence.

The present problem has a well-defined analogy in transmission line theory.

In this analogy each section of the multiple tandemed line is to correspond to a slab.
The voltage across the line is ££,, and the current is 1, for the mth section. The propaga-
tion constant is u, and the characteristic or surge impedance is K, of the mth slab. The
incident wave that comes from the left in figure 2 is given by age=*?, and the wave reflected
at the junction, z=0, is bee*?. The input impedance of the line that is the ratio of the voltage
to the current at z=0, is Z,. Furthermore, the impedance at the junction z=z,, is Z,,.,. With
this analogy and a knowledge of the behavior of one-dimensional transmission lines, one could
write down the solution of the two-dimensional reflection problem.

Some features of the wave problem will now be discussed. The quantity Z, will play an
important role in the following. Since

Zn=Ey/Hy),—o=E\,/Hy) -0,

it is called the surface impedance, being the ratio of the tangential fields at the air-ground
interface. In the case of normal incidence, 6=0 and \=0, so that u,=~, and K,,—y,,, where

. 2142
'Y",:[’LG',,,M,,,O)¥€,,,M,”CO ] y

and

. . 15
n"t: [/L“"lw/o-"l/—}— Ie”[w]/ -'
For example, in the case of a homogeneous ground (i, ),
Zl:ﬂlv KO:"I()v

and the reflection coefficient becomes simply

G Mot m
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Another special case of considerable interest is when 6 approaches 90° correspomding to
elancing incidence, then

Un 22 (Yn—78)"%,  Ku (vi—79)" (ontiwey),
which yields for the homogeneous ground
Z1:K1:771(1“’Yg/’¥?)}'é~ (8)

This special value of Z;, which relates the tangential fields in the limiting case of glancing
incidence, turns out to be an important quantity in further work. For this reason, it is de-
noted by Z? where the superscript » indicated that the electric field in the air is nearly ver-
tical for |y,|>">|y,]. This fact can be shown by evaluating the wave tilt, which is defined by

y, A EOZ
11 _EOZ’]ZZO (9>

and is the complex ratio of the horizontal to the vertical electric field in the air just above
the ground. It readily follows that for the general case [4]

7. Elr/Hly _iweozl.

- T ynsi 10
" EOz//HOU z=0 Yo sinf ( )
For a homogeneous ground
. <1—Z§ sin?t?)}é
L ‘ (11)

T yeSing 7 sin 6

which for grazing incidence becomes

]17:_771(1_ﬁ)l/é:(ﬁl)ﬁ(l_ﬁ)‘/é. (12)
0\ 7 Mo/i\ 7

For radio frequencies (w~10°% and moderately conducting ground (e~1072), |yo/v:| is of the
order of 107% and thence W is small and hence |E;.| is much greater than |Ep,|.

To indicate in a simple way as is possible, the influence of stratification on the reflection
of waves from the ground surface, a two-layer case will be considered. This is effected by
letting h,—> . Furthermore, it will be assumed that |y;/yo| and |v./v,/>>>1. Then for any
angle of incidence

72 i 1%
um:')’m(l_,rg sin® 0) EYm (772 = 1) 2) )
m

and
u,,
Km:mgnm (mzl, 2)
This leads to the simple relation
Z~QK,, (13)

where
_ (v1/v2) + tanh vk, S
U=1F Guhdtanh o OF MMk

and where ¢ is the correction to the characteristic impedance K; of the upper layer to account
for the presence of the lower layer. Note then, if |vh|>>1, @~1. It can be said that the
lower layer is not detectable when || is within 5 percent of unity. Such a condition is met
when (o;pw)"*h> 3.

It should also be noted that @ relates the wave tilts for a stratified (two-layer) ground and
that of a homogeneous ground by W~Wy%, where
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IJ'VDg ]h1=oo-
An example is here quoted to illustrate the order of magnitude of the quantities involved:

Frequeney, f=w/2r=125 k¢

Upper layer conductivity, o;=10"2 mho/m,
Dielectric constant of air, e,2=8.854 1072 f/m,
Dielectric constant of ground, ¢=10-¢,,
Magnetic permeability, u=4x>10~7 h/m.

For these values, W;=0.082/41.1°, for a homogeneous ground. In the case of a two-layer
ground where £, is finite,

W=Wy
=0.082|Q|/41.1°+q,
where ¢ is the argument of ¢ expressed in degrees. For frequencies of this order, ¢w/a; and
ew/oy are small (in the above example ¢w/o;=0.0069). Therefore, v,~(io\uw)’ and vy~

iouw)’®. A formula suitable for computation of (18 then given by
P g 3

Q= (01/09) ¥*+tanh iV

1+ (ay/a2) **tanh 42V (14)
=tanh[y7 V-+tanh = (o,/0)*].
If 0,>> > g, corresponding to a highly conducting substratum,
() ~tanhyi} (15)
or if ¢, << oy corresponding to an insulating substratum,
Q~cothyiV. (16)

In the above example, the parameter V' can be replaced by £;/10, where £, is the thickness
of the upper stratum in meters. The function ¢ and its argument ¢ are plotted in ficure 3a
and 3b as a function of V for various values of the ratio ¢./a,.
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3. Extension to Perpendicular Incidence

In the preceding problem, the incident-plane wave has the electric vector contained in the
plane of incidence (and the magnetic vector parallel to the interfaces). For this reason, it
is termed “‘parallel incidence”. The other important case is when the electric vector is per-
pendicular to the plane of incidence. This is termed ‘“‘perpendicular incidence’.

Again choosing the plane of incidence to be the (zz) plane, the incident wave now has onlv
a y component of the electric field. By analogy to eq 2, the general solution is of the form

Emy:[(—im("_umz—i—zmeumz]e_“ry (17)

where %, =N\-+~",, @ is the amplitude of the incident wave, 3, is the amplitude of the re-
flected wave, and b,=0. In this case,
S

e H = = (18)
so that the boundary conditions now become
B 1, v=En, y
(i) 1 a1 Dmn | (19)

These are transformable to the boundary conditions for parallel incidence by making the

substitutions: K, for H,,, iu,» for ¢,+7ie,0. Then using the previous results, the solution

for perpendicular incidence can be written down:
b_No—Y,

% NeFY!

(20)

where
Y o1+ N, tanh umhm’
Nm—l_ Ym+1 tanh 7Lmhm

Ym:]V.m
for m=1,2,3, ..., M—1and

(21)

Yyu=Nay.
In the preceding

N—", (22)

b 2\ 1%
where, as before, u,,= (AN +v.) "

The quantity o/ao, which is the ratio of the amplitude of the reflected wave to the incident
wave, 18 denoted by ;. There is a similar transmission line analogy for this problem, which
need not be pointed out.

In analogy to the surface-impedance function Z;, the quantity Y7 is a surface admittance
and is given by

le _]I(]r,/EOszzf):; “I‘[lx/ﬂyly]:=0- (23)
In the case of a homogeneous ground at glancing incidence (6—m/2), it follows that
Yi=Ni=(1/n) 1 —i/v)", (24)

which is denoted Y”, where the superseript 4 indicates that the electric field is horizontal in
contrast to the near vertical electric field associated with Z”. It is interesting to note that

V2= (1)), (25)
and for |2 > > Y Zr 1,
(71 ’Yo
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4. Impedance Matching and Natural Oscillations in Stratified Media

In this section, some remarks will be made concerning the nature of extreme conditions
where the reflection coefficient on a plane stratified media becomes zero or infinite. The dis-
cussion will be confined primarily to parallel incidence, although the results are easily carried
over to perpendicular incidence.

As indicated, the reflection coefficient 22 is given by

K\—Z

B==r 1 26
v K, Zl’ (26)
where
KO: 1[0/2:6060: (X‘l_k%)]/z/iwéu
and 7, is the normal impedance at the interface z=0. In the case of a homogeneous half
space (h;—>®),
2121(1:“1/<0'1+77w€1):O\z‘l"yix))!/é/(ffl‘f‘iwfx)- (27)

The condition for matching is that ;=0 corresponding to the absence of a reflected wave.
This requires that

Ky=2,. (28)

For a homogeneous half-space, the condition is simply

JRG==TEG (29)
which, when solved for A, yields
2/.,2 2 /a2
#1/’71_#0/')’0] 2
A= i[i At (30
W= )

In the case of no magnetic permeability contrast (u;=puy), the above simplifies ® to

. Y1Yo .
= Y (31)
RCREDE N

and if both media are perfect dielectries v, =1k, and ~vo=1k,,

kky o
e &

(6 +-k)™ el
But, since N=1Fk, sin 6, the preceding equations for a condition of matching can be employed to
determine the angle of incidence when there shall be no reflection. In the case of the two

dielectric half-spaces, the condition is

ky

S1n 0:iwr

(33)
or tan 9=+ (k,/k,). 'This latter equation is well known from optics, and there the angle 6 is
known as the Brewster angle, and the ratio k,/k, is called the relative refractive index.

It is indeed very interesting to observe that if &, is not real, (or v; not imaginary), the
quantity N or f required for matching is complex. That is, in the language of optics, the
Brewster angle for an absorptive homogeneous medium is complex. The existence of plane
waves with a complex angle of incidence will not be discussed at this stage, but it is interesting
to note that the so-called Zenneck surface wave is very similar to the disturbance propagating
along the interface, when there is a condition of wave matching. His solution is briefly
described below.

3 In this case the wave tilt 11"=~o/v1, as can be deduced from eq. 11.
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Zenneck [1] postulated that a surface wave could propagate along the interface z=0
between two homogeneous media. He assumed that in the upper medium (z<0)

I{oy:b0€+u026—i)‘z, (34)
and in the lower medium
I’Ly:ale*"lze‘i”, (35)

for propagation in the z-direction. The signs prefixing %, and u, were chosen to insure that the
field decayed to zero for |z|—>«. The corresponding electric fields are then obtained from
Maxwell’s equations,

EOy: -K0bge“0’e““", (36)
and
Ely——leale_“lz(i_”". (37)

The boundary conditions then require that b,=a,, and

U Uy

K,+K,=0 or o 0.
0

61—7:(7‘17/(;):
The latter condition cannot be met for any value of X if the imaginary parts of 4, and , are to
be greater than zero. It now appears that Zenneck solved the matching equation Ky= K, in
place of Ky=—K;.

Returning to the general case, it is seen that

K,—Z7, ,
).v: 3
h=%7Z (88)
has a pole (i. e., becomes infinite) when

This is termed the “resonance condition.” For the homogeneous half-space, this resonance
condition is simply K,-+K;=0, which is identical to Zenneck’s equation for a surface wave.

Although it is not possible to set up a surface wave in the sense envisaged by Zenneck, it
is possible to retain his solutions if the disturbance in the upper medium is a wave containing
a factor ¢~ in place of ¢t and the boundary condition becomes Ky=K;, which corresponds
to the “matching” condition.

In the case of a stratified media, it may well happen that the ‘“‘resonance” condition
Ky+7,=0 is satisfied. Rewriting this as

Z=i 2, (40)
€

and since for a surface wave w4, is to be mainly real (i. e., small imaginary component), then Z,
is to be mainly imaginary (in the positive sense). Such a surface characteristic is described as
inductive. The quantity \, which describes the transverse propagation, is mainly real and
somewhat greater than k, [i.e., N=u;+kj].

A simple example of an inductive surface is a highly conducting plane, coated with a thin
uniform film of dielectric. From eq 6 with Z,=0 (or y,== o)

Z, =K, tanh wuh,, (41)
where /i, is the thickness of the film. For thin films, and py=w,
. A2
Znglulhlzmowhl [1“‘?] (42)
1
This can be further approximated to
Zi=ipgwhi[1— (ko/k1)?], (43)
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since \ is near k,. Such a surface is therefore almost purely mmductive. In this case,

U = 60#0602]0 - k%hy
and

N= () =1+ (k) 21+ (k) 2],

where h="h,(1—ki/k}). The wave has a phase velocity in the transverse (z) direction, which
is 1— (koh)?/2 times that of free space, and it decays rapidly in the z-direction. This approxi-
mate solution is valid if &k (or keh,) is small compared to unity.

In general, the determination of the poles in the reflection coefficient 22| leads to transcen-
dental equations that must be solved by numerical or graphical means. A discussion of sur-
face waves on dielectric coated conductors without the restriction that h; be small has been
given by Atwood [5a]. The subject has also been discussed by Goubau [5b].

Further remarks regarding surface waves will be made in a later section following the
analysis of the excitation problem.

5. Line-Source Excitation

In problems of reflection from stratified media, it is more meaningful from a physical
standpoint to consider the source a localized distribution of current. No physical source in
existence produces pure plane waves, although in certain limiting cases the fields have charac-
teristics closely akin to plane waves. An example is a line source of electric current. It was
shown that at large distances from the source, the electric and magnetic field were mutually
orthogonal to one another and to the direction of propagation [7]. It might then be conjec-
tured that the reflected wave for a line source located high over a plane interface could be
computed from the plane-wave reflection coefficient. Such is the case if certain limitations
are imposed.

It is the purpose of this section to extend the plane-wave solution to the case of an (infinite)
line source of (constant) electric current located at height 2 above the stratified medium con-
sidered in the previous section. The coordinate of the line source is taken as (0,7,—%h), as
indicated in figure 4.

In view of the symmetry, the electric field only has a 4 component £, for any of the layers
(the subscript 7 on £, is dropped for convenience). The direct, or primary, field £} in the
region z< 0 (above the interface) is expressible as

o el 2 1
E3="3E Kilolz*- (4174, (44)

where K, is a modified Bessel function. To convert the expression for £ to a more useful

€oHo
(0, y,~h)
87178
x
v r I { (& AT A Y 1 /f ‘ 7
oy € 4y ';|
< 5 (5 (T‘ CEE2Z) Ficure 4. Line source over a layered
LAy rI, half-space.
s ke Va4 S ¥ A zz
Tt Tl Y 7777 Zm-i
‘Tm I‘ml"m £ " hm L
Zm
\ \ v ZM-i
Tn € Fu
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form, it is written as a Fourier integral as follows:

8= AN e ™. (45)

By making use of the inverse property of the Fourier integral, it follows that

AN=y- | Egei (46)
il R .
— =g J‘ Kyfvlat+ () 24e™da. (47)
This integral is evaluated to give *
Ao\)z_%%ﬂ{ gt
0

3

where ;= (N2--42)"? and where the - sign is to be employed for (z4/4)<0 and the — sign
for (z-+h)>0.

The resultant field in the space 0>>2>—1/ is then written in the form

= 4;::wa ug e M L R | (N)e0®=P] exp (—iAx)dA, (48)
where the term containing R ; (\) accounts for the presence of the stratified medium at z=0 and
is as vet unknown. Eq (48) satisfies the equation (V2—+;)Ey=0, and behaves in the proper
manner as z——Ah and z—0. The corresponding expression for Fj in the region —h>z>—w
is identical to eq (48), except that the (—) sign on the first exponential should be changed to a
-+ sign. FEj, then decays properly to zero as z—>—w.

The integral representation for [, has a clear physical meaning. When the symbel
\ is identified with %, sin 6 or —iy, sin 6, the field £ is a spectrum of plane waves of (complex)
angle 6 of incidence. The complete field £, contains a spectrum of both incident and reflected
waves [7]. The structure of the integrand in the integral representation for £ is identical to
the corresponding factor in the plane-wave solution in the previous section. In fact, the
correspondence carries over to each of the sublayers. For example, in the present problem,
for m=0 to M,

E, :f [Em (N) e~ “n*4-b,,(N) e“mz:le‘ D\, (49)
and -
?:.umem:r:a—a]L;'m’ - 2‘/~‘m(-"[-l.mz: aaEI‘,m'
The solution of the present problem ® is thus immediate;
b NoO\)—Y (N .
H N _0 = 0 ) . 0
U N\ ACVES A7y o
where
Ym ()\) — Ym =l ()\) +Nm ()‘) tanh umhm (51)

Nm ()‘) +Ym+1 ()‘) ta‘nh umhm,

with m=1,2 . . ., M—1, and Y,,(\) =N, (M.

Equation (48), along with (50) and (51), constitutes the formal solution of the problem.
The remaining task is the evaluation of the integral in (48). Except in certain limiting cases,
certain approximations must be made in order to obtain a useful result.

4 Campbell and Foster [6], pair No. 917.
5 Tt should be noted that eq (50) has the same form as eq (21).
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The simplest limiting case 1s when the interface becomes highly conducting. Then, since
no, B, (N)=~—1, and

ol (YT e B3] =t B
E——02 Ug™1 [0+ — guote W] =My (52)

Both these integrals are of the same type and may be readily evaluated in view of eq (46)
and (47). Consequently, for 2<0,

Ey=- MI{KO[VO[I2+(‘+h)2]/2] Kolyolz*+(z—W)?* ]} (53)

It can be readily verified that (v*—~§) E,=0 for —z>0 and, moreover, E,=0 for z=0, which
is the required boundary condition for a perfect conductor. It should be mentioned that an
equally simple result is obtained for cases where u, =~ corresponding to a rather hypothetical
situation where the interface at z=0 is behaving as a perfect magnetic conductor. Then
R, (N)=~+1 and the solution for £ is identical to eq (53), with the second term inside the
braces changing sign.

When |yh|>>1 and h>>—z, eq (53) for £, can be written in the form °

il R — -
]4‘ JE’Q‘.’)I i —u(,(:) __ptug(@)| p—iNz 54
U= e e G, (54)
2 (‘Yo 0)’“
where ,=((X\)*+7§)", N=—iy,sin §, and where @ is the geometrical reflection point such

that the ray /¢ and the ray (P make equal angles § with the normal at . The quantity R,
is the length of the ray from the line source to the point of reflection ¢. In fact, @ is taken as
the new origin of the cartesian system z, %, z, as indicated in figure 5.

Qg z=-h

P (X,y,2) F1icure 5. Geometrical interpretation for the secondary
field.

Equation (54) can be simplified even further by noting that the quantity prefixing the square
bracket is simply the amplitude of the incident wave. When this is normalized to unity,

Eoz[e“’-‘-o(”—e‘*;‘"”] e—iX}y (55)

which is readily identified as an incident and reflected plane wave with an angle of incidence
and reflection of §. To generalize, eq (55) for a stratified medium, the reflected wave would
be simply modified by a reflection coefficient for an angle of incidence 6. The modified form
would be

Ey=[e""+ R, (X) et "] ¢~iha, (56)

A suggested modified version of eq (53) to account for the stratified nature of the medium
would then be

Jog"“?M{Ko [volz®+ (4+h)2] '}“I‘L(O)Ko [volz®+ (e —h)¥? ]} (57)

when 12, (g) is the reflection coefficient for a plane-wave incident at an angle g on the interface
z=0. The angle ¢ is determined by simple geometrical considerations, as indicated above.’

¢ The first term of the asymptotic expansion of the modified Bessel function Ko(a) is only retained, i. ¢., Ko(a)~e={(x[2a) 4.
* Note then tan g=z/(h—z).
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This result, which has been derived by an elementary approach, considers only the specular
component. For smaller values of |z| and 4 the situation becomes more complicated because
surface waves within the layers may be excited. This question will not be pursued further
at the moment.

6. Line Source on a Homogeneous Medium

When the line source is situated at the interface (A=0) between two media of semiinfinite
extent with electrical properties e, uy and oy, €, uo, respectively, the electric field £, is given by

 —ipgwl (7 cos Nz o g
Ey= ™ J; u1+uo N, e

for z>>0. This is a special case of eq (48) with A=0 and z,=h;= . Noting that

1 _uo ul_uO
'ul‘f‘uo UW—uU§  ¥i—i

it follows that, for z=0
E,= r(vim:({) {f Uy COS )\rd)\—f Uy COS )\r(l)\} (59)

W) e~ % |2

Lim cos A\ei—! = K,(voz), (60)

220 0

Since

which is equivalent to eq (45), it is seen that ®
f (cos Nz) Uy dN= 73—w> K,y (Yo) vor=—K; (Yo) oz~ (61)
0
Making use of this result, the expression for the electric field becomes

EOZ;G—M% [rox K (vox) — 712K (712) ] (62)

This formula is ezact.
At large values of the argument

O\
a2 ==
Kn (’YII) :<2'Ylf> € L b) (63)
and if the real part of vz is > >1,
s — gl
s ) (64)

T(vi—vd)x

Furthermore, if yo=1k, where kqz is a real number >>>1, it follows that

g 14
Iy~ l#owI’Yo( 7"') o—T®

T (Vi—v8) 2\ 27p2

o /J«owko )1; -1 (kgz+m/4) , 2
e AR \ 2 (@)

It is convenient to express this in terms of the primary field,

) ,p:—’ip.owl N—’I.yowl T )’/é e ;
[L 0 271' KO (’Y()p) = o 270], 2 ) (6()>

8 In eq (61) use is made of dKj/da= — K;/a— Ko, where « is the argument yoz.
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in the following manner:

E A~ 270 = Zik()
B (i—vd)r (vitkdz

(67

The vertical electric field in the interface, for the current line source in the interface, is
given by

gy L ok

HOz—le_ 7:#003 bx (68)
1
=— 5 2762 K1 (%62) +7322 Ko (o) — 2v12K; (v12) —viz* K, (V12)] (69)
T(yi—Y9)
and, if the real part of v, 2> >1,
/
H, gm&WmKl (7o) +102 Ko (7)1, (70)
which simplifies further, for the case |ygz| > >>1, to
e B Y :

H"z:r(v%—vg)x(zyox o el (71)

where

"10=i#0w/’¥0:#0w/k0: (#0/60) i

The field at very low frequencies near the line source is also of interest. For example if
byl << 1,
I3 A .
IIOZ %’7?72?[2—2711'.[{1(71})—(711:) K[)(’YI‘T)]y ((2)
s

which approaches —7/27z as v,z approaches zero.
The magnetic field H,, expressed as a ratio to the primary field Hf. (=—1/2xx) is plotted
in figure 6 as a function of |y,z| under the assumption that ¢/, =20.
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Ficure 6. Response of a line source on
a homogeneous half-space.
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7. Line Source Over a Thin Layer

The general solution for M layer can also be specialized conveniently to the case of a line
source at a height & over a thin sheet of thickness A; and conductivity o;. The following sub-
stitutions in eq (48) are made: w,=uy, M=2, v,=7, where it is supposed that the medium
above and below the sheet is homogeneous. The electric field for z <0 is given by

E(): _2/—!20::1{ K()(’Yorl) '_KO (70]'2) +J;
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where

wo+u, tanh uh,
2oxin SR

Y+ tanh u .k,

r?=(z+h)2+a? and r3= (z—h)2+a2 (74)
For small values of the sheet thickness 4, and large values of the conductivity ¢, tanh

u1h1 g’ulh]_ and 61(,0/0'1 < < 1 y
and therefore

U=

wihyi= (N +~3)h, =21g, (75)

where ¢=auowh,/2. With these approximations, u,~u,-+2iq and then

— o powl @M cos Ard\ .
Ey~ 2};040 [Ko (yor) — Ko (vors) +f0 W(Z ] (76)
Using the result appropriate for large ¢,
= —1)™ 77
s () e @)
and noting
" o a 7n+16u0(2—h) .
unﬂuo( Ja= & Py ) (78)
z 0
it follows that, asymptotically,’
; ’L I el D m a m+1
WS — #Ow I:Kn (vor1) — Ko (yora) +E Ezq)"’“(bz Ko(‘Yorz)—[’ (79)
where use has been made of the relation
@ guy(z—h)
c0s AedN=K,(Yors) » (80)
0 Uy

valid for (z—h)<0.

The field E, can thus be developed into an (asymptotic) series of inverse powers of gr, where
the coefficients involve derivatives with respect of the modified Bessel functions. Using the
relations Kj=—K, and K{=—K|=K,+K,/x, the nth derivative of K, can be expressed in
terms of K, and K,. The first few terms of the resulting series are given below:

=0T 11 ) — By () + T ), (81)

where
m—+1 A
T (Yore,q) = 2, q) (02) [70 (2 h)Kl 70"2)]

=T70(2—h)K1(70"2)+( )2[7%(42_}*)2[{0(707“2 '707“2<

Vo [ ®
-terms containing 1/(gr)*, 1/(gr2)*, ete., (83)

where ¢ry=ayuwhir5/2 and z<0.
It can be readily verified that the field below the thin conducting sheet (z>>h) is given by

E2=—“‘2°‘:I[T('Yorl,q):| for z>0- (84)

As a check, it can be seen that Ey=FE, at z=0. Expressions for the magnetic field components
can be found from Maxwell’s equations:

Hmz:_.l__a_E’m; and Hmz:—w‘l——-% f()l' mZO,Q'
L OZ Iow OF

9 A more rigorous derivation of this series expansion is given in reference [7].
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The above expansions developed in inverse powers of (¢r,) are particularly suitable for highly
conductive sheets when the source or the observer are not near the sheet. Alternative ex-
pansions can be developed for smaller values of ¢r.. These are developed as follows. At low
frequencies where vy, and vy are small compared to unity, v, can be set equal to zero, and it
readily follows that

L —augwl ,
]30:,7%& [Iog (1‘3//‘1)+[0(B)]’ (85)
where
| T(ﬁ)ﬁj.wmd)\ and B=h—:z- (86)
e 28 0 )\+7./(l 1T -

Inserting the power-series expansion for cos Az, F, becomes

s~ (Z1)ma (17 Nme AN

Tn(B) =
(6) m—{l (2 m ') 0 A + 1q (87)
Since
s 1B e s
JO )\Jrz (l)\ et (—1Bq), (88)
where
Eiv(— Lﬂ(])—-—J f(lty (89)
+iBe
it follows that
i Coii gm (2" eemic—i) |
== 3 i () | < Bi—ig) | (90)

where g=8¢=(h—z)hjouow/2. This is an ascending-series expansion in g. When z=0, it
reduces to

Ty (B)=—e"Ei(—iBg)- (V1)

Using the Jatter result, it follows that the field £ for z <<0 and E, for z >0 in the plane z=0 is
given by

1 z—h
i 75‘—1"-& I:hw ﬁ—ﬁfli_()' 2=kl (—i|z—h) q):l (92)
for z< 0, and ‘
e tg&;wf I (— |24 @) 93)

for 2>>0.
The exponential integral 77i(—i¢) with imaginary argument can be expressed in terms of
the cosine and sine integrals as follows:

Bi(—ig = Cilg)+i[ 5-Sitg) | (94)
where

(z(q)*—J »LiSt-(H and Si(g):J t’&t//: (95)
0

ave tabulated [8] for real values of g.
It might be mentioned that 7,(8) for 2 >0 can also be expressed in terms of exponential
integrals, but then the argument is complex. For example,

y 1 ‘”e—W—ir)(] T e rwﬂr\[
O(B)_ZJO W ‘)\+§Jo )\tpl([ i

—— g e Bi(—i(B—i) ) +e i (—iB+in ] (96)

Unfortunately, the exponential integral of general complex argument is not well tabulated.
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8. Radiation Field of the Line Source for Any Number of Layers

The evaluation of the integrals for the general case of any number of layers is not readily
carried out unless certain approximating conditions are introduced. The field £, for the case
of the line source and the observer in the interface (z=h=0), is conveniently written

L — gl 7 cos \x
E— Mo

gl vy dns 97)

where

ue:ul[ (Y5/N,) +tanh uh, ]) 98)

1+ (Yy/N,) tanh w,h,

where Y5 is the wave admittance associated with the lower layers and is given by eq (48) et al.
When h; becomes sufficiently large, it is seen that u,~u, and the fields correspond to a homo-
geneous half-space.

Now, when the subsurface layers are highly conducting, such that |v,,|>>|v,|, it follows
that v, = (\2-+~2) "2y, since the important values of X are when X\ is of the order of [v,/. To
this approximation

T AR

where v, can be regarded as an effective propagation constant. It is approximately given by

Ie_N[ (Y,/N,) +tanh uh, : (99)
Y1~ L14 (Yo/Ny) tanh ushy |~
For a two-layer medium (hy— «), v,22v:/@, where
(’Yl/’Y?) +tanh Yih
= ’ 100
¢ 1+ (v1/v2) tanh v,k L)

which is identical to eq (13).
In analogy to eq (64) for the homogeneous half-space, the field £ for the stratified medium
can be written

— il
Egﬁmmmp for |y,z|>>1. (101)

The factor 4? can be interpreted as a correction factor to account for the presence of stratifica-
tion in the half space. A numerical discussion of ¢ has already been given.

9. Magnetic Line Source Over a Stratified Medium

In the previous section, a line source of electric current 7 over a stratified medium was
discussed. The corresponding formal solution for a line source of magnetic current KX is ob-
tained by making the transformations: /=K, o,tie0—>lunw, tpnw—>0,+lenw, H,—H,,
H,——F, and H—~>—FE,. The nature of the resulting integrals in the solution are, however,
more complicated than in the electric-current counterpart.

The integral form of the solution can be written, for z<0

Ee e
Hy=— ?;OK f o et R Ryl en =i, (102)

where the -+ sign is to be used for (z-+h)<0 and the — sign for (z+/#)>0. The reflection
coefficient is now given by

RuO\):g—Z:r Z? (103)
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where K, and Z; have their usual meaning. For a homogeneous half-space, for example,

Zi=K, and if u;=po,

Up—"Y U1
R ’Y1 0 .
1= Yio+vous

The coefficient £2,(\) can have a pole when ~iuy+v5u;=0, which is the “resonance” condition
discussed previously. This complicates the evaluation of the integral and eliminates the
possibility of using the formulas developed for the line-current source in the previous section.
(There was no pole in the reflection coefficient R, (\) for a homogeneous half-space, because
there is no solution of uy+u;=0.)

If attention is restricted, however, to the field a large distance from the surface, or if the
height 4 is large, it can be expected that contributions from the pole (which are surface waves)
are small compared to the specular component. Then with analogy to eq (57), the field is
approximately given by

’LEO(J)K

Hy=~ {Kolvole*+ (240 %11+ By 6) Kolvola*+ (z—h)’11 }, (104)

where I2,(9) is the reflection coefficient for a plane wave (parallel polarization) incident at an
angle § on the interface (z=0) where tan §=x/(2-h). This result is only valid in the asymptotic
sense, and hence to the same accuracy the formula reads

B =22 () [ ot 2O | ks

where only the first term of the asymptotic expansion of K, has been retained. As can be
verified by the saddle-point method (see next section), this result for H, quoted above is the
first term of an asymptotic expansion.

K § (0,0, -h)
Ficure 7. Magnetic line source over a dielectric
Shuriss coated conductor.
Gt X
€1, Ko i ’;l 4 :
; - .
o =0

10. Magnetic Line Source Over a Dielectric Coated Conductor

As mentioned above, the integrals appearing in the solution for parallel polarization are
complicated by the existence of poles. This occurs even in the case of a homogeneous half-
space. Another relatively simple situation is when the upper layer is a pure dielectric and the
region below is a metallic conductor [9]. The situation is illustrated in figure 7.

Noting that Z,=0, the field for 2<0 can be expressed by

—ZeowK G — koA o (z—h)] -z
= f l:ei 0 +u0+zk0 0 NN, (106)
where
K, tanh uh,
LB tana tl Ko :
A Mo and ! 0'1+’lw€|

221



The integral has a pole where uy-+ik,A=0, and this is denoted by N;. Furthermore, there is a
branch point where #o=0, which is when A=k,. Now for small values of &, (i. e., b, h,<<<{1) A
is also small (compared to one), and therefore

Klulhl iﬂ(ﬂ’hl < kO
A——o——— | 1—533
o 70 k2>

Therefore, to a first approximation, A does not depend on X the integration variable, and the
surface impedance Z,(~n,A) is almost purely inductive. The pole is then given by

Ny kol1+ Geg) 2 22 e[ 4 ()% 2] {1an
where h=h,(1—ki/k3)

The integral for I, is now in a form where it can be evaluated directly by the modified
saddle-point method. A similar integral appears, in the case of a dipolar excitation. For
the present purpose, however, it is possible to develop the first few terms of the asymptotic
expansion in a direct manner.

Frcure 8. Integration contour in the N plane.

«—Branch Line

The integration contour is shown in figure 8. The integration in the original integral is
along C; from —= to +=. The pole \;-and the branch point &, can have a small but vanishing
negative imaginary part if the conductivity of the air and the dielectric is finite. The contour
C, then passes above \; and k, but passes below —X\; and —Fk,.

Following standard practice in contour evaluation of integrals, the contour C; is closed
by an infinite semicircle (C,+C,) in the lower plane, with an indentation along C,, C,, and C, to
the branch point at k. The integral along (j is then equal to integral along the complete
closed contour €'minus the individual contributions of C,, C,, C;, Cy, and C,. The contributions
from C, and C, vanish as R— | since the real part of u, >0. Furthermore, the integral along
the branch lines can be obtained as an inverse series in 2 (which is asymptotic in nature) by
expanding the integrand in a Taylor series and integrating term by term. The integral around
the complete contour € is simply—27 times the residue at the pole \;. Finally, it follows that
the integral along ( is —27i times the residue at \; minus the contribution along the branch
lines.

The final result reads, for x > >(h—2)

g—z(kor+1r/4)

o *——enwK[—- e~ gt upE g INT_L > A4+wu,2) A—uh)- (k )3/2

plus terms containing —1—; —~1—, ete. |
(kox)®*" (ko)™ ;
where
Up= )\" ko———%ko (108)

The first term in the brackets is the residue at the pole \;, and the succeeding terms are from
the branch-line integration. The Jatter series is asymptotic and is usable if
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772) < < (kn"‘) ’

which requires that the pole \; is not too near £,. Such a condition is violated when the thick-
ness h; of the dielectric coating approaches zero. It is then necessary to apply the modified
saddle-point method [10].

11. Fields of a Vertical Electric Dipole Over a Stratified Half-Space

In the previous section, the excitation of the fields over a stratified half-space was by a
line source. In this case the problem is a two-dimensional one. It is the purpose of this
section to mention the extension to the case where the source is a dipole. This problem was
formally solved by Sommerfeld in 1909 for the homogeneous half-space.

A vertical electric dipole is to be located at z=—4h over the stratified region of M layers.
The dipole is to be regarded as a current element of length ds carrying a current /.

The situation is illustrated in figure 9, where it is noted that cylindrical coordinates

Ro

h

eﬁ }-LG

P
" € 0
L E Ficure 9. Vertical electric dipole over an M-layered
half-space.

hy
l €2 O K

€w Om Hw

>3

(p,9,2) are employed with the z-axis pointing downward as usual. The primary influence in
the upper region (2<0) can be expressed in terms of a Hertz vector, which has only a = compo-
nent 7%, which hereafter is denoted ¢?. Furthermore,

Ids e "o
S T R
4miwe, R,

(109)

¢1’
where

Ro=[p*+ 2+ R}

It is now assumed that the total fields can be expressed everywhere in terms of a Hertz
vector, which also has only a z component, denoted ¢,,. (The justification for doing this is
attained by verifying that the final solution satisfies all the boundary conditions and behaves
properly at the source and at infinity.) For the mth layer, ¥,, satisfies

(V2_73L)¢WL:0) (110)
except at the source where ¢—y¢?, for I2,;—>0. This suggests writing
Yo=¥"+ o, (111)
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where ¢, is the “secondary influence”. Since

(V2—7)¥?=0, (112)
then

(V*—75)¥°=0. (113)
In cylindrical coordinates and for azimuthal symmetry, the equation for ¢,, becomes

12 2,0 N\,
=T a+b—22—vm) ) (114)

Tt can be readily seen that solutions of this equation are made up of linear combinations of

eiuszo (\p)
Yo O\P)

where, as usual, u,= (\2+v2)", and v2= (i0mtne— enunw?), for m=0,1, 2 . . ., M. Again by
convention, the real part of u,, is to be taken positively. Since the resulting solution is to be
finite on the axis p=0 when z7—Ah, the Y (\p) Bessel function can be rejected because it
behaves as log p for small values of p. The JJ;(A\p) Bessel function on the other hand, is finite
at p=0.

As in the previous solution for the line source, the parameter N\ can take any value (with
a few exceptions). The general solution for ¢,, is then written in the form

Yn= fo [an N e=m* b, () €“n] Jo (Np) A, (115)
form=1,2 ..., M—1. Inregion (0), for z>0
b=t t | BT )N, (16)

and in region (M), for 2>z,
Yae— f axe(N) e~ *méd. a1
0

To express y? as an integral of the appropriate type, use is made of the Fourier-Bessel
transforms, which read

f(o)= ﬁ RIS (118)

and

eN= ﬁ " £(0) Jo(M)odo, (119)

subject to the conditions that the integrals exist. Letting f(p) =e~"/p,

)= ﬁ " it Jo(hp)dp. - (120)

This integral is a standard type [5] and is given by

1 1
z) =R u (121)
and therefore
e~ike (" Jy(Np) _ e kR
=), o= |, {128)
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To generalize the preceding to any other value of z, the integrand must contain the factor
e~ "M because ¢~ *0% /R is a solution of the wave equation and necessarily becomes e¢~#0°/p
as z——h. Consequently,

e—ikORO n © JO()\P) 6;|:u0(z+h)

. AN, (123)

where the sign of the exponent is chosen so that the integral converges.
(i. e., + for (z+h)<C0 and — for (z-+h) >0).
The z component, of the Hertz vector for the upper region (2<0) can then be written

e eﬂ:(z+h)uo eu (z—h)
—{" [ b0 | T 0w (124)
i o
where
Ids
do—m &Ild b()\)

is to be determined from the boundary conditions. Now

. :;amlzm, E,;=0, E,.—=(—vi4+=— >¢,, (125)
mp ap a > me ) mz m a m
and
'Ym ak&m & s
IJIIIP_O quﬁ—%umw ap a2 IImr——O} (126)

and since F,, and H,s are continuous at the interfaces z,(m=0 to M—1), it follows that
Y,/0z and (o, +1we,) ¥, are also continuous at the same interfaces. This leads to 2(M—1)
equations to solve for the 2(A—1) unknown coefficients. It readily follows that

G = m

m+1 ()‘) +Km()\) tilnh umhm
Krn()‘)+7m+l(>\) tﬂ,nh umbm

(127)

where

Z,N=K,(\) - (128)

The algebraic form of R(N) is identical to eq (5) for the plane-wave reflection coefficient for
parallel incidence. It is thus clear that the field of a dipole over a stratified half-space can be
regarded as a spectrum of plane waves whose angle 6 of incidence and reflection is related to the
variable N by N=#k, sin 6. In this case, the wave normals generate a family of cones coaxial
with the z-axis.

Equations (127) and (128) in conjunction with eq (124) constitute the complete formal
solution. Approximate evaluations [10] can be carried out by using the same approach as in
the previous sections or by a modified saddle-point method [11]. In view of the similarity
with the line-source excitation, it does not seem justified to discuss this in detail, and the
essential results will simply be quoted.

As has been demonstrated, Z;(N) for a highly conducting half-space or even for a dielectric
coated conductor, is mainly determined by the electrical properties of the layers. In other
words, Z(\) can be replaced by

_ U iko
ROV—th, (129)
where A=Z7,/n,=27,/120x is assumed to be constant. The form of ¢, is then
Ids Hug(eth) | —ikoA toE=h)
0 47!'?/0)60 f [ : ’llz()‘**'bk‘()A : Jo()\[))d)\ (130)
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This can be rewritten as follows:

Ids [e—ikoRo =ikl
‘//0_47riweo R R! _QP:I’ (131)
where
Bo=[p*+(z4+h)FP%, Ri=[p*+ (z—h)?¥%,
and
(ikohA) e 10—
= f l(u(’OHkOA) PRI (132)

This integral has been previously evaluated [10, 11]. Subject to |A|< <1, it is given by

E ) ) —ikoRy
P~i(rp.)" e~ erfe(iw??) (133)
Al
where
, h—2\?
W=P, <1+T}?1 )
pc:t_.dgo_l)il A2:|pelgib’
and
. 2 » 0o o
erfe (1w'?) =— J e da
T iw””
The expression for P can also be written
—ikyR
[1 F(w )]” ekl (134)
where
F(w)=1—i(rw) e verfe (iw). (135)

It 1s noted that when z=h=0,
Ids e=iker

2miwey P

Vo= F(pe) y

and the vertical electric field is given by

Tuwlds

E,~
0z 21rp

e~ OF(p,) for ke >>1.

The function F(p,) can be regarded as the correction to the field of a dipole on the surface
of a perfectly conducting plane. For |p|< <1, it approaches unity. F(p,) has the same func-
tional form as the ground-wave attenuation of Norton [6] who presented numerical values for the
case where (in the present notation) b is in the quadrant 0° to —180°. For a homogeneous
ground A has a phase angle in the range 0° (for a perfect dielectric) to 45° (for a good conductor).
The corresponding values of b are —90° and 0°, respectively. For a stratified ground, however,
the phase angle of A may be outside this range. In the particular case of a two-layer conducting
half-space, the parameter p, can be written

p.=pt?, where pl:—z £ (m1/m0)%

and where |
— Q] et~ ( 11/Ys)+tanh v.h,
R 1+ (71/72) tanh vk,

in terms of the propagation constants v, and v, of the upper and lower layers and the thickness
hy of the upper layer. This function ) is discussed in section 2. From figure 3b it is seen that
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for a highly conducting substratum ¢ can become positive. Consequently, the phase angle b
can exceed 0 and would approach 90° for |y,/y,|— =, and v~ <<<1.

In analogy to the terminology introduced by Sommerfeld for the homogeneous half-space,
P, 1s here described as an effective numerical distance. The propagation factor F,=|F,|le~"®,
is shown plotted in figures 10a and 10b, as a function of |p,| for a range of b values. The curves
for 6<C0 correspond to those computed by Norton, and it is interesting to note that for this
region, |/',| never exceeds unity. On the other hand, when 5 >0, |F,| may exceed unity, and
for 6=90° this effect is most pronounced. Apparently, in the case where b is positive, the
energy is being guided to some extent along the surface. This effect can be seen in the asymp-
totic development of F(p,), which, for [p,>>1, reads

113 135 1357
2p. (2p)t (2p)°  (2p.)*

F(p,) = (136)

when —27<6<0, and
13 135

27%._(2]%)2__(2%)3_ S (137)

F(p) = —2iympe re—

when 27>6>0-
The term —2iy/mp,e 7« has all the characteristics of a surface wave. It is not present in the
asymptotic development when b is negative. At b=0, 2, or —2, p, is real, and this term
vanishes asymptotically. The trapped surface wave is most predominant when b=90°,

which corresponds to A or Z; being positive imaginary. For example, if the surface is coated by
a thin dielectric film of thickness 4, with a dielectric constant e,

Zlgiﬂwhl[l_ég/ﬂ]g/é}(l, (138)

which is purely imaginary. Then, since

P="" (7o), (139)

Pe=|p.le’™?, or b==/2 radians=90°. The attenuation factor now has the asymptotic
development
R e S ) : 150
F(p) m— ¢t falpJe- it B 100 (140)
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where

and the vertical electric field is

—5—— ¢ "F(p.), (141)

which shows that the (trapped) surface wave component varies as
X2
L (i),
Vkop

which has the characteristics of a cylindrical wave traveling in the positive p with a phase

velocity
X2\ !
(H+50)
times that of light.
The (trapped) surface wave is not excited when b is negative, and then the distant electric

field varies asymptotically as
1

(kop)? ¢
which has a phase velocity equal to that of light.
When the source dipole and the observer are both raised above the surface (i.e., h>0 and

—z>0), the field in the upper half-space can be expressed conveniently in the asymptotic
sense as the sum of three partial fields in the manner

—ikop,

Ids
Yo Yo tvoteds] 77— el (142)
where e=0 for 5<0, and e=1 for 6 >0. An asymptotic development shows that
6—sz0 =/ 6—-szl }
¢a~ ]L +(Y+A Pl v (143)
1 13 1-35 ¢
S { (A O/ o+ OJay T ap (L CJay T } 7 o
and
QA . g i i
\[/Sg‘m, [2?/ yTw e‘“] 6—171—) (140)
where
C:}%f:%lz‘, k=27/wavelength=1F,,
and A= 21/7]0.

In terms of ¢, the vertical electric field components for kyp >>>1 is given by FEy~ki(1—
C*)¥y.

In the above, ¥, can be identified as a geometrical optical term being just the primary
field e~ *%0/R, and a specularly reflected component ¢~*%1/2; modified by a reflection coefficient
(C—A)/(C4-A). ¢, is an asymptotic expansion containing terms varying as 2,72, ;7% ete.
¥, which is only present for positive b values, represents a (trapped) surface wave and has a
phase velocity less than that of light. When b is negative there is no (trapped) surface wave
present.

Sometimes ¢, itself is called a space wave and ¢, a surface wave. This usage would cor-
respond to that of Norton [3]. This would be an obvious designation when the half-space is
homogeneous because y; is zero, and there is no trapped surface wave excited.

Equations (143), (144), and (145) enable one to compute the field in the upper half-
space (z< 0) for an electric dipole located at z=—h in terms of the ratio A of the surface im-
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pedance Z; to that of free space n,. As a first approximation, Z; could be replaced by Z;(\)
for =0, which would be the normal surface impedance. Clearly, a better value would be
Z1(\), where X, is the saddle point of the integral in‘eq (130) or (132). This would mean that

A:ZI;)\S)’ (146)

where N\;=/koS, where S=p/R,=/1—C%. For a homogeneous half-space, with u,= o,
KO w)

No 2(0'1‘*"56060 Mo (147>

2 %
(i)
0

A

The coefficient (C—A)/(C+A) in eq (143) now can be identified as the Fresnel reflection co-
efficient for a plane wave with parallel polarization incident at angle 6. The equations are
now in complete agreement with the results of Norton [6] for a vertical electric dipole over a
homogeneous conducting ground.

The corresponding treatment for a vertical magnetic dipole located at z=—Ah over the M
layered half-space is almost identical to the above. The quantity ¥, is then to be identified
with the z component of the magnetic Hertz vector, and then A is to be defined by A=Y,
where Y7 is the surface admittance at the interface z=0.

12. Appendix
12.1. Effect of a Transition Region on Reflection

The reflection problems considered above were entirely concerned with layered media.
Each layer was assumed to be homogeneous and bounded by a sharp interface.

In certain instances the dielectric constant or magnetic permeability can be regarded to
vary in a simple analytical fashion. In such cases, it is sometimes possible to obtain a solu-
tion of Maxwell’s equations in terms of known functions. The reflection coeflicient for a
medium in which the dielectric constant may be expressed as a power of one coordinate has
been considered in great detail by Forsterling [12]. The hyperbolic transition has been con-
sidered by Rydbeck [14].

In this appendix, a treatment of the linear transition between two lossless dielectrics will
be given. Actually, this is a special case of Forsterling’s model, but the mathematics is some-
what simpler.

The situation is illustrated in figure 11. A plane wave is incident at angle 6 from the air

Ho

6lq

I Fiaure 11. Illustrating a plane-wave incident on
T'°“'sef;'ig‘;“ d €,(z2) linear transition region.

€2
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to an interface at z=0. The electric vector is perpendicular to the plane of incidence. The
dielectric constant between z=0 and z=d is a function of the coordinate z and denoted ¢(z).
The region below, z>>d, has a dielectric constant e, which does not vary with z. The magnetic
permeability of the whole space is taken as w, and assumed to be constant.

The electric field, which has only a 7 component, can then be written

EOZ [e—ikUT €os 0L Jgikoz cos Bo] e—ikrsinbo  foy 2<07 (1 49)
and
E,="Te—ikzcsbp—ikrsiné  for ~ >\,]/_ (150)

where 6, is related to 4, by k. sin ,=k, sin g,. The constants R and 7 are to be determined by
the boundary conditions at z=0 and z=d.
Within the transition layer, the field components satisfy Maxwell’s equations

OF, . .
aglzw.owl‘]lx, (151a)
i/.l,owHu:iko Sin BOEI) (1511))
and
af” 1[e1(2) — ¢ sin? G|k (151¢)

where F, is the 7 component of the electric field in the transition region. For a linear transi-
tion,

& (2) =e(1+82), (152)
where 8= (e;—e) /eed. A new variable W is now introduced, defined by

2(e’f cos® )

W:WO< and Wom="00 (153)
Equation (151a) and (151b) can then be written
14 (]El D (ZHl:c > 15 [
€ W:?powl’lu and 'WZQO)E/'EN (104)
where e=¢ (2) —¢, sin? 6. (155)

These equations are combined to give

d* 1 de d -
_ L =1 Lk
AW? "edﬂ’(lﬂ @ 'u°>El L o)

But, since e=const. < W3,

1 de 1 PR
= — 114
DedW 3W £
Furthermore, if the substitution
E=W"y (158)
1s made, ¢ satisfies the equation
L AR ugl/ 2 > o
s (159
Wt Wagpt(peW—g =0, 59)

which is Bessel’s equation of order 1/3. Independent solutions are Jy(wx*W) and J_j

().
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The general solution for £ is then written
Ey=(W/W) B[ Ady (0 W) + B i (wu’* W) | X exp(—iker sin ), (160)
where A and B are constants. The magnetic-field components are obtained from

1 JOF in 0
ll]I:.—‘L and HIZ:ICO—SlB—EI, (161)
Uhgw OZ oW
and need not be written out.
The four unknown constants 2, 7', A, and B are obtained by matching the tangential
fields at z=0 and z=d. That is,

EQZE‘ ILVIZEZ
o, oF | ™ or oE, (162)

33 s 02 2=0 02 —6_27 z=d

Omitting algebraic details, the expression for the reflection coefficient can be finally written

1—-G v
]?*ng, (163)
where
(@1 Po+ qobr) — 1 (Pogi—qo 1) :
=— —— 164
: (bog1+aop1) — 1 (aoh1—a:by) { S
where
A= J% (o) ) ])0:,]% (o) ;
b,):J_% (x0), qo=4¢J ;é(ﬂ’o),
ay=dJy (1), pr=Jy(x,),
bi=dJ (@), =1 _3(x)),
with
« 4 alN?®  4r
i R A s Y
and
_k()([ e 7([ R
a=73" €08 00~X0~wb b,

Ao (€ eg—sIn? 00)1‘{
i cos 0

Employing tables of fractional order Bessel functions [15], the magnitude of the reflection
coefficient |R|, is plotted in figure 12 as a function of « or (d/\j)cos f,. The abscissa is propor-
tional to the thickness of the transition region. Two values of /N are chosen, 3 and 5.

It is immediately apparent that the effect of the transition region is to reduce the reflection
coefficient. For small values of (d cos 6,/\y), the reflection is governed almost entirely by the
(normalized) relative refractive index N. In fact, as d— 0, it is readily seen that

1—N  cos 6— (ey/e;—sin2fy)*

y- Ea
A P cos@+(e2/e1~31n200)‘/~"

(165)

which is the classical Fresnel formula for perpendicular incidence. As seen in figure 12 |R|=
0.5 for N=3, and d=0; |R|=0.666 for N=5; and d=0.
In the language of transmission line theory, the transition layer is acting as a matching
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Frcure 12. Reflection coefficient for a linear transition layer.

section. Its function is to match the impedance in the air region (2<0) to that of the lower
region (z>d).

The simplicity of the above analysis is due primarily to the choice of the polarization of
the incident wave. In the corresponding problem for parallel incidence, the resulting equations

for the magnetic field component in the transition layer are not expressible in terms of Bessel
functions.

I thank K. A. Norton for advice and H. E. Bussey and A. G. McNish for constructive
criticism of the manuscript.
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