
Journal of Research of the National Bureau of Standards Vol. 6 1, No.3, September 1958 Research Paper 2898 

Propagation of Very-Low-Frequency Pulses to 

Great Distances 1 

James R. Wait 

A t heoretical study is prcsc nted for t hc propagat ioll of electrornagnetic pultieti at very 
low frequ encies to la rge distances . The space between t he earth a nd the ionosphere is 
represented as a wave guide with sharply bounded and concent ric spherical boundaries. 
The concept of phase a nd group velocity a nd its application to t he present problem is dis 
cussed in some detail. The influence of the propagat ion medium on t he shape of the envelope 
of a quas i-monochromatic put e is a lso considered . Using an a lternative approach, t he 
response of an impulsive source is a lso calculated and is shown to be a damped oscillatory 
func t ion of t ime with a quasi-half-period varying in a predictable ma nner wit h distance of 
travel in agree ment, with t he ob~(' rvation s of Norinder and Hepburn . 

1. Introduction 

III r ecent years there has been a renewed inLeresL in Lhe propagaLion of VLF (very-low
frequency) radio waves. The wave-guide model has been remarkably successful for the pre
diction of the field strength as a function of distance and frequency. In most investigation , 
both experimental and theoretical, the source varies essentially in a sinusoidal manner with 
time. 2 It is of great interest, however , to have a knowledge of the transient characteristics 
of a pulse and the way it is inAuenced by the propagation medium. For example, if the re
ceived fi eld strength of a lightning stro].w is recorded as a function of time, one may ask how 
this waveform is related to the source current, distance of travel, electrical constants of th e 
ground, and height and electrical properties of the ionosphere. I t is the purpose of this paper 
to attempt an answer to this question on the basis of a theoretical study. 

A general analys is is presented in sectio n 4, applying and extending the classical concepts 3.4 

s uch as phase and group velocity for propagation in dispersive media. Such an approach is 
particulally sui table for a quasi· monochromatic source wh erein the spectral components arc 
centered in a narrow band about some central or reference frequ ency. In section 5, an alter
native method is described that is applicable to broad-band sources which contain many pectral 
components. Extensive numerical results are presented for the parameters characterizing the 
shape of the radiated pulses. Finally, some reference is made to published experimental data 
concerning the waveforms of radio atmospherics . 

2. Quasi-Monochromatic Pulse 

In the present study, the earth is represented by a homogeneous sphere of radius a, and thc 
ionosphere is idealized as a sharply bounded concentric reflecting layer at height h. The source 
of the fi eld is always assumed to be equivalent to a vertical (radially oriented) electric dipole. 
At large ranges, the field can then be represe nted as a sum of waveguide modes. 

The vertical electric field of allY onp mode at a range d can be written in t hr form (see sec
t ion 7.1) 

(1) 

wb ere An is a slowly varying function of frequency w, U n is a measure of the attenuation of the 

I The results in tbis paper were ICported at tbe commission 4 and G sessions oC tbe In tern ational Scien tific Radio Union General Assembly held 
in Boulder, Colo., August 22 to September 5, 1957. 

, See VLF issue or Proc. lnst . Radio Engrs. 45, June 1957, Cor papers by Budden, Pierce, Wait, and Wat t. 
3 J . A. Stratton, Electromagnetic theory, p. 292 (McGraw-Hili Publishing Co., Inc., New York, N . Y ., 1941) . 
' IA . L. APpert, V. L . Ginzburg, and E. L. Feinberg, R adiowave propagation, pt. II. p. 364 (Moscow, 1953). 
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mode per unit distance, and s" is a dimensionless phase factor . The phase velocity is then 
given by 

(2) 

where c is the velocity of light. On the other hand, the group velocity of a mode is given by 

(3) 

which can be written in terms of H ( = hl "X) as follows: 

c 
(4) 

The group velocity, so defined, is a measure of the velocity of the envelope of the quasi-mono
chromatic pulse or group. For example, if the propagation medium were nondispersive, the 
signal might be represented by the real part of Eo(t) = A(t)etw", where Wo is the carrier frequency, 
and ACt) is the shape of the envelope as a function of t ime. In the simple case of a broken 
sinusoid, 

A(t) = l for 

A(t) = O for 

T T - -<t<-, 2 2 

t> T12 and 
T t<- _· 
2 

TIle group velocity concept is valid only when the frequency spectrum, 

(5) 

differs substantially from zero only in a small frequency band near the signal carrier-frequency 
wo° In the present case 

(6) 

The spectral width is given by /:::"w,,-,1 / (2T) and this must be small compared to w00 In other 
words, the period of the envelope must be long compared to the period of the carrier frequency. 

Now when the pulse propagates through the medium by a distance d, the field EoCt) of a
mode becomes transformed to E(t) whence 

(7) 

where 

and 

The coefficients a(w) and cf>(W! are phase and att(lnuation factors of a mode as a function 
of frequency for the section of path of length d. 

Utilizing well-known properties of Fourier integrals/ 2 the spectral representations of the 
signals E o(t) and E(t) can be \vritten 

Eo(t ) =L.L+",'" f -+",'" A(t')exp {i(wo - w)t' + wt }dwdt' , 
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and 
1 J +"' f +'" . E(t) = 27r' _ '" _ '" A (t')exp { ~(wo- w) t' + wt-4>(w) }G (w) e-",(w)dwdt ' . (0) 

The phase function 4>(w) is now written in a Taylor expansion, 

(10) 

where Q= w-wo. Neglecting terms containing Q3, etc., it follows that 

E(t) = exp [i(wot-4>(wo))]G(wo) e-a(wo) X 

2~f-+",'" f -+",'" A(t')exp { i£2[t - t' -4>' (wo)]- i ,p1l~WO) £22 } dtldQ, (11) 

where the slowly varying factors have been taken outside the integrand. 
variable z defined by 

in place of Q it follows that 

since 

After a further change of vari able, via 

we finally arrive at 

Introducing a new 

(12) 

(13) 

(14) 

(15) 

(16) 

In the above, it has been assumed that 4>//(wo»O; if 4>//(wo) < 0, then by changing the sign in 
the substitution of variables one would have 7r'14>//(wo)I in place of -J7r',p// (wo). 

Now if 4>// (wo) = 0 and noting that 

f -+",'" exp (i~U2) du= l + i , (17) 

it follows that 
(18) 

To this approximat ion , the pulse has not changed shape, although the pulse amplitude has been 
modified, the phase ha changed by an amount 4> (wo) , and the pulse as a whole is delayed by the 
"group time" 4>/ (WO) ' The effect of a nonzero value of -J7r'4>//(wo) is to modify the pulse shape 
(sec footnote 4). To evaluate this phenomenon, the envelope must be specified and the inte
gration indicated in eq> (16) must be carried out. For example, in the case of the broken 
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sinusoid extending from - T /2 to T/2, the integral in eq (16) can rcadily be transformed to a 
Fresnel integral , 

(l9) 

where 

and O=(T/2) + t-cJ/(wo). 0 is the time measured from the instant -T/2+ cp' (wo). In the case' 
of negligible dispersion of the pulse shape, cp" (wo) must be sufficiently small to enable Ul a,nd U2 

to be replaced by - <Xl and + <Xl, and then 

E(t) ~exp {i [wot-cp(wo)]} for 

~O for and (20) 

To illustrate the infiuence of dispersion, it will be assumed that the signal duration T is large 
compared to '-/-lrcp" (wo). Then the form of the leading edge of the signal is determined by 

(21) 

The envelope IE(t) I is plotted versus the time parameter OJ.J7rCP''(wo) in figure 1, a. It is now 
convenient to define a build-up parameter tb , which is the time measlli·ed from (}=o for the 
envelope IE(t) I to approach within 5 percent of unity. From inspection of figure 1 it is seen that 

tb~4"/7rcp"(wo) sec. 

For numerical presentation it is convenient to introduce a dimensionless build-up parameter 
T b defined by 

where 

tb~ 4.Jdh/2 Tb, 

c 

T =12 08n+H 02 8n IH. 
b oH OH2 

(22) 

The build-up parameter Tb and the build-up time tb are related by eq (22). The chart in 
figure 1, b, is to facilitate the conversion for a typical height of 70 lan, and for various ranges 
d in kilometers. 

0.1-
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Time Parameter, 8 /J,,~"(wo) 

FIGURE In. Leading edge of signal in dl:spersive media. 
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3 . Numerical Presentation of Waveguide Parameters 

The important parameters in specifying the characteristics of pulse propagation in the 
earth-ionosphere waveguide arc attenuation rate, phase velocity, group velocity, and the 
build-up parameter. In general, these are functions of t he dimensions of the guide and the 
electrical properties of th e bounding walls. Those four quantities (u n, Vp/C, vg/c, and Tb) n,re 
plotted in figures 2 and 3 for mode number 1 (i . e., the dominant mode) . The abscissa is 
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H( = h/'A), which is the height of the ionosphere in wavelengths and may be regarded as a 
frequency parameter. 

The dimensionless quantity A is a ground conductivity parameter and is defined by A = 
G/H , where G= EOW/(Jg in terms of the conductivity (Jg of the ground. Alternately, one may write 
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The dimensional quantity B is the conesponding parameter for the (a slimed) sharply boullded 
ionosphere. It is defin ed by B = L/H , where L = w/wr , 

and 
2 (plasma frequency)2 

W r = WO/ 11 coll isional frequ ency' 

In terms of the effective iono phel'i c conductivity , (Ji,s B is given by 

B = _ l _. 
60(JJ~ 

The CUl'ves in figure 2, a t o d , inclusive, are for A = O 01' (Jg ~CD. This assumption is valid 
for propagat ion over sea water for all values of H shown . The CUl'ves in figure 3, a to d, in
clusive, are for A = 10 - 4, which conesponds to moderately conducting ground [2 .2 millimhos/m 
for h= 70 km] . 

4 . Analysis for Impulse Response 

The foregoing analysis is applicable t o t he description of wave packeLs wherein t he spectral 
components are essent ially contained in a r elat ively narrow band about t he canier frequency. 
In the case of a light ning discharge, t he pulse contains many spectr al components , and as a 
matter of illu stratioll , if t he current was in th e form of a Dirac delta fun ction, all frequencies 
would be con tained in a uniform distribut ion . In this case and for ot her similari nstances, 
it is desirable to use an alternative approach. In the followin g, it is assumed that t he source 
is initiated at t= O and d= O. 

The most convenient description of the source is t he (t ran sient) waveform of t he radiation 
component of t he vert ical fi eld on a perfectly condu cting flat groun d plane at di stan ce d. Thi 
field is denoted t o(t ) as a fun ction of t a nd it Fourier t ra nsform is 

Eo (w) = 1'" eo(t) e-tw1dt. (23) 

If the SOUl'ce is a dipole carrying a current jet) with a height h(t), both fUll ct ions of t, t hen t he 
radiation field OIl t h e (hypot hetical) flat ground plane is 

where 
u (t' )= l 

= 0 

for 

for 

(24) 

tl > O} 
t' = t - to, to=d/c. 

t ' < O 

The field at range d of t he same dipole SOUl'ce when located on a homogeneous spherical eart h 
of radius a with cOll centri c ionospheric reflecting layer at height h is denoted e(t), and it s 
tra nsform is 

E(w) = 1'" e(t) e-iw1dt. (25) 

The relat ion betwee n E (w) and E o(w) has been previously derived (sec footnote 2), a nd t he 
fin al result is simply quoted here. 

E ( ) "'[~J)2 (2'1l'cd) > E o(w) ± 3/ 2 0 - ~"d"" -iP(w) 
w = sin d/a h (iw) )2 h=O Sn ne e , (26) 

wh ere U n and Sn are the attenuation and phase constants of tho waveguide mode of order n, as 
defined in section 7 .1, oo~ t, and on~ 1 for n ;;t' O, and F (w) = (w/c)snd - wt. The waveform of the 
electric field e(t) is now obtained from the inverse FOUl'ier t ransform 

1 J+'" e(t )=- E (w) eiw1dw. 
2'1l' _'" 

(27) 

, T he concept of an cffective iso t ropic ionospheric conductivity is valid for w< <.~JOI and high ly oblique (low·order) modes. 
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Unfortunately, the integration, except in certain limiting cases, cannot be carried out ill closed 
form because Un and Sn are not simple analytical funct ions of w. In view of the fact , however, 
that extensive numerical data is already available for Un, Sn, and related functions, it seems 
desirable to evaluate the integral by an approximate saddle-point procedure. The integrals 
to cope with are of the form 

J = f-+: G(w)e-iF(w)dw. (28) 

G(w) can be assumed to be slowly varying compared to F(w). 
W= WS) whieh is a solution of 

The suddle point of F(w) is at 

of(w) = 0 
Ow . 

Expanding F(w) in a Taylor series about Ws leads to F (w)=F(ws)+ [(w = ws)2/2]F" (ws)+terms 
containing (w- ws)3, etc. , where 

F"(WS) =[02F~w) J • 
Ow w= w, 

Retaining only the first two terms in the expansion for FCw) , the integration cnn be carried 
out to yield 

J '" [ 7r JHC( )e -iF(W.) +[ 7r J 1/2 G*( )e i P (w.) 
= 2iF" CWs) Ws -2iF" (ws) \.w , , (29a) 

where t he asterisk denotes a complex conjugate. When the current is in the form of a unit 
impulse or Dirac delta function , the radiated field eo(t) /is a doublet impulse function . That is, 

(29b) 
where 

"() I' u(t-~)-2u(t) +u(t + ~) 
u t = -lUll A 2 . 

11->0 L.l 

Therefore , t he Fou ri er transform is 
(29c) 

In th is important case 

G( )-E [ ella J '2C27rcel) ';! 1 C' )'" 3 /2 _ 2":1,, \.W 1 --- . - 1,W l-S e h ". - ) sin ella h 27r n 
(30) 

Therefore, the transient response for t he impulse current source is given by 

(31) 

where 

( ) _ (}"T) H[ . ( )] 3/200S F(w,) • [ =27rel ( )J 
f'" t - ·:I s Sn w, T o (ws) exp II, Un Ws ' (32) 

because 

F"( ) = 2~elSn+~ d2sn= hd[T (H )]2 w., c dw c W dw2 C2 0 S • 
(33) 

The quantit ies Hs, Sn CW s), u nCw ,), and To (Hs) are the values of H, Sn, U n, and To evaluated 
at the saddle point W = Ws. 

It can be read ily seen that t he equation for determining the saddle point is equivalel lt 
to finding t he value of H (or w) that satisfies 

(34) 

B ecause vg(H )lc is a smooth monotonic function of H , the saddle-point value H s (or ws) is readily 
determined by using a simple graphical procEdure for any specified value of t. 
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5. Application of the Impulse Responses 

The response of the waveguide to an impulsive current source is shown in figure 4 for various 
ranges. The quantity plotted is el (t) given by eq (32) with n = l . This is the waveform of 
the dominant mode for t he typical daytime conditio n (h = 70 km and L /H = O.I ) and prop
agation over sea water (A~ O). It. is interesting to note that t he pulses have t he appearances 
of damped sinusoids. The oscillating nature of t he curves is not due to t he source which is 
impuls ive, but rather is a result of t he modal characte ristics of propagat ion medium. In 
general, the ini t ial quasi-period (temporal length of the first half-cycle) is becoming progres
sively shortened with increasing range, whereas the oscillatory nature of the pulse is becoming 
enhan ced . In each case t he frequency of the latter part of t he waveform seems to be approach
iug abou t 9 kc (i. e., a half-period of about 56 ,usec). 

It is desirable to repeat t his calculation for a source current of finite duration. For 
example, if the current dipole moment is proportiona.l t o ae-at then the Fourier transform 
of the primary field eo(t) is 

(35) 

wh ich replaces eq (29c) . The transient respO llse, denoted by el/(a,t), is t hus given by 

( ) _ (1J )\' [ ()]3/2 a cos [F(ws)+ f (ws)] - [ - 27rd ( )] 
e" a,t - rL s . S" WS (a2+ wsH T b(WS) exp - h- u" Ws ' (36) 

whore f (ws)= arctan (ws/a ) . As a te nds to 00, e,,(a ,t), of course, app roac hes e,,(t), which is t he 
impulse response. 6 

The response el(a,t) for t he dominant mode at d = 3,OOO km is indicated in figure 5 for t he 
samo daytime conditions as t he curves in figure 4. Various valu es of t he t ime constant 1/0' 

r, Note t bat O(t) = :~n! ae- ·' for 1>0. 
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are indicated on the curves. The impulse response corresponds to the case 1/0. = 0. The 
general nature of the curves is very similar. There appears to be a shift in the phase of the 
cycles but the quasi-haH-periods are essentially unchanged. 

A more realistic waveform for the current dipole moment S(t) of a lightning stroke is a 
pulse which rises up smoothly from zero to a peak valu~ in about 10 or 20 /-Isec and then decays 
to zero somewhat more slowly. Examples of such pulses are shown in figure 6, where S(t) 
is of the form 

(37) 

with o.i> o.. The response el(t) to this composite exponential source is then simply obtained 
by superposition of the exponential responses. For example, 

(38) 

Employing the tlu·ee particular forms of source current S(t) , the response el (t) for the dominant 
mode is shown plotted in figure 7 for typical daytime conditions over sea water. The curves 
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again are very similar in appearance to the previous response curves for impulse and single 
exponential sources. The effect of finite rise time of the source currellt is to reduce the ampli
tudes of the peaks in the initial part of the waveform. 

It is rather important to note that the quasi-haH-periods are not appreciably influenced by 
t he nature of the source pulse. It would therefore seem justified to compare the variation of 
t he quasi-periods with range for the calculated impulse responses and the experimental wave
forms of Hepburn.7 Such a comparison is shown in figure 8. The solid curves are the calculated 
quasi-half-periods in microseconds for daytime conditions as a function of range. Only the 
fu·st five half-cycles are shown. The corresponding data from Hepburn's paper is shown by 
t he encircled numbers which indicate the order of the half-cycle. The agreement is quite 
reasonable. 

7 F . H epburn, Wave-guide interpretation of atmospheric waveforms, J . Atmospheric and Terres. Pbys. 10, 121 (1957). 
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The calculated variation of the quasi-half-period with range and time are also in good quali
tative agreement with Norinder's 8 observed waveforms who first pointed out the characteristic 
transformation of the quasi-half-periods. 

The transient waveforms presented in figures 4 to 7 are the dominant (n= l ) mode only. 
The same procedure can be used to calculate the higher order mode responses. At ranges 
exceeding about 2,000 km, these do not contribute appreciably to the total field for the range 
of t imes shown on the curves. 

The transient response of zero-order mode can also be important for longer times . It 
corresponds to what has been called the "slow tail" in atmospheric waveforms. Again for the 
range of time shown in figures 4 to 7 it would not be significant. For the sake of completeness, 
a short analysis of the transient response of the zero-order mode is presented in section 7.3 . 

6. Conclusion 

The analyses and results presented in this paper should be useful in the interpretation 
of experimental results for the propagation of pulses to large distances over the surface of the 
earth. It appears to be desirable to separate the transient analyses into two parts depending 
on whether the source is a quasi-monochromatic pulse containing a narrow band of frequencies 
or an impulsive type having many spectral components over a wide frequency range. The 
parameters describing the propagation of these two classifications of pulses have been presented 
in graphical form. 

7. Appendixes 

7.1. W Q veguide Modes 9 

The earth is taken to be a homogeneous sphere of conductivity (]" and dielectric constant E. 

The lower edge of the assumed homogeneous ionosphere is taken to be at a height h. The 
collisional frequency is jJ and the plasma frequeney is woo 

Assuming that the source is a vertical dipole radiating P kilowatts, the vertical electric 
field in millivolts per meter at the great circle distance d in kilometers, for a time factor exp 
(iwt), is given by the mode sum, 

8 H. N"orinder, The waveform of the electric field in atmospherics, Arklv for Geophysik 2, 161 (June 1954). 
• J . R . Wait, On the mode theory of VLF ionospheric propagation, Geofis. pura e Appl. 37, 103 (1957). 
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--- ------------

where 

E =300 -IP 0 =[l+sin (h Cnhl'A)] -1 
~o d' n (47rCnh/"'A ) 

where S n= (1- O; )l-2 , and On is a solution of 

~t for n=O 
~1 for n~O, 

(1.1) 

(1.2) 

11 g( C) is the Fresnel reflection coefficient at the ground for a plane wave whose (complex) 
angle of incidence is the arc cosine of 0, and Hi (0) is the corresponding Fresnel reflection 
coefficient at t he lower edge of the ionosphere. 

It follows from the previous analysis (see footnote 9) that 

where 10 

(KG-i) C- [(K - 1) G2-iG+ 02G2]72 
(KG- i) 0+ [(K -1) G2-iG+ C2G2] ~2' 

N 20 - (N2-S2) ~2 
N 20+ (N2-S2) ~;" 

N2~1-i/L= 1 -i(wr/w), wr= w5/v. 

(1.3) 

(1.4) 

(1.5) 

The complex values of Sn(n = O,l,2, . .. ) satisfying eq (2) have been obtained from an 
automatic computor by using a program devised by H. H. Howe. When L is small compared 
with unity, it was shown previously (see footnote 9) that 

(1.6) 

wboro 
Eo = l , En=2(n~O) . (l.7) 

The above formula for Sn is particularly suitable for very low frequencies, in which case 
only the zero mode is of any consequence . 

The exponential term inside the summation of eq (1.1) determines, in the main , the 
propagation characteristics of the modes. It can be rewritten as follows: 

exp[-i27rSn (d/A)] = exp [_2~d Un] exp [-~7rd Sn} 
where un=- ImSn(h/A), and sn= ReSn. 

7 .2 . Transient Response of Ideal Waveguides 

(1.8) 

Most of the complications in the waveguide mode theory of VLF ionospheric propagation 
are due to the finite conductivity of the bounding walls. The characteristics of the modes are 
obtained only from a numerical iteration procedure. When the losses in the walls are negligible, 
it is possible to derive somewhat simpler forms for the transient response and associated 
parameters. 

Assuming that both walls of the waveguide are of perfect conductivity, the phase velocity 
is given by 

---- 1- -Vp_ 1 _ [ (n )2]-Y, 
C S n 2H 

(2.1) 

10 These expressions for tbe etIective refractive index wbicb tacitly n eglect tbe earth 's m agnetic :field arc valid for VLF and sm all values of C. 
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and the group velocity by 

v [( n )2J~2 1=Sn= 1- 2H . 

Furthermore, 

F(w) = F (H) = 2t-I( 1-(2~y)lh d- 27:t H, 

and, consequently, the saddle point is obtained from 

which is satisfied by 

where 

Consequently, 

and 

of(I-I) = 0 
oH ' 

Inserting these values into the sadetie-point formula given by eq (32) leads to 

(n) r£l (7rnX) 
en(t )= 2 X2(ct) cos It ' 

for n= l , 2, 3 .... 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The preceding formula is the waveform for the vertical electric field at range d on an ideally 
perfectly conducting earth with a perfectly conducting iono phere at height h. It is valid fo r 
large distances such that d> > h and X. 

If the upper boundary was a perfect magnetic conductor (phase shift of 180° on reflection 
rather than 0°), the preceding formulas are modified by replacing n by n-!. 

7.3. Transient Response of the Zero-Order Mode 

The saddle-point method is valid only if the function exp[ -iF(w) 1 is rapidly varying 
compared t o other factors in the integrand of the inverse Fourier integral. For mode zero this 
is not so, but in this case it is known (see footnote 9) that 

[27rUO+iso~Jd~ (~+~)~(iw) ~2, 
h c ag ai C 

(3. 1) 

where 

and ai ~-J IT i IJ. ·2h. 

Therefore, for the impulse current source, 

E(w) ~- -.-- , (iW)~2 exp - - - +- (iw) lh . EJ [ d/a J~1 (27rcd) ~2 [ d (1 1) ] 
; .,2 sm d/a h c a. ai 

(3 .2) 
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----------

The transient response eo(t) of the zero-order mode is thus given by 

1 J +oo e (t) = - E(w) eiwt'dw, 
211" _'" 

where t' = t- to• This can be evaluated to yield 

(3.3) 

where 

4 (h)3(h)(d)~(U)3/2 , 
eo(t) = -r; dec ~ PU3/t ), (3.4) 

and 

P({3/t') =(~,-1 ) (j,)3/2 e- P/4t', (3.5) 

with 

and 
1 1 1 -=-+_ . 
~~~ 

The transient response is thus proportional to the characteristic function P ((3/t' ). In view of 
the combination in which the ionospheric conductivity U i and the ground conductivity u. 
occur, and because ug > > Ui ' it follows that U~(Ti ' The transient response of the zero-order 
mode does then not depend to any extent on U g • The function P({3/t) is plotted in figure 9 as 
a function of T, where T= t' /{3. The multiple scale shown at the bottom of the figure is to 
facilitate the conversion of the parameter T to actual time in microseconds. 

The transient response of the zero-order mode has been studied extensively by Schumann. ll 
II w. O. Schumann, Uber die Oberfelder bei Ausbreitung langer elektrischer Wellen um die Erde 1lnd die Signale des Blitzes, N uoyo cimento: 

9, 1 (December 19.52). 1 I 
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FIGURE 9. Z ero-mode transient response f or impulse 8ource. 
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7.4. Justification of the Saddle-Point Method 

It is worth while to examine the transient calculation from a slightly different viewpoint 
in order to give further justification to the use of the saddle-point method of integration. When 
the earth and the ionosphere are represented by perfectly conducting planes with constant 
separation h, the magnetic field on t he earth of a vertical electric dipole on the earth is a sum of 
modes of the type 

(4.1) 

where 7f'n is a z-d ireeted Hertz vector given by 

(4.2) 

apart from a constant factor. l-I(&> is the Hankel function of the second kind for an impulsive 
current source (i. e. , current moment proportional to oCt» ~, the magnetic field of a mode is then 
given by 

(4.3) 

This integral can be evaluated 12, 13 to yield 

7f' 0 c [ 7r'nX 2 . 7f'11X ct + X ] 
h,,(t)=h odX cos T-,;;:s lll ---,;;- loge-G-l - , (4.4) 

where X= [(ct) 2- d2p~ . When X < < ct or d and d > > h, Lhe term contai ning the logarithm 
is negligible, and consequently 

7f'cd { (7r'nX) 7f'nX . (7f'nX) } h,,(t) ~hX3 cos ----;;- +---x- sm - h- . (4.5) 

This latter form could have been obtained directly from eq (4.3), using the saddle-point pro
cedure adopted in the main body of the paper. 

7.5. Symbols 
w = (angular) frequency, 
d = distance from source to ob~e rver measured along t he surface of t he earth, 
h=separation between the earth and the lower edge of the ionosphere, 
A= wavelength in free space, 

u n =attenuatiol1 factor of t he wav eguide mode of order n, 
s,,= phase fac tor for a mode of order n, 
c= velocity of light in free spacr, 

v,, = phase velocity of a mode, 
v. = group velocity of a mode, 
H = h/ A, 

E o(t) = form of undistorted signal, 
A(t) = envelope of undist~rted ~ignaJ , 

wo = carrier frequency of undistorted signal, 
T = duration or rectangular envelope, 

G(w) = Fourier or frequency spectrum of Eo(t), 
E(t) = form of signal after propagation through dispersive medium, 

" N. W. McLachlan and P . Humbert, Memorial de" sciences mathernat!ques fascicule 100, 34. Par is (1941). 
l! K G. Budden, The propagation of a radio atmospheric, 42, 1 (January 1951). 
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27rri 
¢(w) = SnT and 

a(w) = U n 2~d are phase a nd attenuation factors of a mode as a func t ion of frequency for a rangc d , 

t' =an integration variable in eq (8) to (15), 
n = w- wo, an expansion para meter, 

¢ ' (wo) = [d¢(w) /dwlw_wo, 

¢" (wo) = [d2¢(w) /dw2]w_wo, 

111 and llz = limits of integration in eq (19), 
l' 

O= thc time measured from t he instant - 2+¢'(wo), 

i/, = time from 0= 0 t o t he point where t he envelope approaches within 5 percen t of unity, 

7\=/ lb, a dimensionless build-up parameter, 
2-v 2dh 

'0 = 8.854X 10- 12, permittivity of free space, 
U g = conduct ivi t.y of t he ground , 
G= 'ow 1u ., 
A = G/ H = 1/60u gh, 
wo = (angular) plasma frequency, 
p= (angular) collisional frequency, 

wr = wUv, 
u,=effeetive ionospheric conductivity, 
L = w/wr , 

B = L / H = 1/60uih, 
eo(t) = t he radiated elf>ctric field for an ideal flat perfectly conducting ground pl ane, 

!hew) = t he frequency spectrum of eo(t) , 
j( t) = instantaneous average current of the source dipol e, 
h(!) = instantaneous height of t he source dipol e, 
oCt) = unit impulse or Dirac func t ion, 

/L = 47r X 10- 7, perm eability of free-space, 
lo = d /c, 
t' = l- lo , 

e(t) = resnltan t fi eld of (transient) dipole sourccs, 
R(w) = the frequency spectrum of e(t), 

a = radius of t he earth , 
on ~l for n~O, 
~! for n = O (see eq (1) for more accurate defini t ion), 

F (w) =~ snd - wt, 
c 

w,=the saddle point of F (w), 
EJ = constant of proportion ali ty in eq (9b) , 

0' (I) = doublet impulse function , 
7\ (H ,) = T b, value of T b at t he saddle poin t H = H, = w,h/ 27rc, 

Cn = cosine of t he (complex) angle of incidence of t he mode of order n at t he bounding wall s in t he 
waveguide, 

S,,= (I - C!)", 
, = dielectric constant of t he ground. 

[( = ' /'0, 
N2 = 1- i / L = I - iw,lw, 
<n= 2 for n~O, 

<0 = 1, 
X = [(cl)2 - d2]", 

~)s= (2dh) [ (~r +(~) H} 
P (x) = (~- 1) (x )3/2e -~, 

([,,(w) = magnetic fi eld of t he n t h mode of a dipole sOllrce in a pa rallel plate wa\'eg;uide, 
7rn = t he correflponding z-directed H ertll ycctor. 

202 



8 . Addendum 

Because of certain llormalizations, the distance d between transmitter and receiver IS 

measured in terms of the great-circle distance at h eight h/2. The phase and group velocities 
shown in figures 2 and 3 should then be multiplied by (1- hj2a) ~ 0.995 , if referred to the great
circle distance on t he earth 's surface. In other places in the paper , t his correction is negligible 
and can be ignored. 

It should be noted t hat the correction factor (1- h/2a) can vary because of changes in 
height of the ionosphere and changes in the effective earth radius a. For this reason the veloci
t ies were presented in figures 2 and 3 in uncorrected form. 

There is a further modification to the attenuation factors when a more recondite mode 
cquation is employed. 14 It appears that the attenuation factors are increased by as much as 
50 percent for H > 4 when n = 1 and A = O but less for other values of nand A. This will not 
change the appearance of the waveform shapes for the range of time indicated in figures 5 to 9. 

The numerical resulLs in section 3 were obtained by H . H . Howe and A. 1'1. Conda, and 
those in section 5 were obtained by W. E . Mientka. Many helpful suggestions wcre received 
from K . G. Budden, A. G. J ean, E. A. Lewis, K . A. Norton, and VV. L. Taylor in t he course. 
of this work. 

H This equation js 

R ,(C) R,(C)exp [-4".iCH( 1+ ~::y'2 J - exp (-i~"'n ) . 
" 'Jlich redu ces to cq (1.2) for [ReCl'» "/a. 

BOULDER, COLO " D ecember 18, 1957. 
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