Properties of Sodium Titanium Silicate Glasses

Edgar H. Hamilton and Given W. Cleek

The glass-forming area of the Na_2O -TiO₂-SiO₂ system was surveyed. Glasses were made with refractive indices from 1.5184 to 1.8005, nu values from 51.5 to 23.2, and densities from 2.42 to 3.00. The glasses have higher dispersions and have considerably lower densities than the PbO glasses with comparable refractive indices.

1. Introduction

In order to give the optical designer greater freedom in his choice of glasses for use in optical devices there is a need for glasses that cover a considerable range of refractive indices, and for each index value, a range of dispersions. Most commercially available optical glasses having high refractive indices and high dispersions contain PbO in varying amounts. In general the refractive index and the dispersion increase with increasing PbO content. However, in PbO glasses there is a limiting value of dispersion for a given value of refractive index.

It has long been known that small additions of TiO_2 to a glass causes a relatively large increase in refractive index and dispersion. One of the early references to the use of TiO_2 in glass is that of Harcourt about 1870. He is reported to have produced "two 'nearly flawless' 3-inch disks of titanium glass and two of borate glass" [1].² The well-known work of Schott and Winkleman [2], in association with Abbe, the optical designer, was the first systematic attempt to determine the effect of chemical composition on the physical properties of glass. The immediate object of their work was the development of glasses having desirable optical properties. TiO₂ was one of the 28 oxides for which they studied the effects of composition on the physical properties of glass.

Colbert [3] has compared the effect of TiO_2 and PbO on the refractive indices of glasses. He added TiO_2 to a base glass of the composition $Na_2O, 3SiO_2$ and PbO to a base glass of the same composition and found that in each series the refractive indices increased sharply.

Three series of glasses in the ternary system, Na_2O -TiO₂-SiO₂ were reported by Turnbull and Lawrence [4]. However, they did not survey the glass-forming area in the system. More recently Varguine [5] has reported on the glass-forming area of the Na_2O -TiO₂-SiO₂ system, but he gives data on only one series of glasses in the ternary system.

Thus, although studies have been made of glasses containing TiO_2 , it was deemed desirable to make a systematic survey of the entire glass-forming region of the Na₂O-TiO₂-SiO₂ system, because it appeared that compositions in this ternary system could be used for the development of optical glasses having high refractive indices and high dispersions. Some of the properties of the glasses made in this survey are reported. The phase equilibrium diagram of the ternary system has not been determined, but information on the binary sides of the ternary system is available from previous work [6, 7, 8].

2. Experimental Procedure

The glasses were made in 500-g melts from batch materials of sufficient purity to satisfy the requirements for optical glass. The melts were made in platinum crucibles and stirred with a platinum-10 percent-rhodium stirrer. The melts were cast in the form of blocks approximately 3 by 3 by 3 in. The details of the melting procedure are given in previous publications [9, 10]. The sag point [11] of each glass was used to establish an annealing temperature from which the glasses were cooled at $2\frac{1}{2}^{\circ}$ C per hr to 350° C.

The liquidus temperature of each glass was determined by a temperature gradient method [12].

Refractive indices were determined on polished samples of the glasses in the form of 60° prisms for the C, D, F, and G' lines by the NBS Optical Instrument Section.

The densities of the glasses were determined by the method described by Glaze, Young, and Finn [13].

The glasses were not analyzed. The compositions in table 1 are all calculated from batch.

3. Results

3.1. Glass-Forming Area of the $Na_2O-TiO_2-SiO_2$ System

The compositions of the melts are given in table 1 and are plotted in the triangular diagram of figure 1. Binary sodium silicate melts were made containing from 15 to 40 mole percent of Na₂O. The glass containing 15 mole percent of Na₂O devitrified during annealing and the other binary glasses developed a hazy appearance. The haziness of the annealed glasses increased with increasing SiO₂ content. Due to their hygroscopic nature none of the binary glasses could be polished in a water medium. This was also true of glasses containing 5 mole percent of TiO₂ and 25 or more mole percent of Na₂O. All the other ternary glasses containing 35 or more mole percent of Na₂O could be polished in a water medium but did not maintain a polished surface for more than a few weeks time.

¹ The work described in this report was sponsored by the Bureau of Ordnance,

Department of the Navy. ² Figures in brackets indicate the literature references at the end of this paper.

TABLE 1. Ternary Na₂O-TiO₂-SiO₂ compositions

Melt	Na_2O	TiO ₂	${ m SiO}_2$	nD	ν	ρ	Lquidus temperature	Primary phase ¹	Remarks
$\begin{array}{c} E1971 \\ E1972 \\ E1973 \\ E1974 \\ E1977 \\ E1977 \\ E1975 \\ E1975 \\ E1976 \\ \end{array}$	$\begin{array}{c} \textit{Mole \%} \\ 15 \\ 20 \\ 25 \\ 30 \\ 33.3 \\ 35 \\ 40 \end{array}$	Mole %	$\begin{array}{c} \textit{Mole \%} \\ 85 \\ 80 \\ 75 \\ 70 \\ 66.7 \\ 65 \\ 60 \end{array}$			2. 335 2. 387 2. 469 2. 433 2. 489 2. 499 2. 526	° C 1105 789 874	A A 	Devitrified in anneal. Hygroscopic—could not polish. Do. Do. Do. Do. Do.
$\begin{array}{c} E1994 \\ E1995 \\ \\ E1996 \\ \\ E1967 \\ \\ E1968 \\ \\ E1969 \\ \\ E1970 \\ \\ \\ E1970 \\ \end{array}$	$15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45$	5 5 5 5 5 5 5 5 5		1. 5184 1. 5272 1. 5318	51. 5 50. 4 49. 7	$\begin{array}{c} 2.\ 429\\ 2.\ 480\\ 2.\ 512\\ 2.\ 533\\ 2.\ 567\\ 2.\ 590\\ 2.\ 607\end{array}$	>1220 994 	A A B B	Seedy. Do. Seedy, hygroscopic. Hygroscopic—could not polish. Do. Do. Do.
E 1922 E 1999 E 1960 E 2002 E 2003 E 1907 E 2000 E 1908 E 1908 E 1908 E 1908 E 1807 E 1795 E 1794	$\begin{array}{c} 10\\ 12.\ 5\\ 15\\ 17.\ 5\\ 20\\ 22.\ 5\\ 27.\ 5\\ 30\\ 32.\ 5\\ 35\\ 40\\ 45\\ 50\\ 60\\ \end{array}$	$\begin{array}{c} 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\$	$\begin{array}{c} 80\\ 77.\ 5\\ 72.\ 5\\ 65\\ 62.\ 5\\ 60\\ 57.\ 5\\ 55\\ 50\\ 45\\ 40\\ 30 \end{array}$	1. 5481 1. 5532 1. 5574 1. 5618 1. 5665 1. 5665 1. 5666 1. 5668 1. 5672 1. 5675 1. 5675 1. 5688	$\begin{array}{c} 43.5 \\ 43.8 \\ 43.8 \\ 43.7 \\ 43.7 \\ 43.6 \\ 43.5 \\ 43.4 \\ 43.2 \\ 43.1 \\ 42.6 \\ \\ \\ \\ \\$	2. 439 2. 490 2. 517 2. 546 2. 561 2. 595 2. 607 2. 615 2. 625 2. 635 2. 649	>1260 ca. 1200 1075 920 890 850 802 806 	A A A A D D D B 	Seedy—prism gave poor imagery. Striae. Hygroscopic. Do. Hygroscopic, striated. Hygroscopic. Do. Hygroscopic—could not polish. Hygroscopic—could not polish. Hygroscopic—surface devitrification. Devitrified in mold. Do.
E 1959 E 1925 E 1987 E 1988 E 1927 E 2057 E 1928 E 1929 E 1930 E 1931 E 1932	$\begin{array}{c} 12.5\\ 10\\ 12.5\\ 15\\ 17.5\\ 20\\ 22.5\\ 25\\ 27.5\\ 30\\ 35\\ 40\\ 45\\ \end{array}$	$\begin{array}{c} 12.5\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 1$	75 72.5 70.67.5 62.5 62.5 60.57.5 55.50 50.45 40.50	$\begin{array}{c} 1.\ 5732\\ 1.\ 5868\\ 1.\ 5936\\ 1.\ 5982\\ 1.\ 6015\\ 1.\ 6015\\ 1.\ 6015\\ 1.\ 6016\\ 1.\ 6015\\ 1.\ 6006\\ 1.\ 6006\\ 1.\ 6007\\ 1.\ 6020\\$	$\begin{array}{c} 40.4\\ 36.4\\ 37.3\\ 37.8\\ 37.9\\ 38.2\\ 38.4\\ 38.5\\ 38.6\\ 38.6\\ 38.6\\ 38.6\\ 38.2\\ 37.1\\ \end{array}$	$\begin{array}{c} 2,524\\ 2,520\\ 2,565\\ 2,601\\ 2,625\\ 2,641\\ 2,655\\ 2,668\\ 2,678\\ 2,684\\ 2,696\\ 2,706\\ \end{array}$	$\begin{array}{c} \text{ca. 1300} \\ > 1260 \\ \hline 1099 \\ 1024 \\ 845 \\ \hline 883 \\ 765 \\ 840 \\ 905 \\ 925 \\ 1005 \end{array}$	A A D D E E C C	Striated. Do. Do. Do. Hygroscopic. Do. Hygroscopic—dev itrified.
E1978	16.7	16.7	66. 7	1.6147	36.1	2.645	1016	А	Striated.
$\begin{array}{c} E1914 \\ E1938 \\ E1989 \\ E1980 \\ E1980 \\ E1990 \\ E1936 \\ E2007 \\ E1996 \\ E2007 \\ E1998 \\ E2009 \\ E1948 \\ E1993 \\ E1993 \\ E1993 \\ E1994 \\ E1994 \\ E1994 \\ E1994 \\ E1994 \\ E2010 \\ E1889 \\ E2011 \\ E1889 \\ E1890 \\ E1891 \\ E1891 \\ \end{array}$	$\begin{array}{c} 23\\ 10\\ 12.5\\ 17.5\\ 20\\ 22.5\\ 30\\ 32.5\\ 30\\ 32.5\\ 40\\ 45\\ 10\\ 15\\ 10\\ 15\\ 20\\ 22.5\\ 27.5\\ 27.5\\ 335\\ \end{array}$	$\begin{array}{c} 17\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20$	$\begin{array}{c} 60\\ 70\\ 67.\ 5\\ 65\\ 562.\ 5\\ 50\\ 57.\ 5\\ 50\\ 47.\ 5\\ 40\\ 35\\ 65\\ 65\\ 65\\ 55.\ 52.\ 5\\ 55\\ 52.\ 5\\ 50\\ 47.\ 5\\ 50\\ 45\\ 40\\ \end{array}$	$\begin{array}{c} 1.\ 6185\\ \hline\\ 1.\ 6257\\ 1.\ 6338\\ 1.\ 6412\\ 1.\ 6422\\ 1.\ 6424\\ 1.\ 6412\\ 1.\ 6424\\ 1.\ 6424\\ 1.\ 6362\\ 1.\ 6362\\ 1.\ 6362\\ 1.\ 6363\\ 1.\ 6363\\ \hline\\ 1.\ 6817\\ 1.\ 6817\\ 1.\ 6817\\ 1.\ 6783\\ 1.\ 6783\\ 1.\ 6753\\ 1.\ 67739\\ 1.\ 6709\\ \end{array}$	$\begin{array}{c} 36.4\\ 31.4\\ 32.2\\ 32.7\\ 33.1\\ 33.5\\ 33.8\\ 34.1\\ 34.5\\ 34.5\\ 34.5\\ 34.5\\ 34.5\\ 34.7\\ 34.2\\ 33.3\\ 30.8\\ 29.7\\ 30.1\\ 30.6\\ 30.8\\ 30.9\\ 30.8\\ \end{array}$	$\begin{array}{c} 2.\ 692\\ 2.\ 570\\ 2.\ 633\\ 2.\ 678\\ 2.\ 703\\ 2.\ 712\\ 2.\ 732\\ 2.\ 740\\ 2.\ 752\\ 2.\ 744\\ 2.\ 750\\ \hline \\ 2.\ 744\\ 2.\ 750\\ \hline \\ \hline \\ \hline \\ 2.\ 744\\ 2.\ 750\\ \hline \\ \hline \\ 2.\ 789\\ 2.\ 800\\ 2.\ 806\\ 2.\ 811\\ 2.\ 815\\ 2.\ 817\\ \end{array}$	$\begin{array}{c} \hline \\ \hline $	$\begin{array}{c} & & \\$	Index prism gave poor imagery. Striated. Hygroscopic. Do. Do. Devitrified in mold. Contained devitrification. Hygroscopic.
E1924 E1944 E1945 E2012 E2013 E2013 E1947 E2014 E1948 E1804	$\begin{array}{c} 10 \\ 15 \\ 17.5 \\ 20 \\ 22.5 \\ 25 \\ 27.5 \\ 30 \\ 32.5 \\ 35 \\ 40 \end{array}$	30 30 30 30 30 30 30 30 30 30 30 30	$\begin{array}{c} 60\\ 55\\ 52, 5\\ 50\\ 47, 5\\ 45\\ 42, 5\\ 40\\ 37, 5\\ 35\\ 30\\ \end{array}$	$\begin{array}{c} 1.\ 7249\\ 1.\ 7267\\ 1.\ 7255\\ 1.\ 7228\\ 1.\ 7184\\ 1.\ 7145\\ 1.\ 7109\\ 1.\ 7072\\ 1.\ 7061\\ \end{array}$	26.0 26.4 26.7 27.1 27.6 27.9 28.1 28.3 28.2	2. 813 2. 839 2. 855 2. 866 2. 869 2. 873 2. 871 2. 871 2. 869	>1280 1198 1106 1042 985 920 959 908	$\begin{array}{c} \overline{F_2} \\ F_1 \\ F_1 \\ F_1 \\ F_1 \\ \hline E \\ \overline{E} \\ E \end{array}$	Devitrified. Hygroscopic. Devitrified in mold.
E2019	33.3	33.3	33. 3	1.7304	26.7	2.914	970	Е	Devitrified in mold
E 1932 E 2025 E 1983 E 2015 E 1982 E 2016 E 1949	$20 \\ 22.5 \\ 25 \\ 27.5 \\ 30 \\ 32.5 \\ 35 \\ $	35 35 35 35 35 35 35 35	$ \begin{array}{r} 45\\ 42, 5\\ 40\\ 37, 5\\ 35\\ 32, 5\\ 30\\ \end{array} $	$\begin{array}{c} 1.\ 7643\\ 1.\ 7595\\ 1.\ 7530\\ 1.\ 7496\\ 1.\ 7437\\ 1.\ 7413\\ \end{array}$	$\begin{array}{c} 24.7\\ 25.1\\ 25.5\\ 25.7\\ 26.0\\ 26.0\\ 26.0\\ \end{array}$	$\begin{array}{c} 2.922\\ 2.934\\ 2.934\\ 2.932\\ 2.932\\ 2.920\\ 2.926\end{array}$	1178 1038 960 952	\mathbf{F}_1 \mathbf{F}_1 \mathbf{E}	Striated-hygroscopic.

See footnote at end of table.

TABLE 1. Ternary Na₂O-TiO₂-SiO₂ compositions—Continued

Melt	Na_2O	${ m TiO}_2$	SiO_2	n_D	ν	ρ	Lquidus temperature	Primary phase ¹	Remarks
E 1953 E 2027 E 1954 E 1955 E 1956 E 1958 E 1957 E 1883	Male % 200 22.5 25 30 35 25 30 25 30 25	$\begin{matrix} Mole \ \% \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 45 \\ 45 \\ 50 \end{matrix}$		1. 8005 1. 7874	23. 2 23. 9	2.984 2.995 2.988	° C 1060 1012 980 1102 1040	$\begin{array}{c} F_1 \\ \hline F_1 \\ F_1 \\ F_1 \\ F_1 \\ F_1 \\ \hline F_1 \\ F_1 \end{array}$	Devitrified in mold. Devitrified streaks in glass. Stones. Devitrified in mold. Devitrified in mold. Do. Devitrified in mold.

 $1 \text{ Primary phases: } A = SiO_2; B = Na_2Si_2O_5; C = Na_2SiO_3; D = Unknown; E = Na_2O \cdot TiO_2; SiO_2; F_1 = Unknown; F_2 = Unknown, F_2 = Unknown; F_3 = Unknown; F_4 = Unknown; F_4$

All of the ternary glasses containing 5 mole percent and some containing 10 and 15 percent of TiO_2 were practically colorless except when viewed edgewise. The remainder of the ternary glasses were either amber or yellow in color. As the Na_2O/SiO_2 ratio is increased, the amount of color in the glasses decreases rapidly, so that glasses are obtained whose color compares favorably with PbO glasses having comparable optical properties. The composition ranges of the hygroscopic, amber, and yellow glasses are indicated in figure 1.

3.2. Liquidus Temperatures

The liquidus temperatures of many of the glasses are given in table 1 and plotted in figure 2. The letters under the curves indicate the primary phases at the liquidus. The letters, A, B, C, and E stand for SiO₂, Na₂O·2SiO₂, Na₂O·SiO₂, and Na₂O·TiO₂·SiO₂, respectively. The compositions of the primary phases designated D, F_1 , and F_2 were not determined. The approximate composition ranges of the primary fields are indicated, insofar as they are known, in figure 1. A region designated F_2 is located adjacent to the D and F_1 primary fields. The approximate boundaries of this field, if it is a primary field, are not known. In the F_2 field adjacent to the D field

FIGURE 2. Liquidus temperatures of glasses in five series of Na₂O-TiO₂-SiO₂ glasses.

Primary phases present at the liquidus are: A, SiO₂· B, Na₂O·2SiO₂· C, Na₂O·SiO₂· E, Na₂O·TiO₂· SiO₂· D, F₁ and F₂ were not identified.

the crystals appearing at the liquidus and from 20 to 50 degrees below the liquidus, are too small to permit the determination of their properties by microscopic means. At lower temperatures phase D is observed, but it is believed that the submicroscopic crystals are not phase D. Adjacent to the phase F_1 field crystals with the same appearance and properties with the exception of refractive indices as phase F_1 , were observed.

as phase F_1 , were observed. The properties of the crystals from phases D, E, and F_1 are:

Phase D. Composition unknown. Thick rods with high birefringence, n_{max} about 1.70 and n_{mln} about 1.60.

Phase E. Composition believed to be Na₂O·TiO₂. SiO₂. Rod-shaped crystals with low birefringence, parallel extinction, negative elongation. n_{max} about 1.77 and n_{min} about 1.73.

Phase F_1 . Composition unknown. Needle-shaped crystals with moderate birefringence, parallel extinction, positive elongation, n_{max} about 2.00, and n_{min} below 2.00.

3.3. Refractive Indices and Dispersions

Glasses were obtained with refractive indices from 1.5184 to 1.8005 and nu values ³ from 51.5 to 23.2.

$$\nu = \frac{n_D}{n_F - n_C}$$

 $^{^{\}scriptscriptstyle 3}$ Nu value, $\nu,$ is defined as:

The refractive indices of the glasses are plotted in figure 3. The lines connect glasses containing equal moles of TiO_2 . No simple relation is readily evident between refractive indices and increase in Na₂O content of the glasses.

The nu values of the glasses are plotted in figure 4. As in the case of the refractive index curves of figure 3, the nu value curves change slope and direction as the TiO_2 content of the glasses is increased.

In figure 5, the optical properties of typical optical flint glasses [14] and some of the $Na_2O-TiO_2-SiO_2$ glasses are compared. All of the curves for the experimental glasses seem to parallel each other. The glasses containing 25 and 30 mole percent of Na_2O all plot on the same line. Typical optical flint glasses with refractive indices above 1.605 have lower dispersions (higher nu values) than the $Na_2O-TiO_2-SiO_2$ glasses with corresponding refractive indices.

FIGURE 5. Refractive indices versus nu values of $Na_2O-TiO_2-SiO_2$ and typical optical fint glasses.

The numbers 15, 20, 25, and 30 indicate the mole percent of $\rm Na_2O$ in the $\rm Na_2O\text{-}TiO_2\text{-}SiO_2$ glasses plotted on the respective curves.

3.4. Densities

The densities of the glasses containing TiO_2 are considerably lower than for PbO glasses with the same indices of refraction. The density of the TiO_2 glasses range from 2.42 to 3.00 while the density of the PbO glasses cover the range of 3.0 to 5.0. For this reason the less dense TiO_2 glasses may be of interest in applications where weight is a factor of prime importance.

The densities of the glasses are plotted in figure 6. There is a definite increase in density from series to series as TiO_2 is increased. As Na_2O is increased in

FIGURE 6. Densities of Na₂O-TiO₂-SiO₂ glasses. Hygroscopic glasses are indicated by □.

each series of constant TiO_2 content, the density of the glasses containing less than 30 mole percent of TiO_2 increase. However, the amount of change in density per unit change in composition is not constant. An exception to this observation is the hygroscopic glasses containing 20 mole percent of TiO_2 , but the values of density of these glasses may be affected by absorbed moisture.

3.5. Spectral Transmittances

The spectral transmittances of the glasses containing 25 mole percent of TiO_2 are plotted in figure 7. The ultraviolet absorption edge shifts toward the visible with increase in SiO_2 content. The sharpness of the absorption edge decreases with increase in color. In figure 8 the spectral transmittances of the glasses containing 25 mole percent of Na₂O are The absorption edge shifts to longer waveplotted. lengths with increase in TiO_2 content of the glasses. In the case of two glasses with visible yellow color the absorption edge not only shifts with increase in TiO_2 , but it is not as sharp as for the colorless glasses. This is also evident in figure 9 where the sharpness of the absorption edge decreases with increase in color of the glass. The glasses are listed in figures 7, 8, and 9 in the order of increasing visible color.⁴

FIGURE 7. Spectral transmittances of some Na₂O-TiO₂-SiO₂ glasses containing 25 mole percent of TiO₂.

FIGURE 8. Spectral transmittances of some Na₂O-TiO₂-SiO₂ glasses containing 25 mole percent of Na₂O.

FIGURE 9. Spectral transmittances of some Na₂O-TiO₂-SiO₂ glasses with increasing color.

 $^{^{4}}$ It is recognized that some of the glass color may be due to the presence of impurities such as iron or platinum. The iron contents of the batch materials, calculated as Fe2O₃ are: sand, 0.006 percent; soda ash, 0.001 percent; and TiO₂, 0.001 to 0.01 percent. The amount of platinum would depend on the corrosiveness of the individual melts on the platinum crucible, and no data is available. The heat treatment of the glasses is another factor which could affect the color.

4. Summary

The glass-forming region of the Na₂O-TiO₂-SiO₂ system was surveyed. Glasses were made with refractive indices from 1.5184 to 1.8005, nu values from 51.5 to 23.2, and densities from 2.42 to 3.00. The glasses have considerably lower densities than PbO glasses with comparable optical properties. Over a limited composition range the color of TiO₂ glasses compares favorably with that of PbO glasses of comparable optical properties.

5. References

- W. V. Harcourt, Researches on glass, read by Prof. Stokes in Sec. A, British Association (1871), Nature 4 351 (1871).
- [2] H. Hovestadt, Jena glass, translated by J. D. and A. Everett (London, 1902).
- [3] W. Colbert, Comparison of effect of TiO₂ and PbO on refractive index of glasses, J. Am. Ceram. Soc. 29, 45 (1946).
- [4] R. C. Turnbull and W. G. Lawrence, The role of titania in silica glasses, J. Am. Ceram. Soc. 35 48 (1952).
 [5] V. V. Varguine, Le bioxide de titane dans le verre
- [5] V. V. Varguine, Le bioxide de titane dans le verre Diagramme d'equilibre et proprietes des verres au titane, Travaux du IV^e Congres International du verre, p. 41 (Paris, 1956).
- verre, p. 41 (Paris, 1956).
 [6] F. C. Kracek, The system sodium oxide-silica, J. Phys. Chem. 34, 1583 (1930).

- [7] E. W. Washburn and E. N. Bunting, Note on phase equilibra in the system Na₂O-TiO₂, BS J. Research 12, 239 (1934) RP648.
- [8] E. N. Burting, Phase equilibria in the systems TiO₂, TiO₂-SiO₂ and TiO₂-Al₂O₃, BS J. Research **11**, 719 (1933) RP619. R. W. Ricker and F. A. Hummel, Reactions in the system TiO₂-SiO₂, revision of the phase diagram, J. Am. Ceram. Soc. **34**, 271 (1951). R. C. De Vries, Rustum Roy and E. F. Osborne. The system TiO₂-SiO₂, Trans. Brit. Ceram. Soc. **53**, 525 (1954).
- [9] Given W. Cleek and Edgar H. Hamilton, Properties of barium titanium silicate glasses, J. Research NBS 57, 317 (1956) RP2720.
- [10] Edgar H. Hamilton, G. W. Cleek, and O. H. Grauer, Some properties of glasses in the barium oxide-boric oxide-silica system, J. Am. Ceram. Soc., 41, 209 (1958).
- [11] Sam Spinner, Given W. Cleek, and Edgar H. Hamilton, Determination and use of the sag point as a reference point in the heating of glasses, J. Research NBS 59, 227 (1957) RP2791.
- [12] Oscar H. Grauer and Edgar H. Hamilton, An improved apparatus for the determination of liquidus temperature and rates of crystal growth in glass, J. Research NBS 44, 495 (1950) RP2096.
- [13] F. W. Glaze, J. C. Young, and A. N. Finn, The density of some soda-lime-silica glasses as a function of composition, BS J. Research 9, 799 (1932) RP507.
- [14] Francis W. Glaze and Clarence H. Hahner, Optical glass at the National Bureau of Standards, NBS Cir. 469 (1948).

WASHINGTON, April 14, 1958.