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On the Motion of Two Cylinders in an Ideal Fluid”

Lloyd H. Carpenter

The complex potential of two cylinders moving in an infinite liquid is determined by the
method of image doublets, and the solution is expressed as an infinite series in rectangular

coordinates.

Approximate solutions in finite form are given for various cases.
generalizing the solution for the case of more than two cylinders is indicated.

A method for
Applications

to the flow induced by a eylinder moving in the presence of plane boundaries are given and

the stream lines are illustrated in certain cases.

1. Introduction

The problem of the motion of two eylinders in any
manner with their axes always parallel was appar-
ently first solved by Hicks.! The velocity potentials
are found in general as definite integrals, which,
when the cylinders move as a rigid body, are ex-
pressed in finite form as elliptic functions of bipolar
coordinates. Greenhill # has expressed the solution
as an infinite series in bipolar coordinates.

In a problem in wave motion the need arose for a
solution of the potential flow for a cylinder moving
parallel to a plane boundary. The problem is the
same as that of two parallel cylinders of equal radii
moving with equal velocities normal to the line of
centers. Thus the flow is a special case of the classic
results obtained by Hicks and Greenhill. However,
it was necessary to have the potential function
represented in rectangular coordinates to determine
the additional term representing the wave motion.
The bipolar coordinates used by Hicks and Greenhill
are defined geometrically, and the transformation to
rectangular coordinates does not admit a convenient
representation. Therefore, the solution was ob-
tained by the method of image doublets and is here
generalized to the case of two cylinders moving in any
manner with their axes always parallel.  The present
method may also be applied to the motion of more
than two cylinders which was not done in the bipolar
system with either Hicks” or Greenhill’s analysis.

Only ideal fluids without vorticity are considered
in this study.

2. Solution for Two Cylinders

Consider two parallel cylinders € and € of radii
b and b’ momentarily at a distance f apart moving
normal to their axes in a liquid at rest at infinity.
Choosing the coordinate system as in figure 1, the
cylinder velocities may be expressed as Ue'* and
U’e'« respectively.

The complex potential wy=¢,+1iyy due to € in
the absence of (7| is that of a doublet whose axis is in
the direction «

X

.
wo=Ub%—,
&~

(1)

*This problem was encountered in connection with a wave investigation spon-
sored by the Office of Naval Research, and the present account is published in
order to make more convenient formulas available.

1'W. M. Hicks, On the motion of two eylinders in a fluid, Quart. J. Pure and
Appl. Math. 16, 113 (1879).

2 A. G. Greenhill, Functional images in Cartesians, Quart. J. Pure and Appl.
Math. 18, 231 (1882).
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Z=X+iy

Fraure 1. Notation diagram for motion of two cylinders in an

infinite liquid.

where z is the complex coordinate position. The
normal velocities introduced on €7 by w, are cancelled

by the image doublet whose axis is in the direction

T
Lo\ el
wy=—Ub%( — L 2
w=—Ub (/> =) @
where
. (b))?
’1:( ) (3)

The sum wy+w; is the well known expression for the
potential of a doublet in the presence of a cylinder
(see Milne-Thomson ?). Similarly, the normal ve-
locities introduced on ' by w, are cancelled by the
second image doublet

w0t (7) (727) 57

(4)

where
(5

Continuing, an infinite sequence of image doublets
of decreasing strength is obtained. The general
expression for wy is

3 L. M. Milne-Thomson, Theoretical Hydrodynamics, Article 8.82, p. 221
(MacMillan & Co., Ltd., London, 1938).



ia

B o for k even 1
W= }
B —(f f)forkode

(6)

where fo=Ub?, Bi——Ub? %)2

(bb')?

5lc=(f—fk_2)2(f_fk_l)2 Br—2 (7)
and
3
[—"I?Z—" for k even |
f_fk—2 |
— 72 } (78,)
g for kodd |

it being understood f,=0

Similarly, starting with the potential of €7 in the
absence of O,

wy =U" (b')ﬁz‘)'_i . ®)
’__ /’ /7 é 2 6—za'
w1y —'_U (b )2<f> Z__f/ (9)
and
Br e for k even
wkI: Z_i ( f—jk (10)
fk for % odd
where
0 , b\?
Bi=U" (4% 8¢=—U4)*(3)
. (b0
11
b= G TP an
and
/ 2
f( f) for k even
fr= o (11a)
f—fx 1for k odd
and again f,’=0.
Thus the complex potential w=¢-iy for the
motion of two cylinders is
w——‘gj (wi-wy) (12)

where the w; are obtained from eq (1) through (7)
and the w;” from eq (8) through (11).

3. Approximate Solutions

The series (12) converges rapidly for small values
of bb"/f* so that for this case one or two terms of the
series gives a close approximate solution

w z’u}o_%''LU(),‘I'_’LUI"*‘ﬂ)l’ fOI‘ &

f2

For larger values of bb’/f* a more accurate solution
may be obtained by approximating the remaining
terms. For this purpose let

} (14)

(15)

small. (13)

=lim f, (k odd)=lim £,/ (k even)
k> k>
7n’=lim f;, (k even)=Ilim £/ (k odd)
k> k>

The conditions
(f—n")n=0
(f—m)n"=(b")?

and n<b, n” <b" may be used to determine n and 7’.

Now for k greater than some number n replace
fr by o’ for k even, by n for k odd, and replace
1" by n for k even, by " for k odd giving

(16)

bb’)?
Wy = mwﬁz:ﬁwk—z (17
and
wy' =~ Pwy, (18)

for k sufficiently large. Thus the solution from (12)

would be
wzé(wk+wk’)+{wn—]+'u),:_1—|—wn_{_w,:}1i-_3 (19)

because

- o 6 ,

An accurate solution for any value of 6b”/f* can be
obtaimed from eq (19) by an appropriate choice of n.
It was found in the computations for the examples to
follow that for bb’/f*=4s, n=1 gave an accurate
result, and for the extreme case bb’/f*=¥ an accurate
solution was obtained for n=3.

Again when bb’/f* is sufficiently small n and 5" are
negligible so that eq (19) reduces to

1

bb"\?
=t

7
where wy, w;, wy’, and w,” are given by eq (1), (2),
(8), and (9) after setting f, and f,” equal to zero.

w = {wy+w +wy'+w,’} 1)
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4. More Than Two Cylinders

When more than two cylinders are moving in an
infinite liquid the method of solution is completely
analogous to that given in section 2.

If n eylinders are moving in a liquid choose any
one (' as a reference and introduce an appropriate
coordinate system. The complex potential of 'z in
the absence of the other cylinders will be that of a
doublet wgz,,. The image of wy, 1s taken in each of
the remaining 7—1 cylinders in the same manner as
before. Kach of these n—1 image doublets will
have an image in 'z and in each of the other cylin-
ders as well. The process is continued in this
manner with each doublet introducing n—1 image
doublets at each step. The same process is applied
starting with each of the n—1 remaining cylinders.
Again the potential of the system will be the sum
of the potentials of all the doublets.  An application
of this method will be given in section 6.

5. Cylinder Near a Plane Boundary

If b'=b, U'=U, o/ =7—a the plane equidistant
between the cylinder axes is a streamline and the
solution represents the flow induced by a cylinder
moving in the presence of a plane boundary. Figure
2 shows the streamlines for a eylinder moving toward
a wall, «=0.

The equations can be simplified when the evlinder
moves parallel to the wall, a==/2, with its circum-
ference touching the wall, b/f=1/2. In this case the
complete solution is

P 1 1 1 3
w*“émnﬁﬁ =k Te k2t @)
Lo k1 b kil

An approximate solution is obtained by taking =
terms of the series and in the remaining terms re-

placing k/(k+1) and (k+42)/(k+1) by 1. Thus
| L 1 r 1 1
LT . i
Lo k1 b k+1 )
. 2 ([ X 1
7 I N S I
LT e 3 G
b "\ J

The streamlines are shown in figure 3a. The compu-
tations were made with n=3. The streamlines for
figure 3b were obtained by superposing a velocity
— {7 on the cylinder and the liquid.

The streamlines for liquid flowing around a cylin-
der parallel to a plane wall are shown in figure 4.
Equation (19) was used with n=1, a==/2, b/f=1/4.
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Fraure 2. Streamlines for cylinder moving toward a plane
boundary.

U=1, b=1.

Fraure 3a.  Streamlines for cylinder moving parallel to a plane
boundary when the cylinder touches the boundary.

U=1, b=1.
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4.0

Frcaure 3b.

Streamlines for current flowing with general
velocity U past a fived cylinder against a plane boundary.

Obtained from figure 3a by impressing a velocity —U on the fluid and the
cylinder. U=1, b=1
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Fraure 4.  Streamlines for current flowing with general velocity
U past a fized cylinder near a plane boundary.
U=1, b=1.

6. Cylinder Near Two Plane Boundaries

If four cylinders of equal radii have symmetric
positions and velocities with respect to two perpen-
dicular planes as indicated in figure 5, then each
plane is a streamline and the solution represents the
flow induced by a cylinder moving in the presence
of two perpendicular plane boundaries. Consider-
ing the case f=4a, g=4a, a=0, an approximate solu-
tion is obtained by the method of section 4 stopping
after the first set of images. The streamlines are
shown in figure 6.

U U
|
|
I T-Q
‘ |
cl = ¥ F\C © Ca
| 1
9 I
- = - [_ ______ e = = = = = = e
|
|
|
&) (@
C3 ' Ca
|
u ! U
Frcure 5. Notation diagram for motion of a cylinder near two

perpendicular plane boundaries.

The dotted lines indicate the streamlines that can be considered as solid bound-
aries.
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Ficuwe 6. Streamlines for a cylinder moving toward one of two

- perpendicular plane boundaries.
=1, b=1.

7. Cylinders Moving as a Rigid Body

If the velocity, Ue'= is the same for each cylinder,
they move as a rigid body. The previous solution
for a cylinder moving parallel to a plane boundary
1s one example of this case. Another example is
given in figure 7 where b'=b=f/2, ’=a=0. The
solution simplifies to

.
JL. (24)

(=1)*
(k1)

The approximate solution obtained by the method

of section 5 is

w=Ub>

k=0

1

1
2k "z kt2
b k+1 b k41

B e VG N T
B (R0 E S ==
| 57h+1 b k1
2 (2 &y (=D
h =— | N .
+Lb§_1«112 k=0(k’+1)2} (25)
\

The computations were made with n=3.

Another example is given in figures 8a and 8b
where b’=b=f/4, o’ =a=0. The solution was ob-
tained using eq (19) with n=1.
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Frcure 7.
U past fized cylinders.

U=1, b=1.

Ficure 8a. Streamlines for two cylinders moving as a rigid

body.
@i, =i,

Streamlines for current flowing with general velocity
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Ficure 8b.

Streamlines for current flowing with”general
velocity U past fized cylinders.
U=1, b=1.

The author gratefully acknowledges the helpful
suggestions of G. H. Keulegan and G. B. Schubauer.

WasHINGTON, March 11, 1958.
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