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On the Motion of Two Cylinders in an Ideal Fluid* 
Lloyd H. Carpenter 

The comp lex potent ial of t wo cylinders moving in an infin it e liquid is determ in ed by the 
m et hod of image do uble ts, a nd t he solution is expressed as an infin ite series in rectangular 
coordinates. Approxima te solut ions in fi n ite form are g iven for various cases. A method for 
generali zing t h e solution for t he ease of more than two cylinders is indicated . Applications 
to t he fl ow indn ced by a cylinder movin ~ in t he p resence of p]n,ne boundaries are given and 
t he st ream lines are illustrated in cer tain cases. 

1. Introduction 

The problem of the motion of two cylinders in any 
manner with their axes always parallel was appar
ently first solved by Hicks. 1 The velocity po ten tials 
are found in general as definite in tegrals, which , 
when the cylinders move as a rigid body , are ex
pressed in fini te form as ellip tic functions of bipolar 
coordina tes. Greenhill 2 ha expressed the solut ion 
as an infinite series in bipolar coordinates. 

In a problem in wave mo tion the need arose for a 
solution of the potential flow for a cylinder moving 
parallel to a plane boundary. The problem is the 
same as tha t of two parallel cylinders of equal radii 
moving with equal velocit ies normal to t he line of 
centers. Thus the flow is a special case of the classic 
results ob tained by Hicks and Greenhill. However , 
it was necessary to have the po tent ial fun ction 
represented in r ectangular coordinates to determine 
the additional term representing the wave mo tion . 
The bipolar coordina tes used by Hicks and Greenhill 
are defined geometrically, and the transformaLion to 
rectangular coordinates does not admit a convenien t 
representation . Therefore, the solution was ob
tained by the method of image doublets and is here 
generalized to the case of two cylinders moving in any 
manner wi th their axes alwa~Ts parallel. The present 
method may also be applied Lo the mo Lion of more 
t han two cylinders which was not done in the bipolar 
system with either Hicks' or Greenhill 's analys is. 

Only ideal fluids wi thou t vorticiLy are consider ed 
in this study. 

2. Solution for Two Cylinders 

Co nsider two parallel cylinders 0 and 0' of radii 
b and b' momen tarily a t a distance.f apar t moving 
normal to their axes in a liquid at rest at infinity. 
C hoosing the coordinate sys tem as in figure 1, t he 
cylinder velocities may be expressed as Ueia and 
U' eia ' , respectively . 

The complex po ten tial wo= cfJo+iif;o due to 0 , in 
t he absence of 0 ' , is that of a doublet whose axis is in 
t he direction a 

(1) 

"'Th is problem was encountered in conn ection wit h a wave in vestigation spon 
soreel by the OUice of Naval R esea rch, an d the present account is published in 
order to make more con venient formulas ava ila ble. 

I W . M . li icks, On the motion of two cylinders in a fluid , Quart . J. Pure and 
Appl. M ath . 1 6, 11 3 (1879). 

2 A. G. Greenhill , Functional images in CarteSians, Quart. J . Pure and Appl. 
M ath . 18 , 231 (1882). 
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U z= x+iy 

F IG URi" 1. Natation diagram .for motion of lwo cylinders in an 
infinite liquid. 

where z is the complex coordinate position. T he 
normal velocit ies in troduced on 0' by Wo are cancelled 
by the image doublet whose axis is in the direction 
7r- a 

where 
( b' )2 

i ,= f . 

(2) 

(3) 

The sum WO+ WI is the well known expression for the 
po ten tial of a doublet in the presence of a cylinder 
(sec Milne-Thomson 3) . Similarly, t he normal ve
loci ties in troduced on 0 by WI are cancelled by the 
second image doublet 

where 

b2 
12=--· f -ii 

(4) 

(5) 

Continuing, an infini te sequence of image doublets 
of decreasing s trength is ob tained. The general 
expression for W k is 

3 L . M . Milne·Thomson, 'l' heoretical H yd rodynam ics, Article 8.82, p . 221 
(M acM ill an & Co., Ltd. , London, 1938). 
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3. Approximate Solutions 

(6) The series (12) converges rapidly for small values 

(7) 

and 

r b2 ""I 

j-j"-2 for Ie even I 
j k= l ~ 

j!!;:~1 for Ie odd J 
(7a) 

it being understood 10 = 0. 

Similarly, starting with th e potential of C' in the 
absence of C, 

WO'=U'(b')2 ei '" , 
z-j 

(8) 

wI' = -U' (b') 2 (y) 2 
:-;:' (9) 

and 

1_ {{3~z_~"'--j~) for Ie even }""I 
Wk -

-ia' 

{3~~jl for lc odd 
z- k 

(10) 

where 

{3~=U' (b')2, {3/ = -U' (b')2. GY 
(bb' )2 , 

(j-j~-2) 2(j_j~_I) 2 {3 k-2 (11) 

and 

r (b')2 } ij j ' f.or Ie even 
j ' _ k-I 
k-

b2 

j j ' for k odd 
k-I 

(11 a) 

and again jo' = O. 
Thus the complex potential w= </>+iif; for the 

motion of two cylinders is 

'" w=~ (Wk+W~) (12) 
k~O 

where the Wk are obtained from eq (1) tlU'ongh (7) 
and the w,,' from eq (8) tlU'ough (11). 

of bb' IP so that for this case one or two terms of the 
series gives a close approximate solu tion 

bb' 
w = wo+ WO' + WI + WI' for y small. (13) 

For larger values of bb'lF a more accurate solution 
may be obtained by approximating the remaining 
terms. For this purpose let 

1) = limjk (k odd) = lim N (k even) } 
k-7OO k-7 OO 

1)'= limjk (Ie even) = lim N (Ie odd) 
k-4co k-.:;oo 

The conditions 

(j-1)')1)=b2 

(j-1))?)' = (b') 2 

(14) 

(15) 

(16) 

and 1) ~b, 1)'~b' may be used to determine 1) and 1)'. 

N ow for Ie greater than some number n r eplace 
j " by 1)' for Ie even, by 1) for Ie odd, and replace 
j / by 1) for Ie even, by 1)' for k odd giving 

(17) 

and 

(18) 

for Ie sufficiently large. Thus the solution from (12) 
would be 

because 

'" (3 "L,{3k=_. 
k~1 1-{3 

(20) 

An accurate solution for any value of bb' lf can b e 
obtained from eq (19) by an appropriate choice of n. 
It was found in the computations for the examples to 
follow that for bb' lj2= })6, n = 1 gave an accurate 
result, and for the extreme case bb' IP =}~ an accurate 
solution was ob tained for n = 3. 
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Again when bb' IP is sufficiently small 'YJ and 'YJ' are 
negligible so that eq (19) reduces to 

wh ere WO, WI, wo', and WI' are given by eq (1), (2), 
(8), and (9) after setting jl and j/ equal to zero. 



4 . More Than Two Cylinders 

'When more than two cylindcrs arc moving in a n 
inftni te liquid the method of solut ion is completely 
analogoLls to that given in seetion 2 . 

If n cylinders arc moving in a liquid choose any 
one GR as a reference ancl inLrociuce an appropr iate 
coordinate s~'s tem. The cOml)lex potential of Gil in 
th e ab se nce of th e other cvli nclcrs will b e that of a 
doublet WR,O. T he image of WIl,O is Laken in each of 
th e r emaining n-1 c~Tlinclel's in the sam e manner as 
before. Each of t.hese n-1 image doublets will 
have an image in ('R a nd in each of t.llC oth er cylin
ders as well. The process is conLinu ed in this 
manner with each doublet introducing n-} image 
doublets at each s t.ep. The same process is applied 
starLing wi Lh each of the n-1 J'emai ni ng cylinders. 
Again the potenLial of the s~'s tem will be the sum 
of the potentials of aU t.h e doubleLs. An appli cation 
of this m ethod will be given in sect ioll 6. 

5 . Cylinder Near a Plane Boundary 

If bl= b, (T' = l T, a' = 7r-a the pla ne equidis tanL 
h etween the cylinder axes is a s treamlin e and Lhe 
solution represents the flow induced hy a cylinder 
moving in the presence of a plalle boundary. Figure 
2 shows the sLreamlines for a eyl inclc r movill g t.oward 
a wall , a = O. 

The equations can b e simplified when the cyli nder 
moves parallel Lo the wall, a= 7r j2, with its circum
ference touching the wall, bl. f= 1/2. I II th is case the 
complete solution is 

An approximate solut ion is obt.ained by Laking n 
terms of the series an;! in Lhe remaining terms re
placing k/(k+ 1) and (k + 2) /(lc + 1) by 1. T hus 

. n 1 ( 1 1 "'I 

w~~Ub ~ (k+ 1)2 ~ ~ _ _ k_ + ~_ k+ 2 ~ 
L b k+ 1 b k+ 1 ) 

. 2 ( 7r2 n 1 ~ 
+~Ub -z - ~ 6-- ~ (lc+ 1)2 . (23) 

- - 1 I 
b I.. ) 

The s t.ren,mJ ines arc shown in fi gul'(' 3a. The eompu
taLions were made with 11 = ;). The streamlines for 
figu re 3b wer e obtai !led by superposing a velocity 
- (T on tlle cylindcr anc1th e liquid. 

T he streamlin es for l iquid nowing aro Ll nd a cylin
der parallel to a plane wall a re shown in figure 4. 
Equation (19) was used with n = 1, a = 7r/2, bl f= 1/4. 
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F I G UR!!] 2. 

U= l , b=l. 

,/>-0 

Streamlines for cylinder moving IowaI'd a plane 
boundary. 

FI O l ' Ul<; 3a. Streamlinc!> for c!Jlinder IllO vinr; parallcllo a plane 
boundar!J wizen the cylinder IOllche!> th e boundar!J. 

U=I,II=1. 

5.0 

4.5 

____ --------------------------------~4.0~ __ _ 
____ ----------------___ ----___ -----------~3~.5------

, , , , , , , , , , , , , , , ,0 , , , , , , , , ~.~, , , , , , 
FIGURE 3b. Streamlines for current flowing with gencml 
veloeily U past a fixed cylinder against a plane boundary. 

Obtained from fig ure 3[1 by impressing a velocity - U on the fluid and the 
eylincler. U= l , b=l. 
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FIGURE 4. Streamlines for CUITent flowing with general velocity 
U past a fixed cylinder near a plane boundary. 

U = I , b=I. 

6 . Cylinder Near Two Plane Boundaries 

If four cylinders of equal radii have symmetric 
positions and velocities with respect to two perpen
dicular planes as indicated in figure 5, then each 
plane is a streamlin e and the solution represents the 
flow induced by a cylinder moving in the presence 
of two perpendicular plane boundaries. Consider
iJ?g t~e case.f= 4a, g= 4a, a= O, an approximate solu
tlOn ]S obtamed by the method of section 4 stopping 
after the first set of images. The str eamlines are 
shown in figure 6. 

u 

,,@_t 
I 
9 -r ------I 

~ 
c3y 

u u 

FI GURE 5. Notation diagram f or motion of a cylinder near two 
perpendicular plane bounrlarifs. 

The dotted lines indicate the streamlines that can be considered as solid bound
aries. 
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FIGURE 6. 

U = I , b= l. 

Streamlines fo r a cylinder moving toward one of two 
perpendwular plane boundaries. 

7 . Cylinders Moving as a Rigid Body 

If the velocity, Ueia , is the same for each cylinder 
they move as a rigid body. The previous solutiOl~ 
~or a cylinder moving . parallel to a plane boundary 
]S one example of thIS case. Another example is 
given in figure 7 where b' = b=j /2 a' = a= O. The 
solution simplifies to ' 

00 (- l)k { 1 1 "'1 w= Ub --~ (k+ 1) 2 ~ _ __ k_ + ~_ k+ 2 ~ . 
b k+ l b k+ 1) 

(24) 

The approximate solution obtained by the method 
of section 5 is 

(25) 

The computations were made with n = 3. 
Another example is given in figures Sa and 8b 

where b' = b= f/4, a' = a=O. The solu tion was ob
tained using eq (19) with n = 1. 
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FI GURE 7. Streamlines fOT cw-rent flowing with general velocity 
U past fixed cylinders. 

U~ l , b~ l. 
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F lGURE 8a. StTeamlines for two cylindeTs moving as a Tigid 

U~ l , b~1. 
body. 
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FlG VRE 8b. Stl'eamlines f or CUtTent flowing with:'general 
velocity U past fixed cylinders. 

U~ l , b~ 1. 

The author gratefully acknowledges the helpful 
suggestions of G. H . Keulegan and G. B . Schubauel'. 

W ASHINGTON, March 11 , 1958. 
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