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Uniform Transient Error 1 

Edith 1. R. Corliss 

The economy of t ransient error is discussed . Equations describing error in power
level measurements of transients can be used to compute the design of analyzers so as to 
distribute transient error in a way compatible with experimental requirements. In addi
tion, consideration of a limiting power-discrimination factor provides a measure of the 
largest number of bandpass filters that can be overlapped on adjacent channels to yield 
meaningful information about a rapidly changing signal. A scanning filter can be compared 
with a set of bandpass filters by calculating the effective number of overlapped bandpass 
filters providing the same resolu tion as the scanning filter . The results are applicable to 
autocorrelation analyzers . R estrictions on rapid signal analysis also are considered for the 
special case in which power-level discrimination is limited by noise. 

1. Introduction 

Measuring systems are limited by natural laws, 
and several of these guarantee that errors are inevi
table. However, the distribution of errors can be 
controlled by the experimenter. One can choose 
experimental conditions that minimize errors in a 
region of particular interest; one can choose alterna
tively to spread the errors out as thinly as possible. 

The transient properties of a measUTing system 
become dominant whenever there is a restriction in 
time. The constraint may arise either because a 
signal is to be analyzed by a rapid process or because 
a signal may be changing rapidly in time. 

In order to minimize transient error, experimental 
conditions must be chosen on a quantitative basis. 
Some prior knowledge of the signal to be analyzed 
is r equired. For the pUTpose of choosing the condi
tions of measUTement, the problem of analysis can 
be restated as follows: Given an ensemble of signals 
characterized by a range of fluctuations in power 
over a range of interval in time, one certain signal 
is to be distinguished from all other signals in the 
group . 

A signal is discrete in time. The fluctuations in 
power during the existence of the signal convey its 
identity. If the power-level fiuctuations are to be 
indicated within a certain degree of error, the time 
required for the analyzer to build up to within a 
corresponding fraction of its steady-state value must 
not exceed the shortest time interval over which a 
significant fluctuation of power level occurs in the 
component of the signal being analyzed. Thus, the 
rate at which the indication can build up or decay 
in the analyzer must exceed a limiting valu e. It is 
useful to describe this rate by reference to the 
response time of the analyzer, i. e., the time required 
to reach substantially steady-state indication after 
an abrupt change in signal. 

Regardless of whether a frequency or a time
correlation analysis of the signal is undertaken, the 
results are observed as output power levels. Hence 
the ability to resolve a change in power level limits 
the discrimination that can be achieved for changes 
in frequency or intervals of time. The relation be-

1 This work was carried out as part 01 " program 01 naslc Instrumentation 
research and devel~pment cooperatively supported by Omce of Naval Research, 
Atomic Energy Commission , Ail' Force Office of Scientific Research, and the 
National Bureau of Standards. 
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tween the various limitations on the performance of 
an analyzer can be illustrated by means of a three
dimensional system (see fig. 1) in which the Cartesian 
coordinates are frequency, time, and either power 
or a function of power. The transient error then 
becomes a least volume in this space, within which 
no information about the signal can be found. The 
size of this least volume is limited by the natural 
behavior of analyzers, but its shape can be distorted 
to suit the needs of the experimenter. 
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FIGU RE 1. Three-dimensional signal space. 

Resolutions in frequency and time are implicit in 
the Q (figure of merit) 2 of a frequency analyzer or, 
correspondingly, in the integration t ime of a corre
lation analyzer. To minimize the errors in an anal
ysis, either Q or the integration time must be kept 
as high as possible consistent with the necessary 
resolution in power level. 

Consider the rate at which power builds up in a 
lineal' series-resonant system, in a simple filter or a 
galvanometer. A family of indicial response curves 
for such a system is shown in figure 2, in which the 
coordinates have been scaled to relative values. The 
amplitude response has been scaled with the steady
state value as a unit; unity on the time scale is the 
natural, undamped period of the system. Curves in 
the family are plotted for different values of Q. 

2 The ratio of the energy·stora~e capacity 01 a resonating system to its energy _ 
dissipation rate is known as its ' figure 01 merit", or Q. 
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FIGURE 2. Indicial response oj a series-resonant system 
subjected to a step junction. 
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This shows the fraction of steady·state response attained as a function of the 
time following the Impulse, scaled in units of the natural period of the system. 

The analyzer may be considered to have reached 
a sufficient fraction of steady-state indication when 
it is just capable of resolving all unlike signals, 
whereas all like signals are indicated as being the 
same. Attempts either to speed up the response or 
increase selectivity are obtained at the expense of 
decreased Q or increased response time, without pro
viding any additional information about the signal. 
Lengthening the response time, moreover, impairs 
the ability of the analyzer to indicate rapid power 
fluctuations, so that some features of the signal can 
be lost in this way. 

2 . Transient Limitations of a Simple 
Analyzer 

The quantitative extent to which power-level res
olution affects resolution along the coordinates of 
frequency and time can be found from the natural 
properties of the analyzer. The discussion to follow 
will be based on the common type of system whose 
behavior is described by a second-degree differential 
equation with constant coefficients, but its applica
tion to other systems will be indicated. 

For example, consider the use of a linear series
resonant system as a tuned filter to indicate how a 
particular component of a complex signal fluctuates 
with time. If x represents amplitude, the transient 
response of the filt er in terms of its center frequency, 
jo, and figure of merit Q, is 

(1) 

Let the observation interval, D..r, be sufficiently 
long compared with To, the undamped natural period 
of the filter, so that only the envelope of its response 
need be considered. 

The analyzer should be able to change its indication 
by at least the smallest detectable power increment 
during a specified time after onset or removal of the 
input signal. The power built up in the filter is 

proportional to JXJ2. If Wo is the initial power in the 
filter, at any time after cessation of the signal the 
power W, is given by 

Let D.. W = (l-e- a ) W be the smallest discernible 
change of power level in the filter; i. e., the power 
must decay by a factor e-a for a change to be ob
served. If signal cessation is to be discerned within 
time 

so that 

and the requirement is 

(2) 

if the filter is to indicate the occurrence of a change in 
signal during the interval D..r. 

Equation (2) has been derived upon the basis of 
the finest resolution in power levels that can be 
achieved with the analyzer in the time interval D..r. 
Given that D..r is the briefest duration of any signal 
component to be observed, eq (2) also shows how the 
Q of a filter must be adjusted as a function of its 
tuning in order to distribute the transient error uni
formly over the frequency range. In addition, be
cause eq (2) deals with limits of resolution, it pro
vides a measure of the largest number of bandpass 
filters that can be overlapped on adjacent channels 
to yield meaningful information about a rapidly 
changing signal. 

Over a range of frequencies D..j= j u-jl surrounding 
jo, the frequency to which the filter is tuned, the 
change in filter response does not exceed the smallest 
detectable power change. Consider the relative 
transmission characteristic of a filter having its Q 
given by eq (2) (see fig. 3). The rela tive power re
sponse of the filter is given by 
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The precise result of solving for the discrimination 
limits in terms ofju andj! comes out as 

j -jf a / a 2 

j~ ~7l"foD..r -V (ea -1) + 167T"2j5D..i2' 

but if D.. W is small compared to Wo (i .e., fine-power 
discrimination can be made) then 
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FIGURE 3. Relative power response of a series-resonant system 
as a function of steady-state driving frequency. 

3. Analyzers Made Up of Overlapped 
Channels 

For a set of filters overlapped at the limi ts of the 
power resolution, the limiting number of filters 
yielding meaningful information between it and fb, 
the high- and low-frequency range limits, respectively, 
is given by 

ft -ib 21T.t.r (j 
nl-l ~i ,,-f l= ci/2 t-ib)· 

(The limits yield nl-l rather thaIl nl because one-half 
of a filter extends beyond each end of the frequency 
range as defined here.) 

In practice, it i usual to overlap adjacent filters 
at their half-power points, so that their integrated 
response has a flat characteristic. For thi condition, 
N jo/Q, and the number of filters becomes 

The ratio of this number to the maximum usable 
number of filters (overlapped at their limits of resolu
tion) turns out to depend only on power resolution, 
i.e., 

If we are willing to take a "yes-no" type of analysis 
from the filter, then for a set of filters overlapped at 
their half-power points we can choose as a com
patible condition that a=ln 2, i.e., the power declines 
at least to one-half its initial value during the obser
vation interval .t.r, and we get as the number of 
filters for this case: 
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Under these conditions, nb invites comparison with 
the number of "bits" available in a given bandwidth 
during the time interval .t.r.3 

4. Scanning Analyzers 

The process of scanni.ng makes it possible to study 
the spectrum of a signal by means of a single channel 
in place of the numerous channels needed when fixed
bandpass filter are operated in parallel. When one 
scans by sweeping the tuning of a filter over the 
frequency range to be covered, the filter shows a 
rather complicated type of r esponse.4 However, one 
can make a quantitative study of the effects of 
scanning by use of simple theory, if one recognizes 
that another multiplicative factor will be necessary 
to take accurate account of the spreading of the 
filter's transient response due to the effects of scan
ning. The spreading occurs because the incoming 
signal beats with the ringing of the filter. 

If one sweeps through a band of frequencies in
cluded between the limits it (high-frequency) and ib 
(low-frequency) in the time interval r, the length of 
time available to build up the power response of the 
filter at any instantaneous tuning i generally much 
smaller than the whole sweep interval. Call the 
ob ervation interval for each effective single filter Llr, 
as for discussion of the fixed-bandpass filter . This 
quantity is directly related to the length of time that 
it takes the center tuning of the futer to change 
through a range of frequencies equal to the band
width between its half-power points. In this simpli
fied discussion we shall take this relationship a 
unity, remembering that it is an approA-imation. 

Various types of scanning functions can be used, 
depending upon the nature of the selectivity charac
teristic desired. If one wishes to have a constant Q 
(constant percentage bandwidth), the condition that 
the tran ient error is to be uniform throughout the 
range of frequencies swept over can be satisfied by 
scanning at a rate proportional to the square of the 
instantaneous center tuning of the filter . When one 
wishes to scan through the frequency range with a 
filter whose bandwidth is a constant number of cycles 
per second, so that the Q is directly proportional to 
the center tuning of the filter, the rate of sweep 
should be constant independent of frequency. One 
type of canning filter sweeps logarithmically over 
its frequency range; when it is adjusted to uniform 
transient response, its instantaneous Q is propor
tional to the square root of its instantaneous tuning. 
Thus it is intermediate in i ts properties between 
constant-frequency bandwidth and constant-per
centage band v,ridth. 

• R. IV. L. Hartley, Transmission of information, Bell System Tech. J. 7, 535 
(1928) • 

• F. M. Lewis, Vibration during acceleration tbrough a critical speed, Trans. 
Am. Soc. Mecb. Engr. 54,253 (1932); G. Hok, Response of linear resonant system 
to excitation of a frequency varying linearly with time, J. Appl. Phy. l~, 242 
(1948); N. F. Barber and F. Ursell, The response of a resonant system to a ~lidiog 
tone Phil. Mag. 39, 345 (1948); J. Mariqne, The response of RLC resonant CircUits 
to EMF of sawtooth varying frequency, Proc. Inst. Radio Engrs. 40, 945 (1952); 
M. C. Herrer;), Resonance pbenomena in tlme·varying circuits, Technical Report 
No. 69, (Electronics Research Laboratory, Stanford University, 1953); H. W. 
Batten, R. A. Jorgensen, A. B. MacNee, and W. W. Peterson, The response of a 
Panoramic Analyzer to CW and pulse signals, Proc. Just. Radio Engrs. 42, 948 
(1954); S. S. L. Cbang, On the filter problem of the power·spectrum analyzer, 
Proc. Inst. Radio Engrs. 42, 1278 (1954). 



The relations between Q and the sweep rate follow 
from the restrictions of eq (2) on minimum dwell 
time: 

Llr = OiQ 
27rjo. 

(3) 

D escribing the instantaneous scanning rate by the 
expression 

h(jo)dfo=dt, 

an approximation to Llr is obtained by integrating 
the scanning function between the half-power points 
of the filter. (To an approximation good to 12 }~ 
percent, even for Q as low as 1, the limits are jo 
± jo/2Q.) Thus, 

i f + f 12Q 
Ll r= 0 0 h(fo)dfo . 

f -f 12Q o 0 

E xpanding this integral in to Taylor 's series: 

So that, to a close approximation: 

Looking back at the original integral, evidently 

and, substituting into the series 

fO h ) 1( fo)3 . Ll r= Q (fo +"3 2Q h" (fo) + hIgher terms. 

But, from eq (3) 

Ll r = 2:~~ =~ h(fo) +KIQY h'" (fo), etc. 

If Q is of moderate size or higher , then, very nearly 

01 Q2 
Mfo) = 27r fi (4) 

The precise way in which Q depends on the total 
scan time, the scanning function, and the total 
bandwidth covered can be obtained by substituting 
for eq (4) in the expression 

Mfo)dfo= dt. 

Assigning the desired variation of Q with frequency, 
and integrating for the total scan t ime r between the 
band limits j b and jt, we get 

(5) 

The magnitude of Q can be found by solving this 
equation. 

Usually r is the reciprocal of the r epetition rate 
of the scanning filter . The value of 01 is a measure 
of the fineness of power-level discrimination that can 
be achieved. (Notice that eq (5) provides a means 
for assigning to 01 any desired dependence upon fre
quency, so that transient power discrimination can 
be distributed at will over the frequency range.) 

The functioning of a scanning filter can be com
pared with a parallel channel set of bandpass filters 
by calculating the effective number of bandpass 
filters that will provide the same resolution as the 
scanning filter. The filters may be taken to be 
overlapped at their half-power points, and are 
calculated to cover the frequency range scanned 
with the same power-level resolut ion and figure of 
merit as those available from the scanning filter . 

For a narrow frequency differential , dj, in the 
tuning of the scanning filter , the "concentration" of 
filters in the range is given by 

df 
dn= t./ 

where Llj is the width between the half-power points 
of the scanning filter at the instantaneous center 
frequency, jo. The figure of merit, Q, is, of course 
jo/ t.j. Since one-half of a filter extends beyond each 
limit of the frequency range defined, integrating 
over the range gives one less than the equivalent 
number of parallel-channel filters that have their 
center tuning extending over the range, or 
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5 . Uniform Distribution of Transient Error 

Table 1 summarizes the results of applying the 
foregoing discussion to calculate Q, the figure of 
merit, k, the scanning-rate parameter, and n2, the 
equivalent number of filters overlapped at their half
power points, in terms of the scanning time, r, the 
scanning bandwidth limits jb and i t, and the atten
uation parameter, 01. These calculations are based 
on uniform distribution of transient power-level dis
crimination, i. e., 01 is taken as a constant. 

To facilitate adjustment of t he r esponse time of 
an analyzer to the least duration of any signal com
ponent to be observed, the tabulation also includes 
t.r the observation time interval for any single filter . 

Although the spreading due to ringing in the scan
ning fil ter is neglected, the relations shown in table 1 
indicate quantitatively how the transient error and 
scanning characteristics affect the resolution of an 



TABLE 1. Relationships among vaTiables describing the performance of scanning and [/,Xed bandpass fillers in which error in !ransient 
powe1'-level discrimination is uniformly disiTi buted 

Q, Figure of merit (nz- l ), Number of £il- K , Scanning t::.r, Observation 
Scanning rate for selectivity ters overlapped at half- parameter interval 

power poin ts 

No scan ______ ___ __ __ ___ _ - - - -:;, 2-rr.fot:.To 27rt::.To(f ,- f b) 0 a f) 
a a t::. To=27rfo 

Uniform scan , df/ dt = k ____ ____ < -J 27rT ~ -J27rT(~-.h) f, -f, aT 
- a (f, - /b)" 0 T 27rU,- /b) 

Logarithmic scan, df/ dt = kfo - __ < -J 27rT ..f1o 2-J 27rT -ff..r In (fdh) 1 ~ aT 
- aln (fdh) fo aln(ftlh)( f,- N T .,flo 27rln (ftl/b) 

Quadratic scan, dJ/ dt = V02 ____ _ < -J 27rT 
- a( l /h- l /f, ) 

analyzer . The spreading du e to ringing can be 
taken care of through t he power-level resolu tion 
factor a. 

As a numerical illustration of how the facLors oper
ate, consider what sort of analysis can be accom
plished over the frequency ranO'e from 100 to 10,000 
cps in 0.1 sec, if we are saLisfied wiLh a lO-pCl'cent 
power-level error. 

From a bank of parallel bandpass filters, over
lapped at their half-power poin ts, you can get mean
ingful resul ts from 6.26 X 104 filters, wiLh a Q ranging 
from 6.28 X 102 at 100 cpsLo 6.28 X 104 at 10,000 cps. 

If you scan uniformly at 10 sweeps/sec, the effec
t ive number of filters is markedly deereased because, 
of course, much less response time is available for 
each filter ; in. fact each filt er must now respond with 
90 percen t of its final indication in about 4 msec. 
This sort of scan is equivalent Lo 252 filters, over
lapped at their half-power point , and the available 
selectivity ranges from a Q of 2.52 at 100 cps to 252 
at 10,000 cps. 

A logarithmic scan , which allows somewhat longer 
dwell time at low frequeneie , is equivalent to only 
somewhat fewer filters, 211 b eing th e number under 
t he condi tions of the example given above. How
ever, the Q at the low-freq lIency limit is 12.2, so that 
t here has been some improvement in low-frequeney 
r esolution. This has been obtained at some loss in 
high-frequency selectivity; at 10,000 eps the Q is 122. 

' 'Vhere constant percentage bandwidth is desired, 
t he scan rate is proportional to the square of the fre
qucncy. A correspondingly larger part of the time 
of observation is devoted to the low-frequency region. 
The limits converge on a Q of 25 .2 independent of 
frequency, covering the range with 116 filters. 

6. Limitation by Noise 

Th e noise level associated "''lith the sIgnal provides 
a practical limit to the power-level resolution t hat 
can be obtained. Any fmther increase in resolution 
merely results in observing the noise, so that like 
sio' nals may appear to differ. 

An cspecially interesting expression results from 
co nsidering t he least power change observable to be 

-J 27rT 1 nC ') 
l /h - l /f , I-J aT 

a (l //b- l /f,) j;, r 10 27r (1//b- l /f,) 
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r 

limited by tb e noise present with the signal. If S is 
t be signal power and fl is th e noise power, we take 
as a limi t for detection 

Considered as a fractional power change, 

!J. S 
S + N 

Wh en S /N » l , a---'7N /S and 

and, correspondingly, 

(6) 

(7) 

A higher Q can thus be used when t here is a good 
signal-to-noise ratio. Equation (6) has a provocat ive 
resemblance to the H eisenberg uncer tainty principle. 
The resemblance is real : both are derived by related 
mathematics, and both are based on the idea of a 
least discernible power change. 

A special case of practical importance is the detec
t ion of a sinusoidal signal in the presence of "white 
noise." (N oise energy per unit bandwidth in eycles 
per second is constant. ) For the filter ealibrated at 
its peak r esponse by means of a sinusoidal signal of 
power W e, tb e same indication will be obtained with 
a 'white noise of E f units pel' cycle per second, given by 

This expression is obtained by integrating over the 
filter response. 5 

' D . BierellS de H aan, Nom'elles Tables D'Integrales DMnies, eq. 6, p. 47 
(Edition 1867 reprinted 1939). 



Detection of a sinusoidal signal of power So (at the 
center frequency to which the filter is tuned) in the 
presence of a noise distribution of n, units per cycle 
per second proves to require a least time interval 
.!1To, which is independent of Q. 

Iarrowing the filter does decrease the amount of 
noise passed, but it lengthens the response time by a 
proportionate amount. 

7 . Transfer of Results to Correlation 
Techniques 

The foregoing discussion of selectivity and response 
time can be transferred directly to the design of 
correlation analyzers. In a paper on synchronous 
detectors 6 Selgin derives a relationship between the 

e Paul Selgin, Harmonic output of the synchronous rectifier, J. Research 
NBS 4.7. 427 (1951) RP2267. 
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integration time of a correlation analyzer and the Q 
of a filt er exhibiting equal selectivity, 

Q 7rT 

= T' 

where T is the period of the synchronous detector 
and T is the R- C integration time constant. This 
relation permits calculation of the transient error 
distribution in correlation analyzers from the r esults 
in this paper. 

The author expresses appreciation to Chester H . 
Page, who provided much-needed advice on this 
work, and to whom the generalized mathematical 
treatment deriving the scanning function from an 
arbitrary Q is due. 

WASHINGTON, July 26, 1956. 
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