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Stress-Strain Relationships in Yarns Subjected to Rapid 
Impact Loading: 5. Wave Propagation In Long 

Textile Yarns Impacted Transversely 
Jack C. Smith, Frank L. McCrackin, a nd Herbert F. Schiefer 

T he behavior of an infi nitely long flexible fil a ment after transverse impact is treated 
theoret.ically. The filament is ass umed to have a tension-strain curve that is always co n­
cave downward, and to have no short-ti me creep or stress-rei fixation effects. Under most 
cond itions the impact in itiates a varia bl e strain t hat propagates down the fil ament between 
an "elasLic wave" fro nt and a " plast ic wave" front. A transverse wave, shaped like an 
inverLed V, then travels in t he constan t-stra in region behind the plastic-wave front. Under 
specia l condi tio ns t he transverse-wave front may propagate faster than the plastic-wave 
front, b ut the shape of t he tra nsverse wave r ema ins t he same. T he theory for both cases is 
worked out in detail , an d some ill ustrative examples arc given. 

1. Introduction 

The behavior of textile yarns hold in clamps 40 to 60 cm apart and impacted transversely 
was demon tra ted and discu sed in the fom th paper of Lhis serie [1, 2, 3, 4).1 The pr esent 
paper deals wi th the theor:r of transverse-wave propagation in :ram s of infini te length where 
there are no clamps to reflect t he waves. The th eory developed here will be used in fu ture di -
eussions of t ra nsverse impact. 

Wh en a yarn is st ruck t rallsversoly, a strain wave is propagated alollg the yarn ou twar d 
in each direction from th e point of impact. In the region between each of these wave fron ts, 
material of the yarn is set into motion longitudinally toward the point of impact. This ma­
terial is taken up by a ten t-shaped wave of tr ansverse motion that propagate outward from th e 
impact poin t. This b ehavior i demon trated in figm e 1, in which several configura t ion of a 
yarn afte], transverse impact arc shown. The position of th e longitudinal-s train wave in each 
of the configUl'ations is hown by the arrows. The backward How of yarn materia.! is indicated 
by t he whi te tick marks. 

li'IGUltE 1. ConJigw'ations of a yam afler transverse impact. 

These cOllfiguratiolls, 40X10' 6 scc apart, were calcu lated for a yarn ba\-ing a 
linear (Hooke's la.w) tension-strain curve. Longitudinal-strain wave Yeiocity 
was 2,500 m/scc. rr he positions of the longitudina l-wave front in successive con­
fig urat ions, arc designated by the arrows. Impact occurreci at tbe vertex of t ho 
transverse wave shown at the left, at impact velocity of ISO m/see. T he lead ing 
edge of the transverse wave propagates with velocity 350 Ill/sec with respect to 
the unstrailled yarn material. Inward flow of yam material at veloeity 5O.Ill /see 
is shown by the whi te tick 111arks. 'There is 110 horizontal com po nentof flow in the 
region of t he transve rse wave. 

The configurations shown in figur e 1 were calcula ted for a yarn composed of a Hookean 
material , using rela tions developed in this papel'. The longitudinal strain-wave veloci ty wa 
2,500 m /sec. Transverse-impact velocity was 180 m /sec. Under these conditions a 2-percen t 
strain is produced in the wak:e of Lhe longi tudinal-wave fron t, and yarn ma terial in the r egion 
between 10ngiLudinal- and tran sverse-wave fronts flow inward at a velocity of 50 m / ec. I n 
the wake of the transverse-wave fron t, which propagates at a velocity of 350 m/sec, the yarn 
material flows t ransversely at the impact velocity as shown. The t ime interval between each 
configura tion is 40 X 10- 6 sec. 

Transverse waves of the typ e just described have been discussed by Taylor and his associ­
ates [5]. Cole, Dougher ty, and Huth [6] have trea ted th e problem of tran verse-wave propaga­
tion in prestressed wires. Cr aggs [7] and M cCrackin [8] have also discu sed the problem for 

I Figures in brackets indicate the literature references at the end of this paper . 
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plastic-elastic strings, showing the effect of wavc reflections and interactions. The problem 
of oblique impact of an elastic cable has been discussed recently by Ringleb [9] . The treat­
m ent presented her e extends the work of these authors and malces use of concepts introduced 
by von Karman [10] and Taylor [11] in their treatmcnts oflongitudinal impact. 

2 . Theory of Longitudinal Impact 

Longitudinal-strain waves resulting from a constant-velocity tensile impact do not neces­
sarily have sharp wave fronts. According to von Karman, the strain increases gradually in 
the region between two wave fronts, an "elasLic wave" fron t 2 propagat ing at velocity 

(1) 

and a "plastic wave" fron t 2 propagating more slowly at velocity 

(2) 

In eq (1) and (2), M is the mass per unit length of the unstrained filament material, and dTjdf. 
is the slope of the tension-strain curve, evaluated at zero strain in eq (1) and at strain f. p in 
eq (2). In the wake of the plastic-wave front the strain in the filament has the constant 
value €1J" The value of f. p depends upon the speed at which the filament is impacted longi­
tudinally. 

The filament material in the wake of the plastic-wave front flows in the impact direction 
at a velocity uniform along the filament given by 

(3) 

For a filament impacted longi tudinally at one end, W is the same as the impact velocity. 
In deriving the above equations, von Karman assumed a tension-strain curve that was 

always concave downward. T ension-strain curves for textile yarns often have a concave up­
ward portion which, however, is less pronounced in curves obtained at rapid testing rates. In 
addition, textile yarns exhibit creep and str ess-relaxation phenomena. Such phenomena were 
not consider ed by von Karman. D espite this, von Karman's treatmen t represents a notable 
advance over theories based on Hookean tension-strain behavior. 

3. Theory of Tra nsverse Impact 

In the laboratory or observer 's coordinate system , let x' and y' denote the horizontal and 
ver tical coordinates, respectively. Let a filam ent lying along the x' axis be impacted with 
velocity V in the y' direction at the point where X'= O. The motion of the filament is to be 
described in terms of Lagrangian coordinates. That is, distances along the unstrain ed length 
of the filament are given in an x coordinate system , which before impact coincides with the 
x' coordinates. The displacement of any point x of the filament at any time t relative to its 
original position is given by Hx,t) for horizontal displacements and 7J (x, t ) for vertical displace­
ments. The location in the laboratory coordinate system of a point x on the filament is thus 
given by 

x' =x+Hx,t), 

Y' = 7J (X, t ). 

(4a) 

(4b) 

2 'I'he terms Helastic" and "plastic" are used as convenient designations fo r the wave fronts bounding the region of variable strain. rrbeyare 
not intended to characterize the complex recovery behavior of th e material. For example, the theory holds for materials having nonlinear tension· 
strain curves, but which recover almost completely from large deformations. For these materials, the strain associated with the plastiC wave is 
almost ent ircly elastic. 
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Consider an element of the filament of unstrainod length L\x. After impaot, this element is 
strained , and its new length, measUl'ed in the laboratory coordinate ystem, becomes 
L\ x [I + (0~/ox)12+ ( 01]/ox)2. The increase in length per unit length, or strain E, is thus 

(5) 

The-angle 8 that the element makes with the horizontal is given by 

. 1 01] 
sm 8= I + eox' C6a) 

cos8= - 1+- . 1 ( o~) 
I + e ox 

(6b) 

The differential equations that govern the motion of the small~element am 

(7a) 

(7b ) 

where "All is the mass per unit length of the unstrained filament, and~T is the tension. By making 
use of (6a) and (6b ), these equations b ecome 

(8a) 

( b) 

Assume, as von Karman did , that the tension T is a function T(e) of the strain only, given 
by the tension-strain CUl've. For solutions in which the strain , and consequently the ten ion, 
are constant along the filament, eq (8a) and (8b) r educe to 

~ and 1] must also satisfy eq (5). 

021] T 021] 
ot2 = M(I + e) ox2' 

02~ T 02~ 

ot2 = 1\,[(I + e) ox2' 

(9a) 

(9b) 

For other solutions in which 1] = 0 (no transverse wave), eq (8a), (8b), and (5) reduce to 

1]= 0, (lOa) 

02~ 1 aT 
ot2 = 1\,[ ox' (lOb) 

o~ 
e=-· 

ox (lOc) 

This is the case considered by von Karman, and to which his solution, eq (1), (2), and (3), is 
applicable. 

A combination of olutions for the preceding special cases gives the solution to the problem 
in which a long filament initially at rest along an axis in the x' direction is impacted transversely 
at x= o with velocity V. The boundary conditions that must be satisfied for the x>O half of 
the filament are ~=O and 1] = Vt at x=O, and ~= 1]= 0 at X= co. 
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4 . A Simple Solution Usually Applicable 

Immediately after impact a train of longitudinal-strain waves propagates outward along 
the filament. The leading wavelet in the train, or elastic wave, propagates at velocity G.-given 
by eq (1) . At points in advance of the elastic wave the filament is unstrained. The elastic 
wave is succeeded by a series of other more slowly propagating wavelets, each wavelet adding 
an increment to the strain in the filament. In the wake of each 'wavelet, material of the fila­
ment flows inward toward the point of impact at a velocity that increases as each wavelet 
passes. The velocity of each wavelet is proportional to the square root of the slope of the 
tension-strain curve, hence in order that the wavelets do not overtake each other, the slope 
of the tension-strain curve must decrease , as e increases (be concave downward). The final 
wavelet in the train, or plastic wave, propagates with velocity Gp given by eq (2). The strain 
in the wake of the plastic-wave front has the constant value ep • Filament material in the wake 
of the plastic-wave front flows inwarsl at the constant velocity W given by eq (3). 

For the simple solution discussed here, transverse-wave motion of the filament occurs only 
in the wake of the plastic-wave front. The transverse wave thus propagates with velocity U, 
which is less than Gp • For the region in advance of the point Ut on the filament, where only 
longitudinal-strain waves occur, von Karman's solution [10] is applicable. This solution, 
satisfying the differential eq (10) and the boundary conditions ~= - Wt at x= Ut and ~= O 
at X = <Xl, may be written as follows : 

For the region G.t< x< <Xl , 

~= 'I) = e= O. (11) 
For the region Gpt::; x::; G.t, 

(120,) 

To find the amount of motion in the ~ direction, consider a wavelet, which increases the 
strain in the filament by an increment de. This wavelet propagates at velocity G(e) and arrives 
at point x at time t= x/G(e) . The inward velocity of material flow is increased by an amount 
-G(e)de during time t - x/G(e). The distance ~ that point x moves inward is the integrated 
product of the velocity and time after arrival for each wavelet passing through the point x, or 

(12b) 

where: 

(12c) 

(12d) 

and a is a variable designating strains along the filament in advance of the point where the 
strain is E. 

During the time interval between the arrivals of the elastic and plastic waves at point x, 
the train is found as a function of x and t by solving the following equation for e: 

(12e) 

'1) = 0, (130,) 

(13b) 

e= ep= a constant. (13c) 

In order to describe the motion ,ip the transverse-wave region (O::; x::; Ut) .it is necessary to 
find solutions of eq (9a), (9b), and"(5), which satisfy the appropriate boundary conditions .. 
The most general solution of (9a) has the for~n 'I) f + g+ At+ Bx+ K, where f and g are non­
linear functions of the variables t - x/.yT/M(l + e) and t+ x/-YT/M(1 + e); respectively. Applying 
the boundary condition that '1) = Vt" at x= O. gives Vt f(O,t) + g(O ,t)+At+ K . In order that 
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this relation be satisfied, it is necessary that ](= 0 and g(O,t)=-j(O,t) . Therefore, j anel g 
must be the same fun ction except for sign, and 

The condition that '1 = 0 at X= Ut can only be satisfied if f = O and B = - v/u. Tlm 
?) = V (t-x/U). Forthi value of?) and for a constant value of E, Lhe most general olution of eq (5) 

becomes ~=x[-v'(1 + E)2-(V/U2- 1]+ h (t)+](. The condition ~= O at x= o requires that 
h (t)+ ](= O. The solution for ~ just obtained is also a solution of eq (9b); Lhu s: For Lhe region 
o ~x~Ut , 

'1 = V(t -x/U) , 

~=x[ (1 + E2)2- (V/U)2- 1] , 

(14a) 

(14b) 

(14e) 

The b ehavior of the negative half of the filament is the same a that ju L de cribed except 
for the direction of 'wave propagation. 

The configuration of Lhe positive h alf of Lhe filament at Lime talLer impact is shown in 
figme 2 by the line passing through the points A, B , P, Q. Filament maLerial in the transvcrse­
wave r egion 0 ~x ~ Ut, move inLhe y' diJ.'ection becau e o U"ot = O in Lhis region. Thus point 
A, B, P moving with velocity V, arrive at positions A *, B *, p * at the time t+ dt. The transverse­
wave front moves with velocity Urclative to poinLs on the unstrained filament. The horizon tal 
component of the velocity relative to the x', y' coordinate system th erefore i U(l+ Ez)cos 6, 
and the wave front at point P advances a distance Udt(1+ E2)cos 6 to point Q* in a time dt. 
Filament material in advance of Lhe transverse-wave front is moving inward with velocity lV, 
so that in time dt point Q moves a distance - Wdt to it new po ition Q*. 

FIG lIR E 2. Configuration of positive half of fila ment t seconds 
afte1' impact. 

Filament originally lay along tbe x' axIs and was struck witb velocity V In tbe 
y' direction. A ftcr t seconds tbe positive balf of tbe filamcnt bas tbe configuration 
ABPQ, after t+dt seconds the configuration A * B* P* Q*. Tbc filament is assumed 
to have strain" and tension 1', in the transverse-wave rcgion ABP-A*B*Q*, 
and strain Ep and tension Tp In the regIon in ad vanoo of tbe transverse wave. (It 
is proved in the text that in most cases "='p, T,= T •. ) Filament material In the 
transverse wave moves vertically with velocity V; material In advance of the 
transverse wave moves Inward horizontally with vclocity liT. The transverse­
wave front moves with velocity U relative to pOints on the unstrained filament 
but the horizontal eomponcnt of its velocity relative to the x', y' coordinate system 
is U(l+,,) cos O. 'I'he point Q on the filament moves inward to pOSition Q*, the 
loeatioll of the transversc-wave front at time t+dt. 

The angle 6 that the transverse wave make with the horizontal is consLant alollg lhe 
filament b ecause oUox and orJ/"?:>x are constant in the r egion 0 ~x ~ Ut. The transverse wave is 
therefore a straight line. 6 is given by either of the relations 

. 1 V sm 6=----, 
1+ E2 U 

found by substituting the solutions (14) into the relations (6). 
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At the point X= Ut where solutions (13) and (14) join, ~ and '1 must be continuous. Con­
tinuity of '1 is satisfied because '1 = 0 for both solutions. Continuity of ~ requires_ that 

(16) 

Horizontal and vertical components of the force must also be continuous. Equating the 
horizontal components gives 

(17) 

NIU is the element of mass over which the transverse-wave front passes in unit time, so MUW 
is a force equal to the change of longitudinal momentum per unit time. 
Equating the vertical components gives 

(18) 

The velocity of propagation of the transverse wavo U is found from oq (18) to be 

U= 
M(1 + €2) " 

(19) 

By appropriate manipulation of eq (16), (17), and (18) it is possible to obtain the relation 

T p T2 
l + €p = 1+ €2' 

(20) 

The meaning of this relationship is illustrated in figure 3, where a typical tension-strain curve is 

/ 

/ 
/ 

z 
Q 
<n 
z 
w 
>-

..... STRAIN 

tn-n---- - - ~:;.-~:~~ ------- --------. I-~J 
F IGURE 3. Tension-strain curve whose slope decreases to a value 

less than T/( l + E) . 

plotted. The long line extending from the point - 1 on the strain axis up to and through any 
point €,T on the tension-strain curve has the slope T /( l + €). The only values of T and € 

satisfying eq (20) must be given by intersections of this line with the tension-strain curve. 
In most cases of practical interest only one intersection exists, and the relation (20) can then 
be satisfied by 

(21a) 

(21b) 

Suppose, however, that the tension-strain curve bends over as shown in figure 3 until its 
slope for large values of E diminishes to or becomes less than T /( l + €). A second intersection 
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is possible and two sets of e,T values would be obtained satisfying (20). If a material havinO" 
such a tension-strain curve were impacted transversely at low speeds, small value of e and Tin 
the wake of the plastic-wave front would be obtained. The lope of the tension-strain curve 
for these low values of e is greater than T/(l + e), 0 the plastic-wave front would travel fa ter 
than .J Tp/lvl(l + ep ), the velocity U of the transverse-wave front. At a higher impact velocity 
a train el is obtained at which the slope of the tension-strain curve is just equal to Tr/( l + el)' 
In this special case the plastic-wave front and the transverse-wave front are at the same position 
and move together at the same velocity. If the material is impacted at a higher velocity than 
this, the solution just given no longer applies. Thus a criterion for the applicability of the 
simple solution is 

dT>~. 
de -l+e (22) 

That is, the solution applies if the slope of the tension-strain curve for the material is not less 
than T/(l + e) for all strains less than the maximum strain Ep , obtained as a result of the impact. 
Within this restriction the relations (21) can be used to obtain the results given in the following 
section. A more general solution , which includes the simple solution as a special case, is given 
later in the text. 

5 . Recapitulation of the Simple Solution 

If the tension-strain curve for the filament material obtained at rapid strain rates is alway 
concave downward, if the material does not exhibit large stres relaxation or creep effect 
during a small time interval, and if the conditions of the impact are such that relation (22) 
applies, the behavior of a flexible filament after transverse impact is described as follows : 

Immediately after transverse impact, longitudinal-strain wavelets propagate outward 
along the filament. The outermost wavelet, called the clastic wave by von Karman, propagate 
at velocity 

a - l.l CdT) . e--y M de E ~ O (1) 

The innermost, called the plastic wave by von Karman, propagates at velocity 

(2) 

In the region between the elastic- and the pIa tic-wave fronts the train increases to Ep , the 
maximum value obtained a a result of the impact. The strain remain constant at this value 
in the wake of the plastic-wave front. 

As the strain wavelets pas a given point on the filament, material of the filament flows 
inward toward the impact point at a velocity that increases to the value 

r Ep ITdT 
w= Jo -y M dOl. dOli 

(3) 

the flow velocity for material in the wake of the plastic-wave front . 
The material in the wake of the plastic-wave front forms itself into a transver e wave, 

haped like a tent with the impact point at the vertex. The base of the tent spreads outward 
with velocity 

(23) 

It should be noted that the velocity U is with respect to a Lagrangian coordinate system; 
i. e., a system fixed to the filament, moving and extending with it. Inasmuch as filament mate-
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rail in the wake of the plastic-wave front is in a strained state and moving, the velocity of the 
transverse-wave front along the filament as seen by an observer in the laboratory would be 
(1 + Ep) U - W. Similarly, the plastic-wave-front velocity in laboratory coordinates would be 
(1 + Ep) 01' - W. The elastic-wave front propagates in an unstrained motionless medium and 
so would have the same velocity in both coordinate systems. 

Material in the transverse-wave tent does not move in the horizontal direction but only 
in the direction of the transverse impact. The velocity Vof this motion can be expressed in 
terms of f p, U, and W by rearranging (16) to obtain 

(24) 

If the tension-strain curve for the material is known, it is possible to calculate tables of 
values for U, V, and Was functions of f p • Then, for instance, if the impact velocity is known, 
it is possible to find the resulting strain Ep and thus find the corresponding values of U and TV. 

6 . General Solution 

When the impact velocity is very great, the transverse-wave front in some cases pro­
pagates more rapidly than the plastic-wave front. A solution is then required which provides 
for a variable strain in the transverse-wave region. 

Consider a tension-strain curve that is always concave downward and whose slope eventu­
ally becomes less than Tr/(1+ EI), where el,TI is the point on the curve such that dT/de = T/ (1 + e). 

uch a curve is shown in figure 4. In the region where EI < f < f p , let this curve be approximated 
by a number of straight-line segments drawn between the points el,TI ; f2, T2; ... Ep,Tp. 
Point Ep , T p represents the maximum strain and tension which are attained in the material 
as the result of an impact. 

For this approximate tension-strain curve, consider a solution such as that depicted in 
figure 5, in which the transverse wave is composed of a number of straight-line segments. The 
wave front ofthe leading segment travels at speed UI and the strain in the segment is EI. Wave 
fronts of succeeding segments travel at decreasing velocities U2, Ua, ••• Up, and the succes­
sively increasing strains in these segments are f2, fa, ... Ep. In the region in advance of the 
transverse wave von Karman's solution applies. Thus: 

For the region Oet< x< co , 

l1= ~= e= O. 

FIGURE 4. Tension-strain curve assumed in derivation oj the 
general solution. 
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For the region Uli ~ x ~ Oet, 
'70 = 0, (26a) 

(26b) 

In the region of the transverse wave the vertical displacement '7" in the nth segment will 
have a general solution of the form '7n jn(t - x/ T /l\([(l + En))+g"Ct+xJ...jT /M (l + En))+ 
vn(t - x/ Un) + A nt+ K n. The ooundary conditions to be satisfied arc '7P= Vt at x= O, '7n= '7n-l 
at x= Unt and '71 = 0 at x= Ult. These boundary conditions require that the K n= O and that 
jn=gn=O, and provide relations for evaluating the constants Vn and A n. '7n thus can be ex­
pressed in the form '7 n=vn(t - x/Un) + Ant, which when substi tuted into (5), gives as a general 
solution for ~n, ~n= X[-v'(1 + En)2-(Vn/Un)2-1]+hn(t)+Kn . ~n is a solution of (9b) only when 
h(t) is a linear function of t. Thus ~n can conveniently be expressed as ~n= -wn(t- x/Un) + 
Bnt+ K n, where Wn/Un=·,/(1 + €n)2_(Vn/Un)2- 1. The boundary condition to be atisfied 
are ~p= O at x= O, ~n= ~n- I at x= Unt, and ~1 =- liVlt+ EIUlt at x= Ult. The e conditions 
require that the I-{n= O, and provide relations for evaluating the constants Wn and Bn. 

The olution for the transverse-wave region thus can be written; 
For the interval U2t~x~ Ult, 

'71 =VI (t-x/V,), 

~I = -Wn(t-X/UI) - Wlt + EIUlt, 

wdU1=-v' (1 + E,)2- (vdU1)2-1, 

H 1= --da. 1 J,'ltldT 
o Mda 

For the in terval U3t ~ x ~ U2t, 

'7 2=V2(t-X/U2)- t [VI (1-U2/U1)], 

~2=-W2 (t-X/U2)-t [WI (1-U2/Ul)+W1-E1Ud, 

W2/U2= ,/ (1 + E2)2- (v2/U2)2-1, 
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(27b) 

(27c) 

(27d) 

(27e) 

(27f) 

(28a) 

(28b) 

(28c) 

(28d) 



tn= -Wn (t - x/U n) - t [k~r wk(l-Uk+I /Uk) + ~ - flU] 

Wn/Un=~(l + En)2- (Vn/Un) 2_ J, 

E= En · 

For the interval O:::;X::::; Upt, 

(29a) 

(29b) 

(29c) 

(29d) 

(30a) 

(30b) 

(30c) 

(30d) 

A point some distance down the filament thus is motionless until the elastic-wave front 
reaches it. Subsequently the strain at that point increases, and the point moves inward 
horizontally at increasing velocity until the tip of the transverse wave reaches it. The strain 
is then EI and the inward velocity lil'I' As the first segment of the transverse wave passes through 
the point the trajectory of the point turns upward in a direction inclined to the vertical. As 
subsequent elements of higher strain pass through the point the trajectory becomes less 
inclined, until at strain € p the direction of travel is vertical, parallel to the impact direction. 

The motion of filament material remains verti cal in the region O:::; x:::;Upt. There is no 
horizontal motion of material in this region because of the boundary-condition requirement 
at x= 0 that tp= o. In the region of the strained segments €I:::; E:::; Ep , some flow of material 
takes place along the horizontal direction. It is this flow that causes the trajectory of a fila­
ment point to be inclined from the vertical. The vertical and horizontal components of velocity 
of a filament point in this region are given by the coefficients of t in eq (29a) and (29b). 

Although for generali ty each of the strained segments En shown in figure 5 has been assumed 
to have a different angle 8n of inclination to the horizontal, it will be proved that the angles 8n 

are all equal and that the configuration of the transverse wave is a straight line. 
The displacements tn, 7]n, and the horizontal and vertical components of the tension are 

required to be continuous at each of the points x= Ult, ... Unt, . .. Upt. At the point x= UIt, 
tl and 7] 1 are continuous by definition, and continuity of the horizontal and vertical tension 
components leads to eq (27d) and (27e). At x= Unt and at X= Upt, t n and 7]n are continuous by 
definition. Equating horizontal tension components gives 

T n - I 

l + En_ 1 

or with the help of eq (29c) 
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Equating vertical tension components gives 

T v [ k=n-l ( U )] 
l + n

En Un- M Un vn+ {;t Vk 1- &:1 
or 

NIU,~] Vn-I. 
Un-I 

Manipulation of eq (3 1) and (32) gives the relat ion 

which reduces to 
1 (Tn-Tn- I ) 

M (En- En-I) 

Equation (34) also holds when n = p. Dividing (32) by (33) gives a simple relationhip 

This relationship also holds when n = p. Using (6a), eq (35) becomes 

Vn vp . e 
(l + En)Un C1 + Ep)Up -sm p' 

Applying (36) to (3 0c), (29b), and (29c), and using (6b), gives the relation 

l~ En (1+~:) = l~ Ep( l+~:)= l~ Ep (1+ EP)2 _ ( liJ
2
=cos en. 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

At x= O the boundary condiLions 'Y}p= Vt and ~p= O must be satisfied. The first of these 
conditions gives 

k=p-l Vk Vp k= p - l 

V =vp+ {;t U k (Uk-U k- I) =Vp+(1+ Ep)Up ~ (1 + Ek)(Uk- U k+l ) 

- (1 +::) Up [ %lUk+ I( Ek+l- Ek)+( l + Et)U] (38) 

By the use of (3 ), eq (3 6) can be expressed as 

Vn V 
(1 + En) U n l: + (1+ Et)U1 

- in en, (39) 

where l: is an abbl'eviation for 

(40) 

Similarly, eq (37) becomes 

l ~ En (l+~:)=~l-[l:+ (1~ EJ)UIJ=cos en. (41) 

Equation (3 9) is equivalent to a statement that each sin en has the same value given by 

• 
(42) 
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Similarly, cq (41) states that each cos en has the same value given by 

The configuration of the transverse wave, therefore, is a straight line. 

The boundary condition ~p= O requires that 

It can be shown that 

= [~+(l+ El)Ull cos 8-U1 

=.v[~ +(l+ El)Ul)2-V 2- U 1, 

so that eq (44) can be put into the form 

(43) 

(44) 

(45) 

(46) 

Equations (46) and (42tcan be combined to obtain two different expressions for sin 8 and cos 8 

sin 8= - l _ [ (l + El)Ul-Wl] 2, 
~+( l+ El)Ul 

8 (l + El)UI-WI 
cos ~+ (l+ El)Ul . 

(47) 

(48) 

Equations (3 1) through (48) can now be used to modify the solutions given earlier. Thus 
(3 0a) and (30b) become 

(49a) 

(49b) 

and (29a) and (29b) become 

· =v{[k'f/Uk(Ek+l- Ek)+( l + El)Ul] t _ [ l + En ]x}. 
L: + (1 + El)U1 L:+(1+ El)U1 

(50a) 
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(50b) 

The equation just given are for the case in which the tension-strain curve is approximated 
in the region €1:::;€ :::; €P by a finite number of traight-line segments. The solution sought is 
the limit solution when the number of straight-line segments approaches infinity and the 
length of each segment approaches zero. This limit solution is given in the following section . 

7 . Tabulation and Interpretation of the General Solution 

For the interval O:::;x:::; Upt, 

V { [S(€) + C1 + €l)Ul] t [l+ e ] } 
1/= S + (l + €I)Ul _ - S + (l + €l)Ul X , 

t= [(l + )U - H': ] {l_S~€) + (l+ €l)Ul }.t-{ 1- (1 + )[ (l + €l)Ul - Wl] } X 
~ €l I I S + (1 + €I)UI € S + C1 + €I)UI . 

(51a) 

(51b) 

(51c) 

(52a) 

(52b) 

For the region U1t:;'x< <Xl the solution is given by eq (25) and (26). The symbols used in the 
above equations have been defined previously, except for 

(53) 

and 

(54) 

The general solution given in this section differs from the simple solution given previously 
in that the strain in the transverse wave need not be constant. At low impact speeds the 
equations of the general solution reduce to those of the simple solution. The transverse wave 
then propagates in a region of constant strain in the wake of the plastic-wave front. How­
ever, for a sufficiently high impact velocity and a tension-strain curve of the right shape, the 
case in which the transverse-wave front and the plastic-wave front coincide occurs. The 
velocity of propagation of these two wave fronts is UI and .the maximum strain in the filament 
is f l . If the tension-strain curve is known, the values of UI and €I for this special case can be 
found from eq (27 e). 
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At higher transverse impact-velocities the plastic-wave front propagates more slowly than 
the transverse-wave front . A region of variable straining therefore occurs in the transverse 
wave, and the general solution must be used. The shape of the transverse wave remains a 
straight line, but the propagation velocity no longer increases with increasing impact velocity. 
It remains constant at the value UI • The velocity of propagation of the maximum strained 
portion of the transverse wave Up is the same as the plastic-wave velocity Op and is computed 
from eq (2). In order to find the value of the maximum strain, or constant strain Ep in the wake 
of the plastic-wave front, the relation 

(55) 

can be-used. The value of S depends upon Ep , so that if the tension-strain curve is known, the 
value of Ep needed to give a required V can be found by a process of trial and error. 

At the transverse-wave front, material of the filament is flowing inward horizontally with 
velocity WI. At the point in the transverse wave where the strain attains its maximum value 
Ep , material is flowing inward along the filament direction with velocity W. The quantity S 
represents the increase in velocity over WI due to the strain increase in the transverse-wave 
regIOn. 

The motion of filament points in the wake of the plastic-wave front is most easily visualized 
as follows ; Suppose there is a second filament, inextensible and fixed to the impacted filament 
at a point a great distance in advance of the elastic-wave front. Let the end of this filament 
coincide with the impact point. After impact let the filament be constrained to move alongside 
the impacted filament but without extending so that its end no longer coincides with the im­
pact point, but recedes from it. To an observer at this filament end the impacted filament 
would appear to have motion with velocity W. 

Although flow of filament material in the wake of the plastic wave occurs, there is no 
horizontal component of the flow velocity. A horizontal component of the flow does occur 
in the region where the strain varies: i. e., where EI ~E~Ep . The magnitude of this velocity 
component is much smaller than WI, the horizontal flow velocity in advance of the transverse 
wave, and decreases to zero where E equals Ep. 

At low impact speeds, where the simple theory applies, the angle that the transverse 
wave makes with the horizontal can be found from the equation 

(56) 

As the impact velocity is increased, co (J decreases to the value 

(J - (1 + EI)UI- Wt. 
cos 1- (l+ EI)UI 

( (J is a negative angle and attains a greater negative value as the impact velocity is increased.) 
At higher impact speeds, where only the general theory applies, (J can be found from the 
relation 

cos (J 
(1 + EI)UI- WI 
S+ (1 + EI)UI . 

(57) 

The values of EI , U I , and W I are constants, but S increases as the impact velocity is increased . 
Cos (J continues to decrease, and the value of (J becomes greater negatively. Thus, although 
the progagation velocity of the transverse wave is constant for all impact speeds above a certain 
value, the slope of the transverse wave continues to change. 

Figure 6, a, shows the configuration of the filament after a transverse impact of sufficiently 
slow speed that the simple theory applies. Figure 6, b, shows the configuration after a higher 
speed impact where only the general theory applies. As pointed out previously, the formula 
for U expresses the transverse wave velocity relative to a Lagrangian coordinate system. 
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FI GU R E 6. Confi guration of fi lament t seconds after transverse 
im pact. 

a. Simple theory; b. General tbeory. 

In laboratory coordinates the distance that the transverse wave travels along the filam ent in 
unit time is (1 + fp)U for the simple theory, and S+ (1 + fl ) Uj for th e general theor . The cor­
responding distances that the wave front travels in the horizontal direction are (l + fp)U- Tr­
and (1+ fj )U1 - WI, r espectively . These distances are labeled in figure 6, a and b . Thus it is 
een how some of the relationships derived above could have been obtained very simply from 

a knowledge of geometry and an :intuitive understanding of the problem. 

8 . Examples of the Theory 

In order to illustrate the theory, the behavior of a filament after transverse impact i 
computed for two different hypothetical materials. The first material obeys Hooke's law. 
Its t ension-strain curve is given by 

T - C2 M - f. (58) 

As this t ension-strain curve i a traight l:ine of constant slope, the simple theory applies. 
The clastic- and plastic-wave fronts both propagate with velocity C. U, V, and TV are given 
by 

U=C~l~EP' 
V= C~ fp(l + fp) - [~e p (1 + Ep) - Ep]2, 

W= Cep. 

(59) 

(60) 

(61) 

Curves of U/C, VIC, and W/C as functions of Ep for the Hookean material are plotted in figure 7. 
The solution of a transverse-impact problem may be found from these curves by read:ing off the 
values or ep , U/C, and liTT/C corresponding to a particular VIC. The value of C is determined 
from the Young's modulus and density of the unstrained material. 

In order to illustrate a case in which the general th eory applies, compu tations were made 
for a material whose tension-strain curve is given by 3 

T 
M = 14 tanh 20E' (62) 

For this curve, plotted in figure , the units of TIM are arbitrary, and the strain E is expressed a 
a fraction of unity. The slope of the curve, initially 280 arbitrary units per unit strain, con­
tinually decreases and approaches a value of zero for Yery large strains. The slope cl (T rNI )lcle 
and the quantity TIM(1 + e) become equal to 12.308 at a strain of 0.11221. When e is 0.20, 
the highest strain for which computations were made, the slope i 0.37547. In the r egion 
0 :S;x:S; 0.11221 th e simple theory applies. In th e region 0.11221 :S; E< ro the general theory 
applies. 

The elastic-wave velocity is C.=~= 16.733 arbitrary velocity units. The plastic­
wave velocity is given by 

Cp=~ tl'ft) < = <p=~280 sech2 20ep= C. sech 20Ep ' (63) 

3 The functional relationship (62) was ebosen because tables were available that Simplified the calculations. The numbers 14 and 20 have no 
Signifi cance, and were chosen only for convenience in plotting the curve. Other relationships involving more familiar functions could have been 
used,~such as, T/k [=a+bf- -Va'+ b2<' , where a and b are arbitrary constan ts. 
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Point of tangency with dotted line indicates strain and tension at which the 
slope of the curve equals T jM (l + . ). 
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FIGURE 7. Curves of V IC, V IC, and }VIC as functions of ' pfor 
a filament having a lineal' tension-strain curve. 

In the region 0 ::; ~ p::; 0 . 11221 the transverse-wave velocity is given by 

U = / T = 0 /0.05 tanh 20€p. 

" 1\£(1 + €p) ." 1 + €p 
(64) 

When €p is equal to or greater than 0.11221, the transverse-wave velocity is constant at the 
value U1= 0.20967 0 •. 

Filament material in the wake of the plastic-wave front flows inward at a velocity given by 

W = l 'p ~ ~ ~: da= 0.05C. tan - 1(sinh 20€p)' (65) 

Figure 9 gives the curves of U IO., V IO., and W IO. as functions of €p for this material. 
The dotted lines give portions of the corresponding curves for the Hookean material. 

Other behavior features of a material having the nonlinear tension-strain curve of eq (62) 
are given in figures 10, 11, 12, and 13. Figure 10 shows the strain distribution along the fila­
ment after transverse impact at various speeds up to 0.1770. . The dimensionless parameter 
x/O.t is used as the abscissa. A partIcular value of this parameter ,. 0.6 for instance, can be 
interpreted as a distance down the fiber 0.6 as far as the elastic wave has propagated. The 
dotted line gives the strain at the transverse-wave fron t as a function of the location of the 
transverse-wave front. Thus the strain in the filament after a transverse impact at velocity 
of 0.151 0. increases as shown up to a strain of 8 percent between the elastic- and plastic-wave 
fronts, and then remains constant. The plastic-wave front propagates at a velocity of Op= 
0.3880., and the transverse-wave front at a velocity of U = 0.2070. for this case. 

Figure 11 shows the horizontal component of the inward-flow velocity for different points 
along the filament. The location of a point on the filament is designated by the sam e distance 
parameter used in figure 10. Consider, for instance, the case in "which the filament is impacted 
at velocity 0 .. 1730... The strain in the wake of the plastic-wave front is 16 percent. The 
flow velocity at various points along the filament between the elastic-wave front and the 
transverse-wave fron t at xjO.t= 0.21O increases to the value 0.06 00. as shown. As the· fila­
ment is horizontal in this region all of the flow is horizontal and directed inward. In the wake 
of the transverse-wave front the filament has changed its direction. The horizontal component 
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FI GUR E 10. Strain distribution along filament having tension­

strain curve given by (T IM )= 14 tan h 20E, after transverse 
impact. 

If tbe filamen t is Im pacted, for example, wIth veloeity 0.1510" the strain In· 
creases to a value of 8 percen t in the region between the elastic- and plastic-wave 
fronts, and then remains constant. 'l'hc plastic-wave front in this case propagates 
at a velocity of C.=0.388C" its pOSition along the filament in distance parameter 
un its is th us 0.388, ' rhe position of the dotted line gives the position of the trans· 
verse·wave front, which in this case propagates at velOCity U=0.207C •. 
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FIGUR E 11. Horizontal com ponent of flow velocity at various 
points along the length of filamen t having tension-strain cU/'ve 
given by (TIM ) = 14' tanh 20E, after transverse impact. 

A filament im pacted at velocity V=O.l73C" for example, has a strain in the 
wake of the plastic-wave front of 16 percent. The inward-fl ow velocity at various 
pOints along the filament between the clastic-wave front and the transverse· wave 
froht atxjC,t=0.2JO increases to the value 0.0B80C,. In the wake of the transverse· 
wave front the filamen t has changed direction, and the horizontal component!of 
flo w velOCity, therefore, decreases abruptly to the value 0.OO45C., and then de· 
creases gradu ally to zero at xjC,t=0.081, the location of the plastic·wave front. 

of the flow velocity, therefore, decreases abruptly to the value 0.00450.. It then decreases 
gradually to zero a t xjO.t= 0.081, the location of the plastic-wave front. Between the plastic­
wave front and the impact point the horizontal component of the flow velocity is zero. 

Figure 12 hows how the' angle (J of the transverse wave varies with the strain €p i n the 
wake of the plastic-wave front . The solid line gives calculated values of cos (} a.nd (J for the 
material with the nonlinear tension-strain curve. The dotted line gives the values calculated 
for the Hookean material. The angle (J increases negatively very rapidly for mall values of 
€p. Thus even at low values of €p and correspondingly low impact velocities, a well-defined 
t ent-shaped wave may be expect ed. (For instance, if O. '2,400 mjsec and V '0.0260.= 62.5 
mjsec, €p= 0.5 percent and (J=-- 21.75°.) At higher values of €p the configuration of the 
t ransverse wave does not change much . Thi is illustrated in figure 13, where several con­
figurations after impact are plotted for the filament having the nonlinear stress-strain curve. 
The locations of the plastic-wave front on several of these configuration where €p exceeds 
0.11221 are given by the black dots. 
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FIGURE 13. Configurations after transverse 
impact f or filament having tension-strain 
curve given by (7'/ M )=14 tanh 20._ 

a. Before impact . 
b. E.=0. 04, V=O. 110 C" 8= - 36.4°. 

FIGURE 12. Angle 8 which transverse wave makes with hori­
zontal plotted as a function of the strain (€p or €1) at the trans­
verse-wave f)·ont . 

c. E.= . 08, V= .151 C" 8= - 42.5°. 
d. Ep= .12, V= .166 C" 0= - 45. 3°. 
e. Ep= . 16, V= . 173 C ,, 0=-46.4°. 
f. Ep= .20, V= .17i C" 8= - 46.9° . 

... Solidll ine: Filament ha\'ing tension-strain curve given by (1'/JV£) = 14 tanh 20E. 
Dotted line: Filament having linear tension-strain curve. 
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