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Impact Loading: 5. Wave Propagation in Long
Textile Yarns Impacted Transversely
Jack C. Smith, Frank L. McCrackin, and Herbert F. Schiefer

The behavior of an infinitely long flexible filament after transverse impact is treated
theoretically. The filament is assumed to have a tension-strain curve that is always con-
cave downward, and to have no short-time creep or stress-relaxation effects. Under most
conditions the impact initiates a variable strain that propagates down the filament between
an ‘“‘elastic wave” front and a ‘“‘plastic wave” front. A transverse wave, shaped like an
inverted V, then travels in the constant-strain region behind the plastic-wave front. Under
special conditions the transverse-wave front may propagate faster than the plastic-wave
front, but the shape of the transverse wave remains the same. The theory for both cases is
worked out in detail, and some illustrative examples are given.

1. Introduction

The behavior of textile yarns held in clamps 40 to 60 em apart and impacted transversely
was demonstrated and discussed in the fourth paper of this series [1, 2, 3, 4].) The present
paper deals with the theory of transverse-wave propagation in yarns of infinite length where
there are no clamps to reflect the waves. The theory developed here will be used in future dis-
cussions of transverse impact.

When a yarn is struck transversely, a strain wave is propagated along the yvarn outward
in each direction from the point of impact. In the region between each of these wave fronts,
material of the yarn is set into motion longitudinally toward the point of impact. This ma-
terial is taken up by a tent-shaped wave of transverse motion that propagates outward from the
impact point. This behavior is demonstrated in figure 1, in which several configurations of a
varn after transverse impact are shown. The position of the longitudinal-strain wave in each
of the configurations is shown by the arrows. The backward flow of yvarn material is indicated
by the white tick marks.

Ficure 1.  Configurations of a yarn after transverse impact.

These configurations, 40X10-8 sec apart, were calculated for a yarn having a
linear (Hooke’s law) tension-strain curve. Longitudinal-strain wave velocity
was 2,500 m/sec. The positions of the longitudinal-wave front in successive con-

red at the vertex of the

s figurations, are designated by the arrows. Impaci B

NN AN N e e ' 3 ; .
///\\\t\\ S e —— = transverse wa shown at the left, at impact velocity of 180 m/sec. The leading
///\ SRS —_— edge of the tr: erse wave propagates with velocity 350 m/sec with respect to

the unstrained yarn material. Inward flow of yarn material at velocity 50 m/sec

PN isshown by the white tick marks. There is no horizontal component of flow in the
////:\\ a7 region of the transverse wave.
= =t

SRR 57

ey ) )

The configurations shown in figure 1 were calculated for a yarn composed of a Hookean
material, using relations developed in this paper. The longitudinal strain-wave velocity was
2,500 m/sec. Transverse-impact velocity was 180 m/sec. Under these conditions a 2-percent
strain is produced in the wake of the longitudinal-wave front, and yarn material in the region
between longitudinal- and transverse-wave fronts flows inward at a velocity of 50 m/sec. In
the wake of the transverse-wave front, which propagates at a velocity of 350 m/sec, the yarn
material flows transversely at the impact velocity as shown. The time interval between each

configuration is 40 <107° sec.

Transverse waves of the type just deseribed have been discussed by Taylor and his associ-
ates [5]. Cole, Dougherty, and Huth [6] have treated the problem of transverse-wave propaga-

tion in prestressed wires.

Craggs [7] and McCrackin [8] have also discussed the problem for

! Figures in brackets indicate the literature references at the end of this paper.
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plastic-elastic strings, showing the effect of wave reflections and interactions. The problem
of oblique impact of an elastic cable has been discussed recently by Ringleb [9]. The treat-
ment presented here extends the work of these authors and makes use of concepts introduced
by von Karman [10] and Taylor [11] in their treatments of longitudinal impact.

2. Theory of Longitudinal Impact

Longitudinal-strain waves resulting from a constant-velocity tensile impact do not neces-
sarily have sharp wave fronts. According to von Karman, the strain increases gradually in
the region between two wave fronts, an “elastic wave” front 2 propagating at velocity

1/dTY
C=00=/ (%), )
and a “plastic wave” front 2 propagating more slowly at velocity
1/ d L ;
C=0le) =i % @

In eq (1) and (2), M is the mass per unit length of the unstrained filament material, and d7'/de
is the slope of the tension-strain curve, evaluated at zero strain in eq (1) and at strain €, in
eq (2). In the wake of the plastic-wave front the strain in the filament has the constant
value ¢,. The value of ¢, depends upon the speed at which the filament is impacted longi-
tudinally.

The filament material in the wake of the plastic-wave front flows in the impact direction
at a velocity uniform along the filament given by

i o TN $U1 Y
w=f0 \/JTJ(K)(IG:L C(e)de. (3)

For a filament impacted longitudinally at one end, W is the same as the impact velocity.

In deriving the above equations, von Karman assumed a tension-strain curve that was
always concave downward. Tension-strain curves for textile yarns often have a concave up-
ward portion which, however, is less pronounced in curves obtained at rapid testing rates. In
addition, textile yarns exhibit creep and stress-relaxation phenomena. Such phenomena were
not considered by von Karman. Despite this, von Karman’s treatment represents a notable
advance over theories based on Hookean tension-strain behavior.

3. Theory of Traunsverse Impact

In the laboratory or observer’s coordinate system, let z” and 3" denote the horizontal and
vertical coordinates, respectively. Let a filament lying along the 2’ axis be impacted with
velocity V in the % direction at the point where z’=0. The motion of the filament is to be
described in terms of Lagrangian coordinates. That is, distances along the unstrained length
of the filament are given in an z coordinate system, which before impact coincides with the
2’ coordinates. The displacement of any point z of the filament at any time ¢ relative to its
original position is given by &(z,t) for horizontal displacements and 7 (z,t) for vertical displace-
ments. The location in the laboratory coordinate system of a point 2 on the filament is thus
given by

w’:$+$(x,t); (48‘)

y' =n(z,). (4b)

2 The terms ‘‘elastic’” and “plastic’” are used as convenient designations for the wave fronts bounding the region of variable strain. They are
not intended to characterize the complex recovery behavior of the material. For example, the theory holds for materials having nonlinear tension-
strain curves, but which recover almost completely from large deformations. For these materials, the strain associated with the plastic wave is
almost entirely elastic.
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Consider an element of the filament of unstrained length Az. After impact, this element is
strained, and its new length, measured in the laboratory coordinate system, becomes
Az+/[14 (0£/0x) )2+ (dn/0x)?. The increase in length per unit length, or strain e, is thus

o OF\'  (om\' .
e—\/<1+a +H3) -1 ®)
The angle 6 that the element makes with the horizontal is given by
g 100
sin 0= 1T eor (6a)
— 1 (1198
cos = 1—|—e(1+ba; (6b)

The differential equations that govern the motion of the small element are

‘Mbﬁ r(Tsin 0), (7a)
Mt =3 2 (Teos ), (7b)

where M is the mass per unit length of the unstrained filament, and_7"is the tension. By making
use of (6a) and (6b), these equations become

gﬁ [M(1+e) SZ] (8a)
Sa= s i (rae) | S

Assume, as von Karman did, that the tension 7'is a function 7'(e) of the strain only, given
by the tension-strain curve. For solutions in which the strain, and consequently the tension,
are constant along the filament, eq (8a) and (8b) reduce to

0% T o™

ot M(1+e oz* (%2)

*_ T 625

=Mt eor (9b)

£ and 7 must also satisfy eq (5).
For other solutions in which =0 (no transverse wave), eq (8a), (8b), and (5) reduce to

77=0: (108')

DZE laT

o~ Moz’ (10D)
fo)

= Oi (10¢)

This is the case considered by von Karman, and to which his solution, eq (1), (2), and (3), is
applicable.

A combination of solutions for the preceding special cases gives the solution to the problem
in which a long filament initially at rest along an axis in the 2" direction is impacted transversely
at =0 with velocity V. The boundary conditions that must be satisfied for the z>>0 half of
the filament are £=0 and ="Vt at =0, and £{=7=0 at =
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4. A Simple Solution Usually Applicable

Immediately after impact a train of longitudinal-strain waves propagates outward along
the filament. The leading wavelet in the train, or elastic wave, propagates at velocity C, given
by eq (1). At points in advance of the elastic wave the filament is unstrained. The elastic
wave is succeeded by a series of other more slowly propagating wavelets, each wavelet adding
an increment to the strain in the filament. In the wake of each w avelet material of the fila-
ment flows inward toward the point of impact at a velocity that increases as each wavelet
passes. The velocity of each wavelet is proportional to the square root of the slope of the
tension-strain curve, hence in order that the wavelets do not overtake each other, the slope
of the tension-strain curve must decrease. as e increases (be concave downward). The final
wavelet in the train, or plastic wave, propagates with velocity (), given by eq (2). The strain
in the wake of the plastic-wave front has the constant value ¢,. Filament material in the wake
of the plastic-wave front flows inward at the constant velocity W given by eq (3).

For the simple solution discussed here, transverse-wave motion of the filament occurs only
in the wake of the plastic-wave front. The transverse wave thus propagates with velocity U,
which is less than ). For the region in advance of the point Ut on the filament, where only
longitudinal-strain waves occur, von Karman’s solution [10] is applicable. This solution,
satisfying the differential eq (10) and the boundary conditions ¢=— Wt at z=Ut and £=0
at 2= «, may be written as follows:

For the region Ct<z< o,
ce=me—e— ()3 (11)

For the region Ot <z <,
7=0. (12a)

To find the amount of motion in the £ direction, consider a wavelet, which increases the
strain in the filament by an increment de. This wavelet propagates at velocity C(e) and arrives
at point z at time {=x/C(e). The inward velocity of material flow is increased by an amount
—((e)de during time t—xz/C(e). The distance £ that point z moves inward is the integrated
product of the velocity and time after arrival for each wavelet passing through the point z, or

- L ‘0@)]}-%] o = (e (12b)

where.
(o) —\/ o (dT (12¢)
We— j:(,*(a(da), (12d)

and « is a variable designating strains along the filament in advance of the point where the
strain is e.

During the time interval between the arrivals of the elastic and plastic waves at point z,
the strain 1s found as a function of z and ¢ by solving the following equation for e:

Je)=z/t. (12e)
For the region Ut<x <Oyt
7=0, ' = (13a)
— (% PRSI =
= L () [t | O(a)] Ll TR (13b)
e=e¢,—a constant. (13c)

In order to describe the motion in the transverse-wave region (0 <z < Ut) it is necessary to
find solutions of eq (9a), (9b), and (5), which satisfy the appropriate boundary conditions.
The most general solution of (9&) has the form n=f-+g-+At-+ Bz-+ K, where f and ¢ are non-
linear functions of the variables t—x/y/ T/M(1-+¢€) and t-+x/4/ T/M(1+¢); respectively. Applying
the boundary condition that n==V# at z=0. gives Vi=f(0,t)+¢(0,t)+ At-+K. In order that
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this relation be satisfied, it is necessary that K=0 and ¢(0,t)=—f(0,t). Therefore, f and ¢
must be the same function except for sign, and

1=ft—z/NT/M(1+€)—ft+2zNT/M(1+e)+ Vi+ Be.

The condition that =0 at =Ut can only be satisfied if f=0 and B=—V/U. Thus
n=V(t—=z/U). For thisvalueof nand for a constant value of ¢, the most general solution of eq (5)
becomes t=a[/(1+e2— (V/U?—1]+h(t)+K. The condition §é=0 at x=0 requires that
h(t)+K=0. The solution for £ just obtained is also a solution of eq (9b); thus: For the region

0 <z< U,
1=V ({i—2z/U), (14a)
t=ay(1+e?— (V/U)—1], (14b)
e=e;—a constant. (14¢)

The behavior of the negative half of the filament is the same as that just described except
for the direction of wave propagation.

The configuration of the positive half of the filament at time ¢ after impact is shown in
figure 2 by the line passing through the points A, B, P, (). Filament material in the transverse-
wave region 0 <z <Ut, moves in the 5’ direction because 0£/0t=0 in this region. Thus points
A, B, P moving with velocity V, arrive at positions A*, B* P*at the time¢-di. The transverse-
wave front moves with velocity U relative to points on the unstrained filament. The horizontal
component of the velocity relative to the 2, ¥’ coordinate system therefore is U(1-+}€)cos 6,
and the wave front at point P advances a distance Udt(1-+e)cos 6 to point @* in a time dt.
Filament material in advance of the transverse-wave front is moving inward with velocity W,
so that in time d¢ point ¢ moves a distance — Wdt to its new position Q*.

Fiaure 2.  Configuration of positive half of filament t seconds
after impact.

Filament originally lay along the 2’ axis and was struck with velocity V in the
y’ direction. After ¢ seconds the positive half of the filament has the configuration
ABPQ, after t+dt seconds the configuration A* B*P*Q*. The filament is assumed
to have strain e and tension 7% in the transverse-wave region . A BP—A*B*Q*,
and strain e, and tension 7' in the region in advance of the transverse wave, (It
is proved in the text that in most cases e=ep, To=T,.) Filament material in the
transverse wave moves vertically with velocity V; material in advance of the
transverse wave moves inward horizontally with velocity W. The transverse-
wave front moves with velocity U relative to points on the unstrained filament
but the horizontal component of its velocity relative to the z’, 4" coordinate system
is U(14€) cos 6. The point Q on the filament moves inward to position Q*, the
location of the transverse-wave front at time {-+-dt.

— uv(x+ez)cose————L ¢ wdt L_

udtli+€,)cos 8

e ol

The angle 6 that the transverse wave makes with the horizontal is constant along the
filament because 0£/0x and 0n/0x are constant in the region 0 <z <Ut. The transverse wave is
therefore a straight line. 6is given by either of the relations

. 1V o
Sin 0-—-'—'m U’ (10&)

_z1 N 15b
cOs 0-—m‘ Jl—l—ég)?'—(fj) ( )

found by substituting the solutions (14) into the relations (6).
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At the point = Ut where solutions (13) and (14) join, £ and # must be continuous. Con-
tinuity of 7 is satisfied because n=0 for both solutions. Continuity of £ requires that

Ul +Fe)?— (VIU)2—1]=¢,U—W. (16)

Horizontal and vertical components of the force must also be continuous. Equating the
horizontal components gives

T,
1+62

T,—MUW=T, cos 6= V(1+e)2—(V/U)2 (17)

MU is the element of mass over which the transverse-wave front passes in unit time, so MUW
is a force equal to the change of longitudinal momentum per unit time.
Equating the vertical components gives

MUV=—T, sing=—22_Y

1+€2 U (18)

The velocity of propagation of the transverse wave U is found from eq (18) to be

o T,
U=N\a+e) (19)

By appropriate manipulation of eq (16), (17), and (18) it is possible to obtain the relation

r, T, .
l-f—ep—l—{—eg

(20)

The meaning of this relationship is illustrated in figure 3, where a typical tension-strain curve is

\
i\
TENSION

-~ STRAIN

1+€' = 1

1+€" >

Figure 3. Tension-strain curve whose slope decreases to a value
less than T/(1+e).

plotted. The long line extending from the point —1 on the strain axis up to and through any
point ¢, 7" on the tension-strain curve has the slope 7/(1+¢. The only values of 7 and e
satisfying eq (20) must be given by intersections of this line with the tension-strain curve.
In most cases of practical interest only one intersection exists, and the relation (20) can then
be satisfied by

€,=6€, (21a)
Ty (ep)=Ts(ea). (21b)

Suppose, however, that the tension-strain curve bends over as shown in figure 3 until its
slope for large values of e diminishes to or becomes less than 7'/(1+¢). A second intersection
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is possible and two sets of ¢, 7" values would be obtained satisfying (20). If a material having
such a tension-strain curve were impacted transversely at low speeds, small values of e and 7"in
the wake of the plastic-wave front would be obtained. The slope of the tension-strain curve
for these low values of € is greater than 7/(1+4¢), so the plastic-wave front would travel faster
than v/ 7,/M(1+¢,), the velocity U of the transverse-wave front. At a higher impact velocity
a strain ¢ is obtained at which the slope of the tension-strain curve is just equal to 77/(1+4-¢).
In this special case the plastic-wave front and the transverse-wave front are at the same position
and move together at the same velocity. If the material is impacted at a higher velocity than
this, the solution just given no longer applies. Thus a criterion for the applicability of the
simple solution is

(lT T

de “1—{—5 (22)

That is, the solution applies if the slope of the tension-strain curve for the material is not less
than 7'/(1-¢) for all strains less than the maximum strain e,, obtained as a result of the impact.
Within this restriction the relations (21) can be used to obtain the results given in the following
section. A more general solution, which includes the simple solution as a special case, is given
later in the text.

5. Recapitulation of the Simple Solution

If the tension-strain curve for the filament material obtained at rapid strain rates is always
concave downward, if the material does not exhibit large stress relaxation or creep effects
during a small time interval, and if the conditions of the impact are such that relation (22)
applies, the behavior of a flexible filament after transverse impact is described as follows:

Immediately after transverse impact, longitudinal-strain wavelets propagate outward
along the filament. The outermost wavelet, called the elastic wave by von Karman, propagates

at velocity
dTN
Ce= \/M<de M

The innermost, called the plastic wave by von Karman, propagates at velocity

dT
\/1[<(le e )

In the region between the elastic- and the plastic-wave fronts the strain increases to e,, the
maximum value obtained as a result of the impact. The strain remains constant at this value
in the wake of the plastic-wave front.

As the strain wavelets pass a given point on the filament, material of the filament flows
inward toward the impact point at a velocity that increases to the value

W= J; M da (3)
the flow velocity for material in the wake of the plastic-wave front.
The material in the wake of the plastic-wave front forms itself into a transverse wave,

shaped like a tent with the impact point at the vertex. The base of the tent spreads outward
with velocity

B
U=y - =

It should be noted that the velocity U is with respect to a Lagrangian coordinate system;
i. e., a system fixed to the filament, moving and extending with it. Inasmuch as filament mate-
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rail in the wake of the plastic-wave front is in a strained state and moving, the velocity of the
transverse-wave front along the filament as seen by an observer in the laboratory would be
(1-+e€,) U—W. Similarly, the plastic-wave-front velocity in laboratory coordinates would be
(1+4¢,)C,—W. The elastic-wave front propagates in an unstrained motionless medium and
so would have the same velocity in both coordinate systems.

Material in the transverse-wave tent does not move in the horizontal direction but only
in the direction of the transverse impact. The velocity V of this motion can be expressed in
terms of e,, U, and W by rearranging (16) to obtain

V= (1+e)2U—[(1+¢,)U—W. (24)

If the tension-strain curve for the material is known, it is possible to calculate tables of
values for U7, V, and W as functions of ¢,, Then, for instance, if the impact velocity is known,
it is possible to find the resulting strain e, and thus find the corresponding values of U and W.

6. General Solution

When the impact velocity is very great, the transverse-wave front in some cases pro-
pagates more rapidly than the plastic-wave front. A solution is then required which provides
for a variable strain in the transverse-wave region.

Consider a tension-strain curve that is always concave downward and whose slope eventu-

ally becomes less than 7';/(1+4-¢), where ¢, 7} is the point on the curve such that d7/de=T/(1+¢).
Such a curve is shown in figure 4. In the region where < e< e, let this curve be approximated

by a number of straight-line segments drawn between the points e,7y; e,7s; . . . €, T,.
Point ¢, 7", represents the maximum strain and tension which are attained in the material

as the result of an impact. )
For this approximate tension-strain curve, consider a solution such as that depicted in

figure 5, in which the transverse wave is composed of a number of straight-line segments. The
wave front of the leading segment travels at speed U, and the strain in the segment is ¢, Wave
fronts of succeeding segments travel at decreasing velocities U,, Us, . . . U,, and the succes-
sively increasing strains in these segments are e, €, . . . €,. In the region in advance of the
transverse wave von Karman’s solution applies. Thus:

For the region Ct<a< o,
n:E:e:O. (25)

Tp

T3

T

TENSION

€pi€s NEx STRAIN € €p

Figure 4. Tension-strain curve assumed in derivation of the
general solution.
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Fiaure 5. Shape of transverse wave assumed in derivation of
the general solution.

For the region V¢ <2< Ct,
70=0, (26&)

to=—W(e)t+ex. - (26b)

In the region of the transverse wave the vertical displacement 5, in the nth segment will
have a general solution of the form #5,=f,(t—z/vT/M(1+e,))+gn(t+zT/M(1+e€,))+
v, (t—z/U,)+A,t+K,. The boundary conditions to be satisfied are n,=Vt at =0, n,=n.—1
at 2= Ut and =0 at z=U,t. These boundary conditions require that the K,=0 and that
£2=0¢,=0, and provide relations for evaluating the constants », and A4,. =, thus can be ex-
pressed in the form n,=wv,(t—x/U,) -+ A,t, which when substituted into (5), gives as a general
solution for &,, &,=2[vV(1+ €)% — 0,/ Up)i—1]+h,(t) +K,. £, is a solution of (9b) only when
h(t) is a linear function of . Thus &, can conveniently be expressed as &,=—w,({t—z/U,)+
B+ K, where w,/U,=+(1+¢€)?—(v,/U,)*—1. The boundary conditions to be satisfied
are Ep-() at =0, &,=£,-1 at 2=U,t, and &=—Wit+ Ut at x=U;t. These conditions
require that the K,=0, and provide relations for evaluating the constants w, and B,.

The solution for the transverse-wave region thus can be written;
For the interval Ut <z <Uit,

m=uv({—x/Uy), (27a)
§=—w,(t—z/U,)—Wit+eUit, (27h)
wi[U =+ (14 €)= @/U1)*—1, (27¢)
e=¢ (27d)
U ]:ll—l—el—\/M<de - (27e)
W [ i

For the interval U <z <Ust,
=0y (t—a/Uy) —t [0 (1—=Us/U1)], (28a)
fr=—wy (t—a/Uy) —t[w, 1—Us/U,)+Wi—eUil, (28b)
WolUy=y/(1+ &) — (05/U5)*—1, (28¢)
=e (28d)
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For any interval U, <a<U.,t,

k=n—1
1. =0, (t—2/U,)+t ; o(1=Ui1/U3), (29a)
£y — 10, ((— 20 ) —t [ 35 e (=T U+ WimelUs | (291)

=1
WU =~/ (1+ €,)— (0,/U ,)2—1, (29¢)
e (29d)
For the interval 0 <z <U t,

k=p—-1
n,,:’v,,(t—-.r/U,,)—{—t LZ__; Uk(l'_Uk-(-l/Uk)’ (30&)
Ep: —w,,(t—.’l'/Up)—t k:iizlwk(l_lfk+l/l/’k,)+I,I71____61l]1 ) (30b)
WU y=~+ (14 €,)2— (v,/U ,)*—1, (30¢)
e (30d)

A point some distance down the filament thus is motionless until the elastic-wave front
reaches it. Subsequently the strain at that point increases, and the point moves inward
horizontally at increasing velocity until the tip of the transverse wave reaches it. The strain
is then ¢ and the inward velocity W,. As the first segment of the transverse wave passes through
the point the trajectory of the point turns upward in a direction inclined to the vertical. As
subsequent elements of higher strain pass through the point the trajectory becomes less
inclined, until at strain e, the direction of travel is vertical, parallel to the impact direction.

The motion of filament material remains vertical in the region 0<a<U,t. There is no
horizontal motion of material in this region because of the boundary-condition requirement
at z=0 that £,=0. In the region of the strained segments ¢ <e<e,, some flow of material
takes place along the horizontal direction. It is this flow that causes the trajectory of a fila-
ment point to be inclined from the vertical. The vertical and horizontal components of velocity
of a filament point in this region are given by the coefficients of £ in eq (29a) and (29b).

Although for generality each of the strained segments ¢, shown in figure 5 has been assumed
to have a different angle 8, of inclination to the horizontal, it will be proved that the angles 6,
are all equal and that the configuration of the transverse wave is a straight line.

The displacements £,, 1,, and the horizontal and vertical components of the tension are
required to be continuous at each of the points z=Uht, . . .U,t, . . .Uyt. At the point 2= U\,
& and n, are continuous by definition, and continuity of the horizontal and vertical tension
components leads to eq (27d) and (27e). At 2= U,t and at z=U,t, &, and 5, are continuous by
definition. Equating horizontal tension components gives

2 k=n—1
17{2”\/ (1+en)2—<(7’]—2 —MUn[wn+ > wk(l—%>+w1—elUl]

=Tt Jape = (2 Y =m0 [ vt 3y o 1— L po— U
—1+6n—1 ( el Un—l ) L k=1 = Uk S

or with the help of eq (29¢)
SNy N e =y
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Equating vertical tension components gives

T, : . Ui n—1_ Un—1 ' k3t Ui,
1+€n MU [’L"+ Z - <1 >]~1+€n lUn 1 MU” [’Ln——l+ E 5. <1 lfk )]

or
I T, V1
Manipulation of eq (31) and (32) gives the relation
1 JTF MU{I (1+e)= [ MU2](1+en_1) (33)

which reduces to

Equation (34) also holds when n=p. Dividing (32) by (33) gives a simple relationhip

Un Un—1

AFe)U, (QtenU,y (35)
This relationship also holds when n:p. Using (6a), eq (35) becomes
Un o Vp L f
AFe)U, AFe)U, o0 f,. (36)

Applying (36) to (30¢), (29b), and (29¢), and using (6b), gives the relation

At 2=0 the boundary conditions 7,= V¢ and £,—0 must be satisfied. The first of these
conditions gives

V=0v,+ fl (Ck Lam =t U, Z (l—i‘ék)(Lk“l Jk41)

(1+ p)
(1+e )U Z { k+1(€L+1"‘€k)+(1+61)U1:] (38)
v
By the use of (38), eq (36) can be expressed as
U |4 o
B A =R A B
where 2 is an abbreviation for
k=p-1
= 2 Uir(€1— &), (40)
Similarly, eq (37) becomes
1 wN_ [ [V TP
e (= [2+(1+el>Ul] it A
Equation (39) is equivalent to a statement that each sin 6, has the same value given by
- Vv . .
sin Gn——m—sm 0- (42)
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Similarly, eq (41) states that each cos 8, has the same value given by

V 2
Cos 0"=\1 l—l:m] =Cos 4. (43)

The configuration of the transverse wave, therefore, is a straight line.
The boundary condition £,=0 requires that

Ukt

w,,+k=z)p_lwk<1 )+W,—51L =0 (44)
=1

It can be shown that

k=p-1 T
b E (1T
k=1 k

—1_;6 ]+U )[ Z UL+1(€k+l_€k)+(1+51)U1]_U1
=[E+(1+€1)U1] cos 0-—U1

=y[Z+ 1+ &)U, 2—V2-U,, (45)
so that eq (44) can be put into the form

V=V2+(1+e)UP—[(1+ &)U, —Wi]* (46)
Equations (46) and (42) can be combined to obtain two different expressions for sin  and cos
P (1+€1)U1 :l
AL \/ [ SERGEY 45 )
_(+a)U=W,
o8 = el i

Equations (31) through (48) can now be used to modify the solutions given earlier. Thus

(30a) and (30b) become
k=p—
np= {v,,+ i‘,lv,(l—%“)}t—%x
k=1 ?

(1+e,)2
V{ z+(1+el>UI} (4%)
=_'{'wp+ Z wk(l—Uk+l>+W71 élUl}t+U—$
2 a Ay . (1+61)U1
={(14¢,)cos —1}a= {1 (1+¢,) E+(1+61)U1]} %, (49b)

and (29a) and (29b) become
" k=n-1 3 _Uk+l v Vn

s Un Sl (14+e)V
—t{(1+en)Un[ P U’“(e“l*"‘H(H“)U‘]} Ty

¥ k=n—1
1s 2 Ui(er41—e) + (14 e)U; i
V{[ 2+ 04U, :It Z+(1+el)Ul:| } (50a)




= {wn+ Z wk<1—%>+Wl——e1U1}t+#x

——{I:ki— Uk+1(€k+1‘—‘€k)+(1+61)U1:] cOS (9'—[(1-|"€1)C/ —W 1]}t'— 1—<1+€n) cos 0}

k=n—1
=+[(1+61)U1—~W1:| o é Ury1(ep1—e) +(1+e)U, ,
2t (1+e)U;

[ [ G oo

The equations just given are for the case in which the tension-strain curve is approximated
in the region ¢ <e<e, by a finite number of straight-line segments. The solution sought is
the limit solution when the number of straight-line segments approaches infinity and the
length of each segment approaches zero. This limit solution is given in the following section.

7. Tabulation and Interpretation of the General Solution

For the interval 0 <z <U.t,

(14e)x :
5 V{ S+(1+61)U} (51a)
E:—‘{l_(l‘!‘ép) (Siiz‘—ll)—g—lesgfvll]}l (51b)
€=¢,. (510)
For the interval Ut <z<Uit,
. S(€)+(1+€1)U1 i 1+e
nﬁv{ S+1+e)U, .It |:S+(1+51)U1:| } (52a)

_ 7 S(€)+(1+€1 YU, (14e)U,;
=+e)Ui=Wil I==grarou, } {1_<1+€>[S+ 1+el>U1]} (62b)

For the region Ut <z< = the solution is given by eq (25) and (26). The symbols used in the
above equations have been defined previously, except for

e f e da=W—W, (53)

S(e) = f \/ I(Eda Wie)—W.. (54)

The general solution given in this section differs from the simple solution given previously
in that the strain in the transverse wave need not be constant. At low impact speeds the
equations of the general solution reduce to those of the simple solution. The transverse wave
then propagates in a region of constant strain in the wake of the plastic-wave front. How-
ever, for a sufficiently high impact velocity and a tension-strain curve of the right shape, the
case in which the transverse-wave front and the plastic-wave front coincide occurs. The
velocity of propagation of these two wave frontsis U, and the maximum strain in the filament
is ¢. If the tension-strain curve is known, the values of U; and ¢ for this special case can be
found from eq (27e).

and
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At higher transverse impact-velocities the plastic-wave front propagates more slowly than
the transverse-wave front. A region of variable straining therefore occurs in the transverse
wave, and the general solution must be used. The shape of the transverse wave remains a
straight line, but the propagation velocity no longer increases with increasing impact velocity.
It remains constant at the value U;. The velocity of propagation of the maximum strained
portion of the transverse wave U/, is the same as the plastic-wave velocity (', and is computed
fromeq (2). Inorder to find the value of the maximum strain, or constant strain e, in the wake
of the plastic-wave front, the relation

V=v[S+Q+e) UP—[(1+ &) U— W2 (55)

can be used. The value of S depends upon ¢, so that if the tension-strain curve is known, the
value of €, needed to give a required V can be found by a process of trial and error.

At the transverse-wave front, material of the filament is flowing inward horizontally with
velocity W;. At the point in the transverse wave where the strain attains its maximum value
ep, material is flowing inward along the filament direction with velocity W. The quantity S
represents the increase in velocity over W, due to the strain increase in the transverse-wave
region.

The motion of filament points in the wake of the plastic-wave front is most easily visualized
as follows; Suppose there is a second filament, inextensible and fixed to the impacted filament
at a point a great distance in advance of the elastic-wave front. ILet the end of this filament
coincide with the impact point. After impact let the filament be constrained to move alongside
the impacted filament but without extending so that its end no longer coincides with the im-
pact point, but recedes from it. To an observer at this filament end the impacted filament
would appear to have motion with velocity W.

Although flow of filament material in the wake of the plastic wave occurs, there is no
horizontal component of the flow velocity. A horizontal component of the flow does occur
in the region where the strain varies: i. e., where ¢, <e<e,. The magnitude of this velocity
component is much smaller than W;, the horizontal flow velocity in advance of the transverse
wave, and decreases to zero where e equals e,.

At low impact speeds, where the simple theory applies, the angle that the transverse
wave makes with the horizontal can be found from the equation

(1—}-ep)U-—VV.
1+e,)U

As the impact velocity is increased, cos 6 decreases to the value

(1+51)U 1
(6 is a negative angle and attains a greater negative value as the impact velocity is increased.)

At higher impact speeds, where only the general theory applies, # can be found from the
relation

cos = (56)

cos 6,=

S (1+€1)U1

The values of ¢, U;, and W, are constants, but S increases as the impact velocity is increased.
Cos 6 continues to decrease, and the value of # becomes greater negatively. Thus, although
the progagation velocity of the transverse wave is constant for all impact speeds above a certain
value, the slope of the transverse wave continues to change.

Figure 6, a, shows the configuration of the filament after a transverse impact of sufficiently
slow speed that the simple theory applies. Figure 6, b, shows the configuration after a higher
speed impact where only the general theory applies. As pointed out previously, the formula
for U expresses the transverse wave velocity relative to a Lagrangian coordinate system.
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Fiaure 6. Configuration of filament t seconds after transverse
impact.
a. Simple theory; b. General theory.

In laboratory coordinates the distance that the transverse wave travels along the filament in
unit time is (1-4¢,)U for the simple theory, and S+ (1-+¢) U, for the general theory. The cor-
responding distances that the wave front travels in the horizontal direction are (1-4-¢,)(/— W
and (1-+4¢)U,— W, respectively. These distances are labeled in figure 6, a and b. Thus it is
seen how some of the relationships derived above could have been obtained very simply from
a knowledge of geometry and an intuitive understanding of the problem.

8. Examples of the Theory

In order to illustrate the theory, the behavior of a filament after transverse impact is
computed for two different hypothetical materials. The first material obeys Hooke’s law.
Its tension-strain curve is given by

I :
M—C €. (08)
As this tension-strain curve is a straight line of constant slope, the simple theory applies.
The elastic- and plastic-wave fronts both propagate with velocity C. U, V, and W are given

by
- y €p 5
U \/1+€p’ (59)
V=0V, (1+¢) ey ey — e, 7, (60)
1’17: (/yfp' (6 1)

Curves of U/C, V/CO, and W/C as functions of ¢, for the Hookean material are plotted in figure 7.
The solution of a transverse-impact problem may be found from these curves by reading oft the
values or ¢,, U/C, and W/C corresponding to a particular V/C. The value of ('is determined
from the Young’s modulus and density of the unstrained material.

In order to illustrate a case in which the general theory applies, computations were made
for a material whose tension-strain curve is given by ?

Z\zl= 14 tanh 20e- (62)

For this curve, plotted in figure 8, the units of 7'/M are arbitrary, and the strain e is expressed as
a fraction of unity. The slope of the curve, initially 280 arbitrary units per unit strain, con-
tinually decreases and approaches a value of zero for very large strains. The slope d(7'/M)/de
and the quantity 7'/M(1-+¢) become equal to 12.308 at a strain of 0.11221.  When e is 0.20,
the highest strain for which computations were made, the slope is 0.37547. In the region
0<x<0.11221 the simple theory applies. In the region 0.11221<e< <« the general theory
applies.

The elastic-wave velocity is (,=+280=16.733 arbitrary velocity units. The plastic-
wave velocity is given by

e d

T SR S
= 2 —
iz =+/280 sech? 20¢,=C, sech 20, (63)
e €=¢€
4

3 The functional relationship (62) was chosen because tables were available that simplified the caleulations. The numbers 14 and 20 have no
significance, and were chosen only for convenience in plotting the curve. Other relationships involving more familiar functions could have been
used fsuch as, T/ M=a+be— +/a>+b%?, where a and b are arbitrary constants.
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Ficure 8. Plot of tension-strain curve given by
(T/M) =14 tanh 20e.
Point of tangency with dotted line indicates strain and tension at which the
slope of the curve equals 7/M(1+e).
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Ficure 7. Curves of U/C, V/C, and W/C as functions of e, for
a filament having a linear lension-strain curve.

In the region 0<e,<0.11221 the transverse-wave velocity is given by

. 0.05 tanh 20¢,
b \/A[(l‘l‘fp) 0\/ IERED (64)

When ¢, is equal to or greater than 0.11221, the transverse-wave velocity is constant at the
value U;=0.20967C,.
Filament material in the wake of the plastic-wave front flows inward at a velocity given by

w- "

Figure 9 gives the curves of U/C,, V/C,, and W/C, as functions of ¢, for this material.
The dotted lines give portions of the corresponding curves for the Hookean material.

Other behavior features of a material having the nonlinear tension-strain curve of eq (62)
are given in figures 10, 11, 12, and 13. Figure 10 shows the strain distribution along the fila-
ment after transverse impact at various speeds up to 0.177C,. The dimensionless parameter
z/C,t is used as the abscissa. A particular value of this parameter, 0.6 for instance, can be
interpreted as a distance down the fiber 0.6 as far as the elastic wave has propagated. The
dotted line gives the strain at the transverse-wave front as a function of the location of the
transverse-wave front. Thus the strain in the filament after a transverse impact at velocity
of 0.151C, increases as shown up to a strain of 8 percent between the elastic- and plastic-wave
fronts, and then remains constant. The plastic-wave front propagates at a velocity of C,=
0.388C,, and the transverse-wave front at a velocity of U=0.207C, for this case.

Figure 11 shows the horizontal component of the inward-flow velocity for different points
along the filament. The location of a point on the filament is designated by the same distance
parameter used in figure 10. Consider, for instance, the case in which the filament is impacted
at velocity 0.173C,. The strain in the wake of the plastic-wave front is 16 percent. The
flow velocity at various points along the filament between the elastic-wave front and the
transverse-wave front at z/C,¢t=0.210 increases to the value 0.0680C, as shown. As the fila-
ment is horizontal in this region all of the flow is horizontal and directed inward. In the wake
of the transverse-wave front the filament has changed its direction. The horizontal component
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(T| M) =14 tanh 20e.

Dotted lines show portions of similar curves for filament having linear stress-
strain curve,

Figure 9.
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Freure 10. Strain distribution along filoment having tension-

strain curve given by (T/M)=1/} tanh 20e, after transverse
impact.

If the filament is impacted, for example, with velocity 0.151C,, the strain in-
creases to a value of 8 percent in the region between the elastic- and plastic-wave
fronts, and then remains constant. The plastic-wave front in this case propagates
at a velocity of C,=0.388C,, its position along the filament in distance parameter
units is thus 0.388. The position of the dotted line gives the position of the trans-
verse-wave front, which in this case propagates at velocity U=0.207C..
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Ficure 11. Horizonlal component of flow velocily at various

points along the length of filament having tension-strain curve
given by (T/M) =1/ tanh 20¢, after transverse impact.

A filament impacted at velocity V=0.173C., for example, has a strain in the
wake of the plastic-wave front of 16 percent. The inward-flow velocity at various
points along the filament between the elastic-wave front and the transverse-wave
front at 2/ C t=0.210 increases to the value 0.0680C,. In the wake of the transverse-
wave front the filament has changed direction, and the horizontal componentfof
flow velocity, therefore, decreases abruptly to the value 0.0045C,, and then de-
creases gradually to zero at 2/C.t=0.081, the location of the plastic-wave front.

of the flow velocity, therefore, decreases abruptly to the value 0.0045C,. It then decreases

gradually to zero at 2/Cgt=0.081, the location of the plastic-wave front.

Between the plastic-

wave front and the impact point the horizontal component of the flow velocity is zero.
Figure 12 shows how the angle 6 of the transverse wave varies with the strain e, in the

wake of the plastic-wave front.

for the Hookean material.

The solid line gives calculated values of cos 6 and @ for the
material with the nonlinear tension-strain curve.

The dotted line gives the values calculated

The angle 6 increases negatively very rapidly for small values of

€, Thus even at low values of €, and correspondingly low impact velocities, a well-defined

tent-shaped wave may be expected.
m/[sec, ¢,=0.5 percent and §=—21.75°.)
transverse wave does not change much.

(For instance, if (,—=2,400 m/sec and V=0.0260,=62.5
At higher values of ¢, the configuration of the
This is illustrated in figure 13, where several con-

figurations after impact are plotted for the filament having the nonlinear stress-strain curve.
The locations of the plastic-wave front on several of these configurations where ¢, exceeds

0.11221 are given by the black dots.

533



T

1

|
o
o

T
!
|
H
1S)
ANGLE 8 FROM HORIZONTAL ,deg

©
«
o b -
o QRN
~
~
s p ¥ =l
\\
~o.
e
B S =150
~_
6 T
~J
a.
5 1 1 1 Il 1 !l Il Il 1 -60 . .
3 = 7 G 2 TR R Fiaure 13. Configurations after transverse

STRAIN AT TRANSVERSE WAVE FRONT,% tmpact for filament having tension-strain
curve given by (T/M)=1/ tanh 20e.

a. Before impact.
b. €=0.04, V=0.110 C., §=—36.4°.
. ; A e > _ °
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