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Comparison of Theoretical and Empirical Relations
Between the Shear Modulus and Torsional Resonance
Frequencies for Bars of Rectangular Cross Section

Sam Spinner and Rudolph C. Valore,! Jr.

The relations between the modulus of elasticity in shear and the fundamental torsional
resonance frequency, mass, and dimensions for bars of rectangular cross section have been

evaluated experimentally.

The empirical relation was found to be less than the theoretical

approximation given by Pickett by an amount increasing to about 1 3/4 percent as the
crosssectional width to depth ratio of the bars approached 10.
In addition to the fundamental torsional resonance frequency, the first overtone of the

specimens was also determined.

The overtone was found not to be an exact mr ltiple of the

fundamental; it increased more than 5 percent over double the value of the fundamental as

the width to depth ratio increased to 10.
1. Introduction

The exact relation between the modulus of elas-
ticity in shear and the torsional resonance frequency
for bars of various cross-sectional shapes is of con-
siderable practical as well as theoretical importance.
For certain cross-sectional shapes, including circular
and square, the relations for the shape factors in-
volved in determining the shear modulus from the
angular deformation have been rigorously developed.’
Consequently, it is possible to derive an exact ex-
pression for the shear modulus as a function of the
torsional resonance frequency for these shapes, as is
done by Pickett.” For a rectangular cross section,
however, the situation is not so satisfactory. For
this cross section, Roark gives a simplified equation
for the shape factor which, he states, imvolves an
approximation resulting in an error not greater than
4 percent. Pickett’s ‘Shear modulus-torsional fre-
quency equation for this shape, based on Roark’s
equation, is therefore also approximate, as Pickett
notes. Cady * also gives an approximate equation
relating the shear modulus to the torsional frequency
for rectangular bars. It will be shown later that
Pickett’s and Cady’s equations, although different
in appearance, lead to essentially the same numerical
results.

This lack of a more exact expression for bars of
rectangular cross section is unfortunate. This shape
of bar can be easily fabricated for most materials
and, in addition, lends itself to the experimental
excitation of torsional vibration more easily than
other simple shapes. Indeed, it is sometimes the
only simple shapo for which this can be accomplished.

Modern refinements in the sonic method permit
the determination of resonance frequencies to a high
degree of accuracy (see section 3.3). It would be

! Present address, Texas Industries, Inc., Dallas, Tex.

2 See, for instance, Raymond J. R(m.rk Formulas for stress ‘md strain, p. 166,
2d ed. ('\Ic(rm\\ HIH Publishing Co., Ine New York, N. Y., 1943).

3 Gerald Pickett, Equations for (mnpulmg elastic con\l.mls from flexural and
torsional resonant frequencies of vibration of prisms and cylinders, Am. Soc.
Testing Materials, Proc., 45, 846 (1945).

4+ Walter Guyton Cady, Piezoelectricity, p. 114, 1st ed. (McGraw-Hill Pub-
ishing Co., Inc., New York, N. Y., 1946).

desirable, then, to develop a relationship between
the torsional resonance frequency and the shear
modulus that would be comparable in accuracy with
the determination of the resonance frequency itself.
The main purpose of this paper is to establish such
a relationship empirically and to compare this
empirical relationship with the approximate theo-
retical ones given by Pickett and Cady. From here
on, since only t(n'siomll resonance fr(‘quvn(i( are
discussed, the term ‘“‘resonance frequency’” always
refers to the torsional resonance frequency.

2. Theory

The general form of the relationship between the
shear modulus and the resonance frequency is given
by Pickett as follows:

G—= Bmf?, (1)
where m 1s the mass of the specimen in grams, f is

the resonance frequency in cps, and @ is the shear
modulus in dynes/cm® (G is often given in kilobars,

where 10° dynes/cm’=1 kilobar). B, in em™, is
related to the shape in the following manner:
_ 4, @
" n2aK’

where ?

l=length (cm),

a=cross-sectional area, :

n=the order of vibration (for the fundamental
n=1, first overtone n=2, ete.),

I,=polar moment of inertia of cross-sectional
area,’

factor for same cross

footnote 2).

section (see

5 The cgs system used in this paper eliminates g, the acceleration of gravity from
the denominator of the right-hand side of eq (2), making the values for B, and
hence G, independent of this factor. Conversion from kilobars to psi’s may be
accomplished by means of the equation

Kilobars 14,5038 X 103= psi.
The conversion factor assumes a value of g=980.66 cm/sec?.
6 See pages 10 and 68 of reference in footnote 2.
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Ficure 1.

The ratio 7,/K, designated as R, is exactly equal
to 1.0 for a circular cross section. For a square cross
section R=1.185-+. The value of R for a square
cross section is based on Roark’s rigorous solution
for the shape factor and is accurate to the number of
places given. For a rectangular cross section, the
following approximate expression for R is given:

(D)+(5)
4<d>—2 52<d> +0.21 <d>

It should be noted that the approximation given
by Roark for K for a rectangular cross section does
not reduce to the exact expression for a square cross
section. For this reason, the value of R=1.183,
given by Pickett for a square cross section and ob-
tained by substituting (w/d)=1 in eq (3), is lower
than the exact value of R=1.185 obtained by using
Roark’s exact expression for the shape factor for a
square cross section.

The calculation of the factor, B, in eq (1), has been
simplified by means of the following procedure:

If only the fundamenta! is considered (n=1),
eq (2) may be rewritten as

(3)

B %:45’. (2a)

R has been calculated for about 30 values of w/d from
1 to 10, using eq (3). Substituting these values of
Rin eq (2a), corresponding values of B(a/l) have been

Comparison of theoretical and empirical values of B(all).

computed. These are plotted as the upper curve of
each section of figure 1. From this graph, it is pos-
sible to determine B(a/l) and, consequently, B as a
function of w/d, thus eliminating the cumbersome
computation of R by eq (3).

The equation given by Cady for the relation be-
tween resonance frequency and @ has the form

Adn G
l1/w2+d2\/ @)

where p=density in g/cm?, A is a shape factor differ-
ent from K, and other symbols have the same sig-

nificance and units as in previous equations. Then
6= " ()
Let
p_l@+d)
A%dPw
and
=i
then

(00 S

where A?=3K,. Values for K, are given by Timo-
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shenko and Goodier.” Table 1 gives the values of
B(a/l) from Pickett’s and Cady’s equations for
comparison.

TaBLe 1. Values of B (a/l) from Pickett’s and
Cady’s equations
Bla/)
w/d
Pickett Cady
1.0 4.734 4.742
1.2 4,92 4.90
1.5 5.55 5.53
2.0 7.27 7.28
2.5 9. 66 9.71
3.0 12.66 12.67
4.0 20.17 20.17
5.0 29.71 29,78
10.0 107. 8 107.9

The values of B(a/l) are seen to be in good agree-
ment. Cady states that his equation loses accuracy
for (w/d)< 3.5 However, for w/d=1, Cady’s value
of B(a/l)=4.742 is identical with the one based on
Roark’s rigorous expression for the shape factor.
This value is believed to be more accurate than the
corresponding one from Pickett in table 1

3. Experimental Approach

3.1. Specimens

Specimens consisted of 12 steel bars of rectangular
cross section, all cut from the same stock. All of
the specimens were ground to the same length (15.202
cm) and, with one exception, to the same width
(3.143 cm), while the depths were varied so that the
ratio of width to depth, w/d, ranged from about 10
to 1. The one exception was the specimen of square
cross section, which was 3.150 by 3.150 em. The
dimensions of all specimens were uniform to 0.001
cm. Width over depth ratios for all specimens are
to be found in column 2 of table 3

Inasmuch as the evaluation of ¢ required that the
mass as well as the dimensions of the specimens be
known, the necessary data to calculate the density
was available. This served as an internal check on
the homogeneity of the specimens and the consistency
of the data. The average value of the density of the
12 specimens was found to be 7.814 g/em® with an
extreme variation of 4+0.003 and standard deviation
of about 0.002.

3.2. Procedure

The fundamental and first overtones of the reso-
nance frequencies of the specimens were determined
by a sonic method, taking advantage of certain re-
finements previously deseribed.” These refinements
are briefly summarized as follows:

78. Timoshenko and J. N. Goodier, Theory of elasticity, p. 277, 2d ed.
(McGraw-Hill Publishing Co., Inc., New York, N. Y., 1951).

8 Both Roark’s and Cady’s Lqu(mons appear to be apprnxlmatxons based on
a power-series expansion given by Timoshenko and Goodier, p. 278, eq (160).

9 Sam Spinner, Elastic moduli of glasses by a dynamic method. J. Am. Ceram.
Soc. 37, 229 (1954)

1. Reading the resonance frequency on a frequency
counter.

2. Probing with the pickup by hand to establish
clearly the mode of vibration at resonance.

3. Supporting the specimens on foam rubber at
the nodal points and driving them with a tweeter-
type speaker coupled through the air. 'This method
of support and driving provides virtually zero cou-
pling to the driving system, with specimens of the
size and mass used here, and results in the truest
natural resonance frequencies of the specimens.

An alternate method of driving the seven lighter
specimens was also used. In this method, the spec-
imens were suspended from cotton threads one
thread being hung from the pickup and the ‘other
thread was hung from a magnetic record-cutting
head, which replaced the speaker as the driving unit.
The torsional frequencies were obtained by tying the
string at opposite edges of the specimen, as shown in
the sketeh in figure 2. Table 2 hists the fundamental,
fu=1, and first overtones, f,-,, of the resonance fre-
quencies of all the specimens.

TO
T0 PICKUP

COTTON
THREADS
S

SPECIMEN

Ficure 2.  Method of suspending specimen for torsional
vibrations.
TasLe 2. Fundamental and first overtones of the resonance

frequencies of all specimens

PGS e N A ST —
Y First overtone
ot Fundamental BT b In=2__ J
Specimen fuet (€DS) 2 fn=2 (CPS) [/,.:1 2] X 100
%
1 9797 19585 —0. 0927
2 9584 19160 —. 084
3 8725 17465 +.17
4 7958 15966 .63
5 477 15025 .95
6 6920 13939 1.43
7 6294 12709 1.92
8 5589. 1 11333 2.77
9 4822.2 9789 3.19
10 3981. 4 8115 3. 84
11 3069. 3 6268 4.23
12 2091. 3 4289.1 5.12

3.3. Accuracy

The over-all damping of the entire system, con-
sisting of specimen, driver, pickup, and coupling
mechanism, was so small that the accuracy of the
resonance frequency measurements approached the
accuracy of the frequency counter. This is 1 cyecle
for the 1-sec gate of the counter, and 0.1 cycle, using
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the 10-sec gate. Generally, the 1l-sec gate was
sufficient for the specimens of low value of w/d, 1. e.,
those having a high resonance frequency, whereas
the 10-sec gate was used for specimens having high
values of w/d (low resonance frequency). An addi-
tional small source of error is introduced by the
coupling mechanism. For those specimens vibrated
by the suspension method, it was found that although
the resonance frequencies were reproducible up to
the maximum accuracy of the counter for any
particular given position of the threads on the
specimen, nevertheless, the fundamental resonance
frequencies were found to vary by about 2 cycles,
depending on whether the threads were placed near
or far from the nodes; the highest values resulted
when the threads were nearest the nodes.!”® The
frequencies obtained by driving through air (given
in table 2) were usuaily intermediate between the
highest and lowest values for the suspended speci-
mens. In general, the bulkier the specimens, the
less the measured resonance frequencies were af-
fected by the mode of coupling or the position of the
supports. The accuracy of the fundamental reso-
nance frequencies, then, was estimated to range
from about 1 part in 2,000 for the flattest specimen
to about 1 part in 10,000 for the square specimen.
To evaluate any possible effect of air damping on
the resonance frequencies of the specimens, some of
the flatter bars were vibrated, both in air and,
without changing the position of the fibers, also in
vacuum, using the suspension method. The reso-
nance frequencies were found to be about 1 part in
6,000 higher in vacuum than in air. Because this
variation is less than the error in measurement for
the flatter specimens, it was not considered sufficient
to justify vibrating all the specimens in this manner.
10 The entire problem of these small variations in measured resonance frequen-
cies with differences in suspension position requires further study. For lighter
and smaller specimens than those used in this investigation, the suspension
method yields even more reliable results than does the method of air coupling.
Also, for the most accurate results, specimens should be vibrated in vacuum
(see next paragraph of text). The suspension method is easily adapted to this.
For fiexural vibrations, in contrast with torsional, the highest frequencies are
obtained when the supports are placed furthest from the nodes. In all cases it

is believed that the truest resonance frequencies are obtained when the driving
and pickup fibers are nearest the nodes.

TaBLE 3.

[Data rounded off to final figure.

3.4. Calculations

Comparison of the experimental results will first
be made with the curve based on Pickett’s equation.
The empirical (lower) curve shown in figure 2 was
obtained in the following manner: For some par-
ticular value of w/d say (w/d)=1,

ol )
G':Bl;l—imlf{,

where B’=B(a/l) and the subscripts indicate par-
ticular values for w/d=1. For any other value of
w/d, the specimen will have the same value of &, and
all the terms on the right-hand side have the sub-
seript 2 thus,

G=B 2 m, 13

a2
Therefore,

B; my Ly as f1>2
L Sty 159 B 6
By myla fz ())

All the members on the right-hand side are known
and B;/Bi may be evaluated. Values of this ratio
are given in column 3 of table 3.

In order to obtain B(a/l) (experimental) directly
as a function of w/d, it is first necessary to select a
reliable base value of B(a/l) for some particular
value of w/d. It has already been shown that the
value of B(a/l)=4.742 for w/d=1 is believed most
accurate. This number then, is selected as the base
value for w/d=1. Values of B(a/l) (experimental)
for higher w/d ratios are then obtained by multiply-
ing this base value by the B,’/B,’, ratio for the cor-
responding value of w/d. These are given in column
5 of table 3.

It should be noted that the choice of a’base value
for B(a/l) (experimental) is somewhat arbitrary.
Should it develop that some other value of B(a/l)
either at w/d=1, or at some other w/d ratiolis more

Theoretical and empirical data for rectangular bars of varying w/d ratios

Calculations are on basis of more significant figures]

i |
i Bla/l i
[ . By o @) b’% (theor.) ‘
Specimen | — — ——1 | X100 | A2
d Bi | Theoretical | Experimental B_a_ (exp.)
TRt
(
15 e o 1 1 4.734 4.742 —0.17 0. 4218
25 1.237 1. 045 4.973 4. 955 +. 36 . 51065
S 1. 650 1. 261 5.979 5. 981 —. 03 . 6222
ik, 1. 980 1.516 7.198 7.186 +.17 . 6847
6= 2.198 1.7175 8.162 8.144 .23 7160
6. 2.473 2. 005 | 9. 544 9. 505 .40 . 7489
i 2. 827 2.424 11. 563 11. 495 .59 7822
fa ke 3. 298 3.074 14. 681 14. 577 sl 8148
[ 3. 957 4.130 19.815 19, 583 1.18 8509
(R 4,938 6. 060 29. 096 28,734 1.26 8834
1 L A 6. 586 10. 198 49. 068 48. 352 1.48 9177
E P A 9. 908 21. 959 105. 90 104.12 1beds 9524
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accurate, then a readjustment could easily be made
in column 5, using the more basic data from column 3.

The data in column 5 was obtained without
assuming any particular value for G for the speci-
mens, but merely that all the specimens had the
same value of G. An alternative method for calcu-
lating the data in column 5 may be used if, in addi-
tion to assuming that the value of G of all the speci-
mens is the same, a definite value of ¢ is derived for
some particular value of w/d. Thus, using B(a/l)=
4.742 for w/d=I1, and substituting in eq (1) and (2),
leads to a value of 822.1 kilobars for G. Then,
resubstituting this value in the same two equations,
one obtains the following expression, from which

B(a/l) (experimental) for the corresponding w/d
values may be calculated,

£t _822.1a :

Ifz((x})(,lllnctllal)— T (7)

Comparison between theoretical and experimental
curves can now also be made in terms of A% used in
Cady’s equations. A? is evaluated empirically by
substituting B(a/l) (experimental) and the corre-
sponding value of w/d in eq (5). The resulting
values of A% are given in column 7 of table 3 and are
plotted as a function of w/d in the upper curve of
figure 3. The lower curve in figure 3 is a plot of the
factor 3K,(=A? “theoretical’”) against the selected
values of w/d from Timoshenko and Goodier (given

in table 1). Ko

L 1 L Il Il 1 1 L

| 2 3 4 5 6 7 8 9 10
WIDTH TO DEPTH RATIO

Fraure 3. Comparison of empirically determined
shape factor, A2, with that oblained by wusing
Timoshenko and Goodier's values of K, where
A2=3K,.

461441—58———4

4. Results and Discussion

The empirical curves of figures 1 and 3, along with
their appropriate equations, should yield the same
values for the shear modulus. Also, since the
theoretical curves based on Pickett’s and Cady’s
equations vyield similar results, the percentage
difference between the theoretical and empirical
curves should be of the same magnitude in both
cases. These observations are shown to hold in
figures 1 and 3. It is also noted that in figure 1, at
high values of w/d, a given change in abscissa is
associated with a relatively large change in ordinate,
whereas in figure 3 this occurs at low values of w/d.
Therefore, for graphs of comparable size, the em-
pirical curve in figure 1 would yield more precise
results at low values of w/d, and conversely figure 3
would yield the more precise results at higch w/d
ratios.

Column 6 of table 3 gives the percentage by which
B(a/l) (theoretical) from Pickett is larger than B(a/l)
(experimental). The values of B(a/l) (theoretical)
are given to the same number of significant figures as
B(a/l) (experimental) for comparison. Figure 4
illustrates this variation between the theoretical and
experimental curves. It is seen that, using the funda-
mental mode of vibration, Roark’s estimate of an
error ‘“not greater than 4 percent’” is quite justified—
even conservative, the actual deviation being less
than half Roark’s figure up to w/d=10. Further-
more, the appearance of the curves in figures 1 and 3
suggests that at higher values of w/d the deviation
will not increase significantly above that already
observed.

The empirical curves of figures 1 and 2, and the
data on which they are based, even though obtained
by using steel specimens, do not lose generality and
are applicable to any elastic solid. Some random
checks comparing the theoretical and empirical curves
of figures 1 and 3 were made by using glass specimens.

[ Ba/I (THEORETIGAL ) /Ba /1 (EXPERIMENTAL)- ] x100

-0.5 | L 1 i I 1 | 1
| 2 3 4 5 6 i\ 8 9 10

WIDTH TO DEPTH RATIO

Fraure 4. Percentage diflerence between empirical and theo-
retical curves as a function of width to depth ratio.
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Ficure 5. Ratio of first overtone of torsional vibration over
Sfundamental overtone as a function of width to depth ratio.

Length 15.202 em.

Results showed that for the same glass, a more nearly
consistent value of the shear modulus was obtained
for different values of w/d when the empirical curves
were used.

It is recalled that, in addition to the fundamental,
the first overtones of the resonance frequencies were
also determined. Column 4, table 2, gives the per-
centage variation of the first overtone, f,_. from the
exact double of the fundamental, f,_:,, and figure 5
shows the same data graphically as a function of w/d.

Giebe and Blechschmidt ' resonated quartz bars
at the fundamental and higher overtones of the
torsional resonance frequency. They also found that
the harmonic law did not hold. Their results for the
first overtone are in general agreement with those
obtained here in that the deviation from the exact
double of the fundamental was usually positive and
the amount of deviation tended to increase as the
w/d ratio increased.

11 E, Giebe and E. Blechschmidt, Uber Drillungsschwingungen von Quarzs-
tdben und ihre Benutzung fiir Frequenznormale, Hochfrequentztechnik und

Electroakustik—Jahrbuch der drahtlosen Telegraphie und Telephonie 56 (3)
65-87 (1940).
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Equations (2) and (4a) show that the overtones of
vibration are taken to be whole-number multiples of
the fundamental. Use of the term 7* in the denomi-
nator is merely a device for finding the fundamental
frequency on the assumption that the overtones are
whole-number multiples of the fundamental. The
present investigation of the overtones is obviously far
from complete, inasmuch as it was determined only
for a single length and for one overtone. However,
there is already sufficient evidence to show that the
belief that the overtone is a whole-number multiple
of the fundamental is unjustified. At a w/d ratio of
10, the first overtone is more than 5 percent higher
than the exact double of the fundamental. If this
were overlooked, it would lead to an error of about
the same amount in the calculation of the shear
modulus.

5. Summary

1. Two empirical curves have been presented
which can be used to determine the shear modulus
of bars of rectangular cross section from their
resonance frequencies.

2. These empirical curves show a small but sig-
nificant difference from their corresponding theoret-
ical approximations. This difference increases to
about 1% percent for a specimen having a cross-
sectional width to depth ratio of 10.

3. The resonance frequencies of the first overtone
of vibration of a rectangular bar is found to deviate
from the harmonic law by more than 5 percent as
the ratio of width to depth reaches 10.

The authors are indebted to W. Capps of the
Bureau for his assistance in performing many of the
calculations involved in preparing table 3.

WasuinaTon, October 28, 1957,
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