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Elastic Problem for a Ring of Uniform Force In an 
Infinite Body 1 

William H. Pell 

K elvin has given an integral representation for the displacements in an infinite elastic 
body produced by a bod.v force act ing in an arbitrary portion of t his body. By a limit pro­
cedure, solutions have been found for poin t and line s ingulari t ies acting in t he interior of 
such a body. A similar method is used in this paper to obtain the displacemcnts produced 
by a uniform for ce appli ed along, and normal to, a circle ly in g in the interior of an infinite 
elastic bod y. 

1. Introduction 

On e of the importan t resul ts of the classicial theory of elasticity is the solution of K elvin 
[1,3] for the displacements in an infinite elastic solid due to a body force distribution throughout 
all , or a part of the body . From this, one obtain by a limiting procedure the displacem en ts 
for the case in ·whi ch the body force reduces to a concen trated force at some point in the infin i te 
solid. This solution i ingular at the point of application of the concen trated force, and plays 
a role for the Navier equations of elasticity analogous to that which th e potential of a point 
charge plays for Laplace's equa tion. By the process of superposition , the di placements, due 
to any finite number of concen trated forces with differen t directions and at differen t points, 
can be obtained . The principle of superposit ion and a limi ting process such a is used in me­
chanics to obtain a concen trated momen t can be employed to obtain solutions for higher-order 
sin gulari t ics. For example, one may superpose the solutions for poin t forces P , a distan ce 11, 
apart, and with opposite senses. By allowing h~Owhile Ph remains constan t, thc solution 
corresponding to a "double force" is obtained. Superposition of three of these with mutually 
perpendicular lines of action gives the "cen ter of compression". In this way, a catalogue of 
singular solu tions can be built up . A number of such solu tions ha been given by Boussinesq 
[4] and Dougall [5], and, more recently, usin g other methods, Mindlin [6] has given an extensive 
list of such "nuclei of strain", as they have been called by Love. 

By superposition of these nuclei of strain in our infinite solid, one may hope to be able to 
solve problems for domain s with boundaries, and this has been done in a number of important 
cases, e. g., the half space under concentrated normal load on i t boundary, or concentra ted 
load on a line, or over an area such as a circle or r ectangle [7]. 

The Kelvin in tegrals will be used h ere to obtain the displacements due to a concentrated 
force applied along, and Jlormal to a circle in an infinite solid. ·While no mathematical features 
of parti cular novelty arise in the analysis, the solution does exhibi t an in teresting use of ellip t ic 
integrals. The problem has b een undertaken as a first step in the application of such methods 
to problems dealing with bodies having axial symmetry; in particular, it is hoped to use the 
r esult obtained here as a first step in obtaining the solution due to a ring of pres ure applied to 
the surface of an elastic cone. It is therefore natural to carry out the work in spherical, rather 
than the somewhat simpler cylindrical, coordinates, and this has been done. 

2. Kelvin' s Integral of the Navier Equations 

Consider an elasLic solid of infinite extent, and let its material points be referred to r ec­
tangular cartesian coordinates Xi , i = 1,2,3 . If a body force with components F j (Xl,X2,X3), 
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.1= 1,2,3, pel' unit volume acts within a region Vof the solid, and Uj(xl,x2,x3),j= 1,2,3 represent 
the displacement components in th e solid, then the N avier equations in V are 

i = 1,2,3, (2.1) 

whero A and fJ- are Lame's elastic constants, and L1 is the sum of the extensional strains. The 
righ t side of (2.1 ) vanishes outside of V. 

Lord Kelvin [1,3] has given a solution of these equations, valid throughout the solid , which 
represen ts the effeets of the body force, viz ., 

i = 1,2,3 (2.2) 

wher e ~j, j = 1,2 ,3 are variables of integration , x and ~ have been used to indicate the three 
variables X j and hand 

(2.3) 

(2.4) 

3. The Kelvin Integrals in Spherical Coordinates 

It will be convenient for our purposes to obtain the spherical coordinate equivalents of 
(2.2) , i . e., to obtain displacement components in the spherical coordinate directions expressed 
in terms of spherics.! coordinates. 

Let 1',8, and </> be spherical coordina tes related to the Xi coordinates by 

Xl = 1' sin 8 cos </> , 

(3.1) 

as indica ted in figure 1. If V ;(x) denote the components of a vector in the X i coordinate system 

x, 

Ie) 

FIGURE 1. Concenll'a tedforce applied to a ring. 
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and V T(r,IJ,¢), Vo(r ,IJ,¢ ), V",(r ,e,¢) its components in sph erical coordinates, then it is ea ily 
shown eith er by tensor methods or by elementary geometry that 

V ,=(V 1 cos ¢ + V2 sin ¢ ) Si ll e+ V3 cos e, 

VO=(VI cos ¢ + V2 sin ¢) cos e- V3 sin e, 

V",=- VI sin ¢ + V 2 cos ¢ . 

Inversion of this system gives 

VI = (V, s in e+ 170 cos e) cos ¢ - 17.p sin ¢, 

V 2= (VT sin IJ + 170 cos e) sin ¢ + 17", eos ¢, 

V3 = VT cos e- V o sin e. 

(3.2) 

(3.3) 

If we let UT, Uo, U", be the components of the elastic displacement in sp heri cal coordinates, 
then they are connected with the cartesian compon ents Ui through (3. 2) with 17r, etc., replaced 
by Un etc., and F i replaced by Ui' If we suppose this done, and the expressions (2.2) for Ui 
inserted in the result, then we obtain, after some simplification , 

f{ 11, 1 - } vT(r,IJ,¢) = A Jv B R+R3 [rFT- pFT][7'-pcOSW1 dV, 

VB (r,IJ,¢) =AJ~ { B ~o + ;3 [rF,.-pFTl [sin e cos A-cos e sin A cos (¢ - AL)l } dV, (3.4) 

f{ F - } v",(7',e,¢) = A Jv B ;+ ~3 [rFr-pFrl sin A sin (¢- AL) dV, 

where p, A, AL are the values of r, e, ¢ , respectively, associated with the integration variab les ~i ' 

It is easy to verify that 

cos w= cos e cos A+ sin e sin A cos (¢- fJ, ), 

(3.5 ) 

(3 .6) 

i. e., R is the distance bet\vecn the flxed point (7', e, ¢) at which the displacements are Lo be 
calculated and the variable point of integration (p, A, fJ, ), while w is the angle beLween th e 
radii vectors rand p. We let FT , etc., be the components of the body force in Rpherica,l coor­
dinates. The arguments of FT in (3.4) are p, A, AL, but P r etc. , are used Lo designate certain 
terms wbich are as yet incompletely expressed in spherical coordinates, viz, 

F,= [F1 W cos ¢+ F2W sin ¢l sin e+ FaW cos 8, 

.F;= [FIW cos ¢+ F2W sin ¢l cos 8- FaW sin e, 

F",=- F1 W sin ¢+ F2W cos ¢. 

But the Fi(~) are given in terms of Fr(p, A, fJ, ), etc., by (3.3) with the obvious replacements, 
and hence we find that 

'ft'q,=-CFr sin A+ Fe cos A) sin (¢- fJ, )+ F", cos C¢ - fJ, ), 
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where the arguments of Fr, etc. , are P, A, J.I. , and 

Z= sin {j sin A+ cos (J cos A cos (J.I. - 4» , 

A= sin G cos A- cos (J sin A cos (J.I. - 4» , 

Q= cos {j sin A- sin (J cos A cos (J.I. - 4» . 

(3 .8) 

With the insertion of (3.7) in (3 .4), we obtain the displacements 111 spherical coordinates 
obtained from the K elvin integrals: 

vT= A Iv {~ [(FT cos w- FeQ + F", sin {j sin (4)- ,u)] 

T- p cos w } + R3 [FT(T cos w- p)- FeTQ+ rF", sin (J sin (4)- J.l. )] clV, 

Ve = A Iv {~ [- AFT+ ZFe+ F </> co((sin (4)- J.l.)] +~~ [Fr(T cos w- p) 

- F er Q+ rF", sin (J sin (4)- J.l.)] }dV, (3. 9) 

v",=A Iv {~ [- (FT sin }..+ Fe cos }..) sin (4)- J.l.) + F ,,, cos (4)- J.l. )] 

- ~3 sin}.. sin (4) - ,u) [FT (1' cos w- p) - FerQ+ TF", in (j sin (4)- J.l. ) }clV. 

4 . The Displacement Integrals for a Ring of Concentrated Force 

The concept of a concentrated force F Cc) acting at a point P of an infinite body may be 
arrived at in the following way. We first define a dis tributed body force which vanishes out-

-' 

side some volume ~ V containing P in its in terior, and inside ~ V is some continuous F which 
has the property that 

N ow ~ V is let tend to zero, always with P in its interior, and F allowed to increase in such 
-' 

a way that the value of the integral maintains the constant value F Cc). Thus 

F CC) (P ) = lim f FclV. 
LlV-+O /IV 

(4.1) 

We wish to consider a continuous distribution of concentrated force along a circle (0) 
whose center lies on the X3 axis, and whose pl ane is parallel to that of the Xl and X2 axes . (See 
fig. 1. ) In spherical coordinates we take the equation of the circle to be 

r= a, (J = a, 

where O< a< <Xl , O< a < 7r. Suppose F(4) ) = (Fr (4» , Fe(4) ),O) is a continuous distribution of 
force defined in the region a- M < r< a+ M , a- ~(J< {j<a+ ~{j J.I.- ~4><4>< J.I. + ~4> enclosing the 
point P: (a,a,,u). For simplicity, let us consider only the component Fe. In general , because 
the (j-direction varies from point to point in ~ V, this distribution of force will have a nonzero 
r esultan t force and moment with r espect to the coordinate directions at (a,a, J.I. ). It is easy to 
show, however , that if the resultant Fe CC) in the {j-direction is held fixed as w e let M , ~{j , ~4> tend 
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to zero, then we obtain in the limit only a force Fo (e) acting in the O-direction. The same r0mal'k 
holds for the component F T( f/». In this waYW0 obtain a concentrated rorceF(c) (fJ. )=(F /C\( fJ. ), 
Fo (C) (fJ. ), 0), acting at f/> = fJ. on the circle r = a, O= a. This fo rce lies in the plane f/> = fJ. , and is 
therefore normal to the ring. 

The displacements corresponding to the distribution F = (FT, F o,O) in !:J. V arc een from 
(3.9) too b e 

J r B 1 } vr=A L'lV i. R [FT cos w- FoOl + R3 [r - p cos wl [FT(1' cos w- p)-rOFol dV, 

vo= A I v {~ [- AFT+ 2Fol +~;FT(1' cos w- p)-rOFol }dV, (4.2) 

V1>=A I v { -~ [FT sin 'A+ Fo cos 'A] + ~3 sin 'A[F'T(r cos w- p)-rOFo] } sin (f/> - fJ.) dV, 

wh ere clV= p2 sin 'A dp d'A elfJ.. Each of these expressions consists of a sum of terms of the form 

I v}(1' ,O,f/>;p , 'A , fJ.)F (f/» dV, 

where F(f/» is either FT( f/» or F o( f/» , and} r epresents its coeffi cient. I t is not diffLcul t to show 
that jf (1',O,f/» ~ (a" a,/J. ), then under the assumed behavior of fl' in (4.1 ), 

(4.3) 

Accordingly, if we now consider a distribution of force of strength F (e) pCI' unit of arc length 
along the circle (0), we oMain for the displacements at (1', 0,f/» the expl'essions 

{ ?" 1 { vr=AJ o R* B[F,<c)(fJ. ) cos w*- O*Fo (C)( fJ.)]+ 

;~2 [r - a co w*] [FT(C)( fJ.)(1' cos w* - a)-rO*Fo(e)( fJ.)] } d/J- , 

vo= A .r" ~* { B[ _ F,<e) (fJ. )A*+F o(C) (fJ.)2*] + 

~~~ [FT(e)( fJ. )(r cos w*-a) -rO*Fo(C) (fJ.)] } elfJ., 

where * indicates evalualion of the quantity to which it is attached at p= CL , 'A = a, i. e. , 

R*2=r2+a2- 2ar cos w*, 

cos w* = cos 0 cos a + sin 0 sin a cos (fJ. - f/» , 

2*=sin 0 sin a + cos 0 cos a cos (fJ. - f/», 

A*=sin 0 cos a - COS 0 sin a cos (fJ. - f/», and 

O* = cos 0 sin a - sin 0 cos a cos (fJ. - f/». 

(4.4) 

(4 .5) 

The evaluation of the integrals occurring in (4.4) will be difficult, or impossible, in finite 
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terms, unless Fr and Fe have the form of trigonometric polynomials. More general functions 
Fr and Fe may be replaced by their Fourier series expansions. This leads to an infinite series 
for each displacement component, the terms of which contain integrals evaluable in terms of 
complete elliptic integrals of the first and second kinds. The process of such evaluation 
involves the use of r ecursion formulas which lead to extremely long and cumbersome expres­
sions. We shall therefore restrict our consideration to the case in which the components 
Fr(C) and Fe (e are constant. This does not mean that the direction of the force is the same at every 
point of the ring, but that at every point it lies in the plane of the point and the Xa axis, and has 
the same orientation in this plane. (See fig . 1.) If we denote the magnitude of this force by 
P and its angle with the l'-direction by {3, where the positive sense of {3 is the same as that of 0, 
th en Fr= P cos {3 and~Fe=P sin {3, and (4 .4) may be written as 

where 

gl (8, ¢ , a,{3, J.l ) = cos (a+ (3 ) cos O+sin (a + {3 ) sin ° cos (J.l - ¢ ), 

g2(O, ¢, a, (3, J.l ) = - cos (a+ (3) sin 8+sin (a + (3 ) cos 8 cos (J.l - ¢ ). 

(4.6) 

(4.7) 

The third integral of (4.4) vanishes, since the integrand is an odd function with respect to 
J.l = 7r . It is now convenient to introduce non dimensional quantities 1] and h defined by 

(4 .8) 

Thus 

(4 .9) 
and (4.6) become 

(4. 10) 

5 . Evaluation of the Integrals 

When the expressions (4.5) and (4.7 ) are inserted for A*, gl and g2, it will b e seen that 
Vr and Ve consist of sums of terms of the form 

( 21T cosm(J.l - ¢ )dJ.l 
I ':( 1] ,8,¢,a)= J( n' 

o [1 + 1]2 - 21] cos w*]2 
m = O, 1,2; n = 1,3, (5.1) 

with coefficients which are functions of a, {3, 0, and 1] . If we let 

(5.2) 

then 
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and it is easy to show that 

p n=2 . J' 211" costn ~d~ 

n 0 [p2 sin2 £+q2 cos2 £J (5.3) 

These integrals are evaluable in terms of complete ellip tic integrals of the flrst and econd 
kinds [8]; specifically, 

n=~FG'k} 

1~= p3t'2 E(~' k} 
11 = - -- F - ,k -- E -, k , 1 4 [1 + k' 2 (7r ) 2 (7r)] 

p k2 2 k2 2 
(5.4) 

where lc = [ (p2- q2) lp2J~ is the modulus of the functions E and F, and lc2 + k' 2= 1. Using these 
quantities, the final form of the displacements i found to be 

VT=4~P {B(K IF- 2 sin 0 in (a + {1)) ~ 

1 [E ( 4k '2 ) + iJ2 lc'2 K I 7]2+ [cos f3 - 7]KdK2- k41) sin2 0 in a sin (a+ f3) 

- ~ ( sin 0 [sin a cos f3 + 7] 2 sin (a + f3)] - 1) sin O[KI si n a+ K 2 sin (a+ f3)])] } ' 

V8 = 4!P {B ( K 3F- 2 cos 0 sin (a+ f3) ~)+~ [:'2 ([cosf3 - 1)KdK4-47;427] sin 0 co 0 si n (a + {3)) 

+ ~~ (- cos 0 in a cos f3 + 7] [1'C cos 0 sin a+ K 4 sill 0 sin (a+ f3 )]) ]} 

where we have introduced the abbreviations 

1+ k'2 
K l= cos 0 cos (a + f3) +- 2- sin 0 sin (a + {3) ' 

(5 .G) 

1+ k'2 
K 3=-sin 0 co (a+ f3 )+----p- cos 0 sin (a + f3 ), 

In obtaining the results (5.5) the ring has been taken in the most general po ition in which 
the force specified acting on it can be written in terms of one coordinate. If we place the ring 
in a more special position, viz, in the Xl Xz plane, center at the origin, then (5.5) and (5. 6) be­
come somewhat simpler . Thus 
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Vr=4~: { B( K / F- 2 sin e cos (J ~)+ ~2 [;2( K/7]2+ [COS (J-7]K;]K~-4t:1) sin2 e cos (J) 

-~ (sin e cos (J[1 + 1)2]- 1) sin e[K;+K~ cos {J])J } ' 

4AP { B (TT'F E ) 1 [ E ( [ K ']K' 4k/2 . ) Ve= ap 1'ia ; - 2 cos e cos {J k2 + p2 k' 2 cos (J - 7] ] 4 -7 1) sm e cos e cos {J 

+ ~ (- cos e cos {J+ 1)[K; cos e+K~ sin e cos {J])J} 

where 

K ' . + 1+ k '2. l=-COS e sm {J ~ sm e cos {J, 

(5.8) 

K'. . + 1+k' 2 
a= sm e sm {3 ~ cos e co {3, 

6 . A Limiting Form of the Displacements 

Let the ring be loca ted as above, and let {J = 7r/ 2. The force P a t each point of the ring 
is now normal to the Xl X2 plan e and has the sense of decreasing X3. The distribution thus has 
a r esultant force 27raP= P . At distances far removed from the ring, it may be expected that 
the distribution on the ring will have essentially the same effect as a concentrated force j5 
located at the origin. We show that this is the case. 

If we let the poin t (r,e,¢) recede to infini ty, then lim 1/1) = 0, and we see from (5.2) that 

for r»a 

where lim E] = 1im E2 = 0. 1iforeover, 
T--1'CO T-)OO 

p2_ q2 4 sin e 
Jc2=--=--p2 7] 

from which we see that lim k = O, and hence that for r»a 
r '" 

where lim Et= O, i = 3, 4,5. 
T--7'" 

Using these results, it can be shown that for r»a 

- cos (J 
vr~-A (B+ 1)P - ) 

r 
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- sin (J 
ve~ABP-· 

l' 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6. 5) 



If these are converted to cartesian coordinates, we find that for l'»a 

(6.6) 

The right-hand members are the displacements produced in an infinite elastic medium by a 
concentrated force J5 at the origin directed along the negaLive X3 axis [3]. 
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