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Elastic Problem for a Ring of Uniform Force in an
Infinite Body'

William H. Pell

Kelvin has given an integral representation for the displacements in an infinite elastic
body produced by a body force acting in an arbitrary portion of this body. By a limit pro-
cedure, solutions have been found for point and line singularities acting in the interior of
such a body. A similar method is used in this paper to obtain the displacements produced
by a uniform force applied along, and normal to, a circle lying in the interior of an infinite
elastic body.

1. Introduction

One of the important results of the classicial theory of elasticity is the solution of Kelvin
[1, 3] for the displacements in an infinite elastic solid due to a body force distribution throughout
all, or a part of the body. From this, one obtains by a limiting procedure the displacements
for the case in which the body force reduces to a concentrated force at some point in the infinite
solid.  This solution is singular at the point of application of the concentrated force, and plays
a role for the Navier equations of elasticity analogous to that which the potential of a point
charge plays for Laplace’s equation. By the process of superposition, the displacements, due
to any finite number of concentrated forces with different directions and at different points,
can be obtained. The principle of superposition and a limiting process such as is used in me-
chanies to obtain a concentrated moment can be employed to obtain solutions for higher-order
singularities.  For example, one may superpose the solutions for point forces 2, a distance &
apart, and with opposite senses. By allowing A—0 while Ph remains constant, the solution
corresponding to a “double force” is obtained. Superposition of three of these with mutually
perpendicular lines of action gives the “center of compression”. In this way, a catalogue of
singular solutions can be built up. A number of such solutions has been given by Boussinesq
[4] and Dougall [5], and, more recently, using other methods, Mindlin [6] has given an extensive
list of such “nucler of strain”; as they have been called by Love.

By superposition of these nuclei of strain in our infinite solid, one may hope to be able to
solve problems for domains with boundaries, and this has been done in a number of important
cases, e. g., the half space under concentrated normal load on its boundary, or concentrated
load on a line, or over an area such as a circle or rectangle [7].

The Kelvin integrals will be used here to obtain the displacements due to a concentrated
force applied along, and normal to a circle in an infinite solid. While no mathematical features
of particular novelty arise in the analysis, the solution does exhibit an interesting use of elliptic
integrals. The problem has been undertaken as a first step in the application of such methods
to problems dealing with bodies having axial symmetry; in particular, it is hoped to use the
result obtained here as a first step in obtaining the solution due to a ring of pressure applied to
the surface of an elastic cone. It is therefore natural to carry out the work in spherical, rather
than the somewhat simpler eylindrical, coordinates, and this has been done.

2. Kelvin's Integral of the Navier Equations

Consider an elastic solid of infinite extent, and let its material points be referred to rec-
tangular cartesian coordinates z; 1=1,2,3. If a body force with components F;(x,xs,23),

1 This research was supported by the United States Air Force, through the Office of Scientific Research of the Air Research and Develop-
ment Command.
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7=1,2,3, per unit volume acts within a region V" of the solid, and w;(z;,xs,23),7j=1,2,3 represent
the displacement components in the solid, then the Navier equations in V are

—F, =123, 2.1)

uV2u; 4 (

where \ and g are Lame’s elastic constants, and A is the sum of the extensional strains. The
right side of (2.1) vanishes outside of V.

Lord Kelvin [1,3] has given a solution of these equations, valid throughout the solid, which
represents the effects of the body force, viz.,

) — AJ [Bﬂ(i-ml(lgz(l g])F(g)]dV i=1,23 (2.2)

b

where &, 7=1,2,3 are variables of integration,  and & have been used to indicate the three
variables z; and &;, and

3
RZ:E (x "‘E:) ’ (2:3)
o Ahp N-3u
doe ot iR e 2.4)

3. The Kelvin Integrals in Spherical Coordinates

It will be convenient for our purposes to obtain the spherical coordinate equivalents of
(2.2), 1. e., to obtain displacement components in the spherical coordinate directions expressed
in terms of spherical coordinates.

Let 7,6, and ¢ be spherical coordinates related to the x; coordinates by

ry=r sin 6 cos ¢,
Zy=7 sin 6 sin ¢, (3.1)
X3="r cos §,

as indicated in figure 1. If V,(z) denote the components of a vector in the z; coordinate system

A X3

P:(r,8,¢)

Ficure 1. Concentrated force applied to a ring.
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and V,(r,0,¢), Vi(r,0,¢), V,(r,6,¢) its components in spherical coordinates, then it is easily
shown either by tensor methods or by elementary geometry that

V,=(V; cos ¢+ V, sin ¢) sin 6+ V7 cos 6,
Ve=(V, cos ¢+ V, sin ¢) cos 8— V5 sin 6, (3.2)
Vs=—V; sin ¢+ V, cos ¢.
Inversion of this system gives
Vi=(V, sin 6+ Vj cos 6) cos ¢— V', sin ¢,
Vo= (V, sin 0+ Vj cos 6) sin ¢+ V, cos ¢, (BE3)

V=V, cos 6— V, sin 6.

If we let u,, us, u, be the components of the elastic displacement in spherical coordinates,
then they are connected with the cartesian components u; through (3.2) with V7, ete., replaced
by u,, ete., and V; replaced by u,. If we suppose this done, and the expressions (2.2) for u;
mserted in the result, then we obtain, after some simplification,

088 =A [ LB A s bF—pEl—p cosal |V
7 R R?
ve (r,0,9) = AJ {B in —}-1,3 [rF,—pF,] [sin 6 cos A—cos 8 sin \ cos (¢~u)]} dv, (3.4)

v (r,0,8) = Af { +I” [rF,—pF,] sin X sin (¢~—,u)} dV,
where p, X\, u are the values of 7, 6, ¢, respectively, associated with the integration variables &,.
It 1s easy to verify that
R*=1r?+ p*—2rp cos w, (3.5)
€08 w=c0s  cos A\-}sin f sin X cos (¢p—pu), (3.6)

1. e., R is the distance between the fixed point (r, 6, ¢) at which the displacements are to be
calculated and the variable point of integration (p, N, u), while w is the anglo between the
radii vectors 7 and p.  We let I, ete., be the components of the body force in spherical coor-
dinates. The arguments of F, in (3.4) are p, N, i, but 7, etc., are used to designate certain
terms which are as yet incompletely expressed in spherical coordinates, viz,

F,=[F\(£) cos ¢+ Fy(&) sin ¢] sin 6+ F4(£) cos 6,

*l

=[F\(£) cos ¢+ Fs(§) sin ¢] cos 0— F3(£) sin 6,

Fy=—F, (%) sin ¢+ Fy(§) cos ¢.

But the F7;(¢) are given in terms of F,(p, \, u), etc., by (3.3) with the obvious replacements,
and hence we find that

F.=F, cos w—FQ-+Fy sin 0 sin (¢p—u),
Fo=—F A+ FyZ+F, cos 0 sin (¢—u), (3.7)

E:—(F, sin A4 Fy cos N\) sin (¢—u)+Fy cos (p—pu),
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where the arguments of /7, etc., are p, N\, y, and
E=sin 6 sin A-Fcos 0 cos N cos (u—¢),

A=sin 6 cos N—cos 6 sin \ cos (u—¢), (3.8)

)

=cos  sin A—sin § cos N cos (u—a).

With the insertion of (3.7) in (3.4), we obtain the displacements in spherical coordinates
obtained from the Kelvin integrals:

/()rzAf {% [(F; cos o—FyQ+Fsin 6 sin (¢—u)]
Vv

7—p COS @

+ e [F,(r cos w—p)—ForQ-+rFy sin 6 sin (¢—y)]}dV

vo:Af {% [~ AF,+EFy+ Fy cossin (6 )]+ [F, (- cos w—p)
|4

—FgrQ+rF, sin # sin (qS——;;)]}dV, (3.9)

%__Af { —(F, sin N\Fy cos \) sin (p—pu) +F, cos (¢—pu)]

R3 sin X\ sin (¢—u) [F, (r cos w—p) —FgrQ+rF, sin 6 sin (¢—u) }dV

4. The Displacement Integrals for a Ring of Concentrated Force
The concept of a concentrated force /' acting at a point P of an infinite body may be

arrived at in the following way. We first define a distributed body force which vanishes out-

side some volume AV containing P in its interior, and inside AV is some continuous / which
has the property that

Fo— f Fav.
AV

=
Now AV is let tend to zero, always with P in its interior, and / allowed to increase in such

a way that the value of the integral maintains the constant value . Thus

FOP)=lm | Fav. (4.1)
AV

AV-0

We wish to consider a continuous distribution of concentrated force along a circle ()
whose center lies on the z; axis, and whose plane is parallel to that of the x; and z, axes. (See
fig. 1.) In spherical coordinates we take the equation of the circle to be

r=a, =q,

where 0<a<o, 0<a<w. Suppose F(q&): (FF,(p), Fis(0),0) is a continuous distribution of
force defined in the region a— Ar<r< a-+Ar, a— A< < a+ A0 u—Ap<p<_u-+A¢ enclosing the
point P: (a,a,n). KFor simplicity, let us consider only the component Fj. In general, because
the 6-direction varies from point to point in AV, this distribution of force will have a nonzero
resultant force and moment with respect to the coordinate directions at (a,a,u). It is easy to
show, however, that if the resultant /3 in the é-direction is held fixed as we let Ar, Ag, A¢ tend
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to zero, then we obtain in the limit only a force /4 acting in the #-direction. The same remark
holds f01 the component /,(¢). In this way we obtain a concentrated fore eF© (W=l ()
Fy®@ (u), 0), acting at ¢=pu on the circle 7—=a, 6=«. This force lies in the plane ¢p=pu, und 1s
therefore normal to the ring.
The displacements corresponding to the distribution / —_(T,,]’o 0) in AV are seen from
(3.9) to be

v,zAf E, [, cos w~F@QH—i [r—p cos ] [F,(r cos w—p)—rQFy] »dV

AV ]l RB
> B ot pA\ v

I/'e:A —1? ['—‘AF,%':LF()] +—[l)—3 F,(Y‘ CcOoS w—p)‘TQFo] (/V, (42)
AV

vp=A ~lf [F, sin A+ Fy cos N4 sin MF, (r cos w—p)—rQF;] psin (6—p) dV,
AV Il RB
where dV=p?sin N dp d\ du. Each of these expressions consists of a sum of terms of the form
[yt 0,800 0F@ v,

where F(¢) is either F,(¢) or Fy(¢), and f represents its coefficient. It 1s not difficult to show
that if (,0,¢) # (a,c,u), then under the assumed behavior of /' in (4.1),

lim f Fr,0,8;0,M, W F @) dV=F(r0, ¢; a,0, ) F (u). (4.3)
AV

AV=-0

. . . C : Y .
Accordingly, if we now consider a distribution of force of strength £ per unit of arc length
along the cirele (), we obtain for the displacements at (r,0,¢) the expressions

n—A f '”71,«{1:11«', (1) 008 wx—2Fr© ()] +
0 Usge

1
/1

5 [r—a cos wy] [F,© (u) (r cos w*—a)~r£2*Fg“)(p)]} du,
g 711J'” L L BI—F, @ () Ayt Fo© (0) 5]+
(] M) Do M (44)
A0 005 01—0)—rQuF (W] }
pq,:Af T {~I§ [F,©(w) sin a+F© (u) cos o]+
*

a sin «

R [F,© (u) (r cos w*~ar)~r9*Fo‘”(u>]} sin (¢—u) du,
*

where * indicates evaluation of the quantity to which it is attached at p=a, N=a, i. e.,
R2=r*+a*—2ar cos wy,
COS wy=C0s 0 cos a-Fsin f sin « cos (u— o),
Ey=sin 0 sin a+cos 0 cos a cos (u—o), (4.5)
Ag=sin 0 cos a—cos 0 sin a cos (u—¢), and
Q=08 0 sin a—sin 6 cos a cos (u—o).
The evaluation of the integrals occurring in (4.4) will be difficult, or impossible, in finite
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terms, unless F, and %, have the form of trigonometric polynomials. More general functions
F. and Fy may be replaced by their Fourier series expansions. This leads to an infinite series
for each displacement component, the terms of which contain integrals evaluable in terms of
complete elliptic integrals of the first and second kinds. The process of such evaluation
involves the use of recursion formulas which lead to extremely long and cumbersome expres-
sions. We shall therefore restrict our consideration to the case in which the components
F,“and Fy©are constant. This does not mean that the direction of the force is the same at every
point of the ring, but that at every point it lies in the plane of the point and the 23 axis, and has
the same orientation in this plane. (See fig. 1.) If we denote the magnitude of this force by
P and its angle with the 7-direction by 8, where the positive sense of 8 is the same as that of 6,
then F,=P cos B and Fy=P sin B, and (4.4) may be written as

27 :
v,zAPf L Bgl—}—i2 (r—a cos wy) (rgi—a cos wy) Fdu,
o By R @ 6)

y—AP ﬁ 2”-};:{Bgz+gz (e bon g }d,u,
where
9:1(8,, a,8,u) =cos (a-+B) cos -+sin (a-+B) sin d cos (u—9),
92(0, ¢, c, 8, u) = —cos (a+B) sin f+sin (a-+B) cos 6 cos (u—¢).

The third integral of (4.4) vanishes, since the integrand is an odd function with respect to
w=m. It is now convenient to introduce nondimensional quantities n and A defined by

(4.7)

r=na, Ry=ah. (4.8)
Thus

IP=1-+5>—2n cos w, (4.9)
and (4.6) become

AU 1
1;,=7j0 E{Bgl+P (1— oS wy) (ng1—COS wy) }d,u,

U2 ([ 1l
?«IOZTJO ﬁ{ ng"l—}ﬁ a,A*(ngl—COS CU*) }dﬂ.

5. Evaluation of the Integrals

(4.10)

When the expressions (4.5) and (4.7) are inserted for Ay, g, and ¢,, it will be seen that
2, and vy consist of sums of terms of the form

I;;l(n,e,qb,a):f% i el Y m=0,1,2; n=1,3, (5.1)
* 14 72—27 cos wy)?
with coefficients which are functions of «, 8, 6, and n. If we let
pP=h2, =1+n2—27 cos (a+6), g=ht,=1+72—27 cos (a—8), (5.2)
then
h*=p? sin? %d)-{- ¢* cos? #%(#7
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and it is easy to show that

J oos”‘ &dt i
I:p sin? +q 0052"’: E

These integrals are evaluable in terms of complete elliptic integrals of the first and second

kinds [8]; specifically,
4o (T
> <§,k>,

4
14k i
- 5[ ﬁ(z,k> kQE( k)] (5.4)
o 1+£k'2 (T _ 2 (T
I;_—3 ok E(E,k> k2ﬁ<2,k>:|,

QRO y(n ), LR e )]
3_p[ o B (Sk )4 g

where &=[(p*—¢%)/p*)*? is the modulus of the functions £ and F, and k*+k’2=1. TUsing these
quantities, the final form of the displacements is found to be

In=2 (5.3)

1 . 4AP{B K, F'—2 sin 6 sin (a+8)) ]%

12

[ [ (B +Loos a0

2]{12 (sm 0 [sin « cos B+n*sin (a+B)]—n sin 0[K; sin a-+ K, sin (a-+B)] ):I}
7’0——‘ 7{B<K3I* —2 cos 0 sin (a+B) k2>+ I:k’2 [( 0s B—nkK, | K ,— ]]i sin 6 cos 6 sin (a—[—ﬁ))

+2ITI: (—cos @ sin a cos B+1[K; cos 0 sin a-+ K, sin 6 sin (a+/3)]):|}

where we have introduced the abbreviations

K, ,=cos 6 cos (a+ﬂ)+1+k,

sin 0 sin (a+8),

’2

K,=cos 6 cos a—%—% sin @ sin a, (5.6)

K,=—sin 0 cos (a—{—ﬁ)—{-l—p—ff% cos 0 sin (a+3),

£2
K,=——sin 0 cos a+_ —— C0s f sin .

In obtaining the results (5.5) the ring has been taken in the most general position in which
the force specified acting on it can be written in terms of one coordinate. If we place the ring
in a more special position, viz, in the x, z, plane, center at the origin, then (5.5) and (5.6) be-
come somewhat simpler. Thus
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4AP{ (KI’F—Q sin 6 cos B Ic2> [k,2<K1’n2—{—[cos B—n K K,— ];c sin® § cos B)

-—g (sin 6 cos B[1+n2—n sin 0K -+K, cos B]):l};

p,,_ﬁlj{ <K3F—2 cos 0 cos >+ k,2<[cos B—nK K} — ]Iti 7 sin 0 cos 6 cos B>

+%§ (—cos 6 cos B-+n[K ] cos 64K sin 6 cos B]):I}

where
.72

Ki=—cos 6 sin B+% sin @ cos B,

L2
K;——_zz sin 6, (5.8)
2
K;=sin 6 sin [H—H]_Cic cos f cos B,
’2
K= Hl;k cos f.

6. A Limiting Form of the Displacements

Let the ring be located as above, and let B==/2. The force P at each point of the ring
is now normal to the z; z, plane and has the sense of decreasing x;. The distribution thus has
a resultant force 2raP=P. At distances far removed from the ring, it may be expected that
the distribution on the ring will have essentially the same effect as a concentrated force P

located at the origin.  We show that this is the case.
If we let the point (r,0,4) recede to infinity, then lim 1/7=0, and we see from (5.2) that

r-o
for >>a
p=nte, ¢=nte (6.1)
where lim ¢ =1lim &=0. Moreover,
> r—> o
2___ n2 1
k?:p 2q =4 sin 6 (6.2)
p ]
from which we see that lim k=0, and hence that for 7>>a
r>o
™ ™ (T Wy -
E (5) k‘>:§+ €3, F <§) k>:'2‘+ €4, (6.3)
pk?=4 sin 0+ ¢; (6.4)

where lim =0, =3, 4, 5.
r—> o

Using these results, it can be shown that for 7>a

pe~—A(B+1)D @i", w~ABP M- (6.5)
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If these are converted to cartesian coordinates, we find that for 7»>a

T1dg

= iy e g
o= APIR, e APT, g AP (B %+§3> (6.6)

The right-hand members are the displacements produced in an infinite elastic medium by a
concentrated force P at the origin directed along the negative x; axis [3].
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