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Random Notes on Matrices 
K. Goldberg 

Three matrix prob lems are co nsidered in t his pa per : BeRsel fun ctions as limi ts of de­
te rmina nts , fi nding a ll optimal st raLegies of a matrix game wi t h nonzero valu e, a nd co n­
di t ions for mat ri ces to ha,ve equ a l principal minors. 

The three section of this paper have little relation except that they each concern matrices 
and each was suggested by the work of a colleague at the N a tional Bureau of Standards. 

In the first section we prove tha t the limit of a certain sequence of determinants is the 
modified Bessel function As(x) . 

In the second sec tion we show that a method for computing a pair of optimal stra tegies 
for certain square matrix games ? iclds the unique optimal strategy for one player if the optimal 
strategy for the other pla~'er is totaH)! positive. This can result in an appreciable saving in 
the work of compuLing all the optimal s tra tegies of an arbitrary ma trix game wi th nonzero 
value. 

The Lhird secLion contains an amplifica tion of a result which appear ed in this journal as 
well as a necessar.v and suffLcient condition tha t two ma trices have equal corresponding prin ci­
pal minors. 

1. B essel functions as limits oj determinants . Let (a i}) be an infini te, triple diagonal, symmetric 
matrix wi th 

(1.1) 

for some polynomial pet) and some real number s which is no t a negative in Leger . Let D n(t) be 
the characteristic pol~-nomial of th e first n rows and column s of (aij) . ,Ve , hall prove 

T HEOREM 1. 
n '" 

where 1\ S(Z) is the J ahnke-Emde modified Bessel fun ction with expansion 

'" (_ 1)kz2Ic 

As(z)= :L: kJ,' 1. ) 1. ) + )' k= O 4 c.(s+ c (s+ c- 1 .. . (s 1 

T he Lheorem was suggcstcd in considering a conj ecture of J . T odd. 
Since (aij) is triple diagon al and symmeLric we can use the flrst equation in (1. 1) to obtain 

a simple recursion for D n(t ) . We have D o(t )= I , D 1(t )=t - alI and 

n = 2, 3, . 
Thus 

D n (au + 1) = 1. 

We shall expand D n(alI + l -- n -2z2) around au + 1, and to this end we define 

D~k) =D~k) (a lI + 1) . 

(1.2) 

By repeated differen tiation of equ aLion (1.2) we get the following r ecursion for 
D~k):D~O)=Dll)= l , D Ak ) = 0 if k >n an d 

D~k)- 2DA":.1 + D A":.2+n-1 (2s+ 1) (D~":. l-D A":.2) - n - 2p (n - 1) (D~":.l-D,~"Y.2) = lcD~"-lJ) 

for lc = 1,2 . . . ,71 a nd 11 = 2,3, . . . . This r ecursion can b e solved for D ;,k) yielding 

k 

457088- 58-4 

D ;,k) = n2k4 -k IT (j+s) -1+n2k-ldk+ n2k-2qk(n - l) 
j= l 
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for all nand k5:.n, some polynomial gkCt) of degree 2k- 2, and 

l - 4k(2k) r(k+s+ 1)r (s+ 1) 't 4- 2J(2.i) r(2j+ 2s- 1) (2j+ 1) (2s+ 1) + 2p(O) 
Gk- k rC2k+ 2s+ 1) '~ 1 j r(j+s) r(j+ s+ 1) 2j- 1 

for all k. All that we need to know about die is that it is bounded and this is clear from the most 
crude inequalities. Let d be the bound: 

k= 1,2, ... . 

D enote the partial sums of As(z) by 

n (_ 1) kz2k 

Asn(X)=~ 4k ·k!(s+ k) (s+ k- 1) .. (s+ 1) 
Then we have 

so that 
\zl< <Xl • 

Since Asn(z) tends to As(z) for all Izl< <Xl as n gets large the theorem is proved. 
Note that 

A%Cz) = Z-1 sin z, 
and in general 

AsCz) = r (s + 1) (z/2)-S J s (z), 

where J s(z) is the Bessel function of order s. Thus our theorem can be interpreted as meaning 
that if Z], Z2, ,Zn arc the n smallest roots of J ,(z) then the roots of D n(t) are approximated 
by 

i=1,2, ... ,n, 
with the best approximations being for the smaller Zt. 

2. On finding all optimal strategies oj a matrix game with nonzero value. Let B be a payoff 
matrL,( with nonzero value. Let K l and K 2 be the extremal sets of the optimal strategy spaces 
of the row player and the column player, respectively. 

A r esult due to L . S. Shapley and R. N. Snow [1] states 

THEOREM. Let x and y be optimal strategies for the row player and the column player 
respectively. A necessary and sufficient condition that uK] and yJ{2 is that there exist a 
nonsingular submatrix A of B of order n such that, if e is the 1 by n vector of all ones. 

v= leA -leT]-l 

x=veA -l 

y = ve(AT) -l . 
(2.1) 

where v is the value of the game, x is the vector obtained from x by deleting the elements 
corresponding to the rows deleted to obtain A from B, and y is the vector obtained from y by 
deleting the elements corresponding to · the columns deleted to obtain A from B. 

We shall prove that if either x> 0 (that is every element in x is positive) or y> 0 then the 
other represents the unique optimal strategy for A for the corresponding player. In other 
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words if, say, x> 0 then no elemen t of K 2 other than y can be obtained from any submatrix 
of A. 

This result can be used to reduce the number of submatrices of B that have to be in pected 
to exhaust K I or K 2• 

Our result takes the following form: 

THEOREM 2. Let A be a nonsingular payoff matrL~ of order n such that the nonzero row and 
column sums of A-I are all of the same sign. If none of the row (column) sums of A -I are 
zero then the row (column) player has a unique optimal strategy. 

We shall say that 1 by n vectors Xo and Yo represent optimal strategies for the row player 
and the column player of A respectively if 

Yo '? 0, 

and for some number vo, t he value of the game, 

xoA '? voe ~ YoAT. 

Let v, x and Y be a in (2.1). Then xeT= yeT=l and 

xA=ve= yAT. 

By hypothesis x'?O and y'?O so that x and y represent optimal strategie and v is the value 
of the game. 

We shall assume that x> 0 and prove that y represents the unique optimal trategy for the 
column player. The proof for the other ca e follows in exactly the same way so this will prove 
Theorem 2. 

Suppose Yo is a non-negative 1 by n vector such that yoeT = 1 and 

ve'?YoAT. (2.2) 

ince x> ° we can find a 1 by n vector u such that the matrix 

is non-negative. Then (2.2) implies 

Computing these two vectors we get 

veX =vexTu-ve(AT) - I=vu-y 
and 

YoATX= YoA TxTu-YoAT(AT)-l=vfjoeTu-yo=vu-yo. 

Therefore we have Yo '?y. Since the sum of the elements of these two vector are equal we 
must have Yo=y, as desired. 

3. Matrices with equal principal minors. In a previous paper in this journal [2] we stated a 
result which is a special case of the following 

THEOREM 3. Let (ai}) be a matrix of order n with complex elements and the properties 

aijaji is real and non-negative, i,j= 1,2, ... ,n, (3. 1) 

(3 .2) 

for all k= 1,2, ... ,n and i}= 1,2, ... ,no Then (ai}) has the same principle minors as the 
Hermitian matrix (b/j ) with 

bij= (sgn9? aij) (a/jaji) J-2 

and so has only real characteristic roots. 
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The symbol x means the complex conjugate of x, and the symbol xv. m eans that square root 
of x with non-negative real part. 

We shall prove this theorem by showing that 

(3 .4) 

for all k= l ,2, ... ,n and ij= l,2, ... ,n and the result will follow as in the preyious paper. 
From (3 .1 ) we see that either a,pji= O or 

for some positive r eal e'i' These eij satisfy 

and, from equation (3 .2), 
(3.5) 

whenever a 'I'2a '2i3 ... a ikil does not vanish. 
Therefore, either bii= bj,= O or, 

(3.6) 
so that 

as desired to prove that (bii) is Hermitian. 
Choose an arbitrary ordered subset i l ,i2 , •• • ,ik of {1,2, ... ,n }. Let b= bili2biZi3 ... bikil , 

a=a'li2a i2'3 .•• a ikip a' = a 12' la'3i 2 . .. a i llk ' 

If b vanishes then, by (3.3), either a or a' vanishes. By (3.2) th is m eans tha t n vanishes, 
so b= a. 

If b does not vanish we have 

by combining equations (3.5) and (3 .6). 
Therefore b = a in general and we have proved equation (3.3) and so the theorem. 
We are naturally led from this theorem to ask for a necessary and sufficient condi tion that 

two matrices have the same principal minors. We shall find such a condition based on a little 
known expansion of the determinant of a matrix. 

Let A = (aii) be a matrix of order n. Choose any set of k distinct indices {i l,i2, ... ,id 
wi th 1 ~ij~n. Then define the symbols 

if k= l , and (3.7) 

if k = 2,3, ... ,n, where the sum is taken over all full cycles IT on {1,2, .. . ,k }. 
Given an arbitrary partition of {1,2, . . . ,n } 

define the symbol 
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Then the determinant of 1 may be expanded in 

(3.9) 

where the slim is Laken over all partitions T of {I , 2, . . . , 11, }. 
To prove that this expansion is valid we need only show Lhat the gene rie te rm in the usual 

expansion of th e determinant appears in this expansion, that whenever it does appear it does 
so with the proper sign, and that there ar e exactly n! such terms. 

The generic term in the expansion of the determinant can be denotecl by 

where p is a permutation of degree 11 and (- I)P is + 1 or -1 as p is even or odd respectively. 
Write p in its unique decomposition into cycles 

'Then the only TA in which a can appear is the one described in (3 .8 ). Since (- l )P= (_ I) n-m the 
sign is always r igh t. Finftllyit is clear that a appears at least once in TA. 

Xow, consider Lhe partiLion kl+ k2+ . . . + le m of n. Let Si be Lhe number of le j equal to i. 
Then th ere arc 

n ! 

parLitlOns T of {1,2, ... ,n } with subsets of order lel ,le Z, ••• ,lem • By (3.7) ft subset with 
le i clements conLribu Les (le i- I)! summands to TA' Thus the Lotal number of summands on the 
r.h .s. of equation (3.9) 1S 

11,! 
. sn!1'12s2 • 

s 11,! . n n 

as desired, the sums being laken ove r all parlitions of 11. 

Suppose B = (bil ) is a matrix of order nand 

(3.10) 

fo r ft ll subsets {i l ,i2 , ••• , ik } of {1,2, ... , n }. By (3 .8 ) and t he expansion (3 .9 ) Lhis implies 
that the corresponding principle minors of A and B arc equal. We shall prove Lhe converse. 

Suppose A and B have equal corresponding principal minors. Then (3. ] 0) holds for le = l. 
Suppose it holds for le = 1,2, ... , m- l. Consider Lhe expansion as in (:3.9) of the minor with 
row and column indices iI, i z, ... , im. For every T except T'= {i1,iz, . .. , im} we are summing 
products of equal sums { i~, i;, ... , 'i{ } A = { i~,i;, ... , i{ } B with k::; m- l. Therefore the equali ty 
of the minors implies T~= T~ which completes the proof by induction . vVe have proved 

THEOl~EM 4. Let A and B be matrices of order 11,. They have equal corresponding principal 
minors if and only if equation (3. 10) holds for all subsets {il,iz, .. . , id of {1,2, ... , n }. 

IVe remark that theorem 4 (and thus theorem 3 as well) also follows from a result noted 
by A. Ostrowski (footnote 13 in [3]) , which is closely related to the expansion (3.8) . 
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