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Random Notes on Matrices
K. Goldberg

Three matrix problems are considered in this paper: Bessel functions as limits of de-
terminants, finding all optimal strategies of a matrix game with nonzero value, and con-
ditions for matrices to have equal principal minors.

The three sections of this paper have little relation except that they each concern matrices
and each was suggested by the work of a colleague at the National Bureau of Standards.

In the first section we prove that the limit of a certain sequence of determinants is the
modified Bessel function A,(z).

In the second section we show that a method for computing a pair of optimal strategies
for certain square matrix games yields the unique optimal strategy for one player if the optimal
strategy for the other player is totally positive. This can result in an appreciable saving in
the work of computing all the optimal strategies of an arbitrary matrix game with nonzero
value.

The third section contains an amplification of a result which appeared in this journal as
well as a necessary and sufficient condition that two matrices have equal corresponding princi-
pal minors.

1. Bessel functions as limits of determinants. Let (a;;) be an infinite, triple diagonal, symmetric
matrix with

a3 11 =an—a;=1—(2s+1)2 1 4-172p(x7?) (1.1)
for some polynomial p(¢) and some real number s which is not a negative integer. Let 1),(t) be
the characteristic polynomial of the first n rows and columns of (a;;). We shall prove

TaEOREM 1. Iim D, (a;,+1—n"222)=A,(2),

n—r o

2 < =,

where A, (2) is the Jahnke-Emde modified Bessel function with expansion

L © - (_1)1\7221: - . .
A‘“(':)'H;“, ) (s k) (s+k—1) ... (s+1) el < .

The theorem was suggested in considering a conjecture of J. Todd.
Since (a,;) 1s triple diagonal and symmetric we can use the first equation in (1.1) to obtain
a simple recursion for 12,(t). We have Dy(t)=1, D,(t)=t—a;, and

l)n(t>:(t—a'nn)nn—l(t)_((lll—ann)Dn—Q(t) 71:2, 3, o e .. (12)
Thus
D, (an+1)=1.

We shall expand D, (a;,+1--n"22%) around a;;+1, and to this end we define
DP =D (a,+1).

By repeated differentiation of equation (1.2) we get the following recursion for
(DX I =]V =, DRI ==(0) 117 15500, el

DP —2D® +D® 401 (2s+1) (DR, — DR ) —n=2pn=) (D21 —DP,) =k D3P

for k=12 . . . mand n=23, . . . . This recursion can be solved for D{” yielding
- o k . .
DiP =n*47 11 (j+5) 7 Hn T d 0 2 q(n )
Jj=1
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for all n and k<7, some polynomial ¢,(¢) of degree 2k—2, and

(2B Tts+DT(s+1) v ) o2 r(2j+2s—1)  (2+1) (2s+1)+2p(0)
d"_4< > I'(2k+2s41) Z14 ( >I‘(]+s )T (j+s+1) 2j—1

for all . All that we need to know about d; is that it is bounded and this is clear from the most
crude inequalities. Let d be the bound:

W=, =il o oo o
Denote the partial sums of A,(2) by

(—1)Fe%
Aun(2)= Z4"k'(s+k)(s+lc D . D

Then we have

(et 1—nta) — A, @) =3 (ED2E [ Da
D, (ay; n722%) — Asa(2 T n¥ 4’”(8-{-]6)(84‘]0 1) . (st1)

—1)k22k (dk I (n_1)>

Dy(an+1—n722) —A@m(2) Sn7'de -0(1), [2|< .

=1

so that

Since Ay, (2) tends to A (z) for all |z|< = as n gets large the theorem is proved.
Note that

A_y(2)=cos z,

Ay (z)=z2"1sin z,
and in general

As(2)=T(s+1) (2/2)7*Js(2),

where J(z) is the Bessel function of order s. Thus our theorem can be interpreted as meaning
that if zy,2,, . . . ,z, are the n smallest roots of J,(z) then the roots of D, (f) are approximated
by

an+1—n=22% D=1 o o o gl

with the best approximations being for the smaller z;.

2. On finding all optimal strategies of a matriz game with nonzero value. l.et B be a payoff
matrix with nonzero value. Let K, and K, be the extremal sets of the optimal strategy spaces
of the row player and the column player, respectively.

A result due to 1. S. Shapley and R. N. Snow [1] states

Tarorem. Let z and y be optimal strategies for the row player and the column player
respectively. A necessary and sufficient condition that zeXA; and yeK, is that there exist a
nonsingular submatrix A of B of order n such that, if € is the 1 by n vector of all ones,

v=[eA 67|
F=veA™! (2.1)
g=ve(A”)™

where » is the value of the game, z is the vector obtained from z by deleting the elements
corresponding to the rows deleted to obtain A from B, and 7 is the vector obtained from y by
deleting the elements corresponding to the columns deleted to obtain A from B.

We shall prove that if either 2> 0 (that is every element in # is positive) or 4>0 then the
other represents the unique optimal strategy for A for the corresponding player. In other
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words if, say, #>0 then no element of K, other than 7 can be obtained from any submatrix
of A.

This result can be used to reduce the number of submatrices of B that have to be inspected
to exhaust K, or K.

Our result takes the following form:

TaeoreM 2. Let A be a nonsingular payoff matrix of order n such that the nonzero row and
column sums of A~! are all of the same sign. If none of the row (column) sums of A~! are
zero then the row (column) player has a unique optimal strategy.

We shall say that 1 by n vectors &, and 7, represent optimal strategies for the row player
and the column player of A respectively if

>0, 5020,  F@T=je"=1
and for some number »,, the value of the game,
B0 A > 0,8 > G, AT
Let », # and 7 be as in (2.1). Then ze”"=7é"=1 and
FA=ve—"1A%

By hypothesis >0 and 7 >0 so that # and 7 represent optimal strategies and » is the value
of the game.

We shall assume that >0 and prove that 7 represents the unique optimal strategy for the
column player. The proof for the other case follows in exactly the same way so this will prove
Theorem 2.

Suppose 7, is a non-negative 1 by n vector such that 7,¢”=1 and

08> GoAT. (2.2)
Since &> 0 we can find a 1 by n vector @ such that the matrix

X=z"u— (A7)
is non-negative. Then (2.2) implies
veX > GpA*X.
Computing these two vectors we get

veX=vexTu—vé(AT) '=va—7j
and
AT X =5, A"Z" 0 — Go AT (AT) 7' =v§oe" i — o= — Fo.

Therefore we have 7, >7. Since the sum of the elements of these two vectors are equal we
must have 7,=7, as desired.

3. Matrices with equal principal miners. In a previous paper in this journal [2] we stated a
result which is a special case of the following

TarorEM 3. Let (a;;) be a matrix of order n with complex elements and the properties

@, 1s real and non-negative, 1, 0=1,2,". .. 1, (3.1)

; (3:2)

Qiyiyliptg + -+ - Cigiy= CigtyQigiy - - - Qiyy '

for all k=1,2, . . . mand 7;,=1,2, . . . m. Then (a;) has the same principle minors as the

Hermitian matrix (b;;) with
biy= (sgnA ai) (@i,a;:) " (3.3)

and so has only real characteristic roots.
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The symbol & means the complex conjugate of z, and the symbol 2*¢ means that square root
of z with non-negative real part.
We shall prove this theorem by showing that

bi112b1213 5 oo oo bik11=a¢1,2a1213 5o aikil (34)

for all k(=1,2, . . . mand 7,=1,2, . . . ,n and the result will follow as in the previous paper.
From (3.1) we see that either a;a;;=0 or

A;j;=CAyq 5

for some positive real ¢,;. These ¢;; satisfy

c—Cl
and, from equation (3.2),
Cirifigig » + » Cipiy=1 (BE5)
whenever a;,@::, . . . @y, does not vanish.
Therefore, either b,;=5,,=0 or,
byy=cha;, (3.6)

so that

TR e e —
b”—(}”a“—ciﬂaﬁ—cﬁaﬁhbﬁ

as desired to prove that (b;;) is Hermitian.
Choose an arbitrary ordered subset 7;,z5, . . . j.0f {1,2, . . . m}. TLetb=b

b b

41904515 - - Wiy,
d:(lilizai213 5 o o aikil, a/,:ai2ilai3i2 & o o ailik‘

If b vanishes then, by (3.3), either @ or @’ vanishes. By (3.2) this means that ¢ vanishes,
S0 b=a.

If b does not vanish we have

b:C;‘i@Cgis g 6o C;/zkil(]/ilizai2;3 “ e aikﬁ:a’
by combining equations (3.5) and (3.6).

Therefore b=a in general and we have proved equation (3.3) and so the theorem.

We are naturally led from this theorem to ask for a necessary and sufficient condition that
two matrices have the same principal minors. We shall find such a condition based on a little
known expansion of the determinant of a matrix. :

Let A= (a;;) be a matrix of order n. Choose any set of £ distinet indices {7,,%, . . . 7}
with 1<7;<n. Then define the symbols

{7:1 }A:ailil

if k=1, and (3.7)
{132 .+ "L’v‘}A:Zauia(x)afﬂn‘a’(l) s Qigrogyiy
[
if k=23, . . . ,n, where the sum is taken over all full cycles ¢ on {1,2, . . . k}.
~ Given an arbitrary partition of {1,2, . . . n}
T:{”Ln;'&w; - ;’ilkl}{iﬂ’iﬂy < 71.'21»'2} B {iml;m% coe ,imkm}

define the symbol

TA:(_l)m{illzili’y SR 7i1k1}A{7:21;i22y ¢ oo inkZ}A . e {’[mlyimZ: SRR ’imkm}A- (38)
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Then the determinant of A may be expanded in
det A=(—1)"> 74 (3.9)

where the sum is taken over all partitions 7 of {1, 2, . . ., n}.

To prove that this expansion is valid we need only show that the generic term in the usual
expansion of the determinant appears in this expansion, that whenever it does appear it does
so with the proper sign, and that there are exactly n! such terms.

The generic term in the expansion of the determinant can be denoted by

a=(—1)*a1,0)82%@) - - - Cnp(ny

where pis a permutation of degree n and (—1)?is +1 or —1 as pis even or odd respectively.
Write p in its unique decomposition into cycles

p= (?:]1?.]2 o oo o 7"”‘1) (’l’gﬂ.gg o o o 'zgkg) e o . (’b.ml'img 5 oo 7.,,,];"‘).

"Then the only 7, in which a can appear is the one described in (3.8). Since (—1)p=(—1)""" the
sign is always right. Finally it is clear that ¢ appears at least once in 7.
Now, consider the partition k,-+k,+. . .4k, of n. Let s; be the number of &; equal to 7.
Then there are
n!
silsa! .. Lsuelks! L L L k!

partitions 7 of {1,2, . . . n} with subsets of order &, ks, . . ., k,. By (3.7) a subset with
k; elements contributes (k;,—1)! summands to 7,. Thus the total number of summands on the
r.h.s. of equation (3.9) is

o k(kl»fl»)!(kQ"])! o oo (=11 I o
silsal - .. 8, IVl . . k! AT D N Y, L

as desired, the sums being taken over all partitions of 7.
Suppose B= (b,;) is a matrix of order n and

{9200, . - « , %ta={%)%, - . . , %5 (3.10)

for all subsets {7,,7,, . . ., 7.} of {1,2, . . ., n}. By (3.8) and the expansion (3.9) this implies
that the corresponding principle minors of A and 5 are equal. We shall prove the converse.
Suppose A and B have equal corresponding principal minors. Then (3.10) holds for k=1.

Suppose it holds for k=1.2, . . ., m—1. Consider the expansion as in (3.9) of the minor with
] ] ) ) )

row and column indices iy, 75, . . ., in. Forevery 7 except 7/={i\,is, . . ., i} We are summing
products of equal sums {41, 45, . . ., iz ta={i1,i3, . . ., 7% tp With E<m—1. Therefore the equality

of the minors implies 74=17; which completes the proof by induction. We have proved

Turorem 4. Let A and B be matrices of order n. They have equal corresponding principal
minors if and only if equation (3.10) holds for all subsets {745, . . ., %} of {1,2, . . ., n}.

We remark that theorem 4 (and thus theorem 3 as well) also follows from a result noted
by A. Ostrowski (footnote 13 in [3]), which is closely related to the expansion (3.8).
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