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Fragmentation of Waterdrops in the Zone
Behind an Air Shock*

Olive G. Engel

Observations made on the fragmentation of two waterdrop sizes, after collision with air

shocks that were moving at three different supersonic velocities, are reported.

The possible

mechanisms of various aspects of the fragmentation process are discussed. The experimental
observations indicate that high-speed-rain-erosion damage should not be observed on spheres
having a diameter as large as 4 feet and moving with a Mach number in the range of 1.3 to

1.7 in rain that has a drop diameter of 1.4 millimeter.

Waterdrops of this size should be

reduced to mist in the zone of separation between the detached shock and the surface of the

sphere according to the results that are reported.
spheres of smaller diameter or to rain of larger size is pointed out.

A means to extend this protection to
The need for further

experimental observation of the time required for the fragmentation of waterdrops using
shocks moving at higher Mach numbers is indicated to verify and extend the information.

1. Introduction

A blunt object moving through air at supersonic
velocity is preceded by a detached shock wave that is
separated from the leading surface of the object by
a zone in which air is moving forward at high velocity
in front of the object. It has been shown ! that if a
waterdrop were subjected to the conditions that
prevail in the zone of detachment between such a
shock wave and the object (Mach number 1.7) that
is producing it, the waterdrop would be reduced to
droplets having diameters of the order of millionths
of a foot. Droplets of this size are probably in-
capable of causing erosion of the surface of the
object when they are intercepted by it, even though
the object is moving at supersonic velocity. This
follows because small drops are so much less effective
than large drops in producing waterdrop impinge-
ment damage. If, therefore, the waterdrop has
time to fragment into droplets before the surface of
the object that is producing the shock intercepts it,
the problem of erosion as a result of high-speed-rain
impingement may be less serious at supersonic
velocities than at subsonic velocities. A study of
the breakup of waterdrops in high velocity airflows
produced by a blast gun has been made at Porton in
England. However, published reports of this work
do not contain the quantitative information that is
needed. To obtain this information, the photo-
graphic observation of the fragmentation of water-
drops in a shock tube was undertaken.

It was conjectured that the time required for the
fragmentation of liquid drops under the conditions
that exist behind an air shock would be found to be a
function of several variables. For drops of distilled
water these variables should reduce to the velocity
of the air shock and the mass of the drop. Therefore,
data were collected over a range of three air-shock
velocities (Mach number of the shock was 1.3, 1.5,
and 1.7) for both a large (2.7-mm diam) and a small
(1.4-mm diam) drop size, respectively.

Results of this investigation indicate that high-
speed-rain-erosion damage should not be observed on
spheres having a diameter as large as 4 ft and moving

1 Unpublished data of the author. .
*The work described in this paper was sponsored by the Wright Air Develop-
ment Center whose assistance and interest are gratefully acknowledged.

with a Mach number in the range of 1.3 to 1.7 in rain
that has a drop diameter of 1.4 mm. See section 5.
Drops of this size should be reduced to mist in the
zone of separation between the detached shock and
the surface of the sphere according to the observa-
tions that have been made. It may be possible by
means of design to extend this protection to spheres
of smaller diameter or to rain of larger drop size.
See section 5.

2. Details of the Observation Arrangement

Observations of the type required can be made best
in a shock tube in which the velocity of the air shock
can be controlled within a small range of variation
and through which permanent photographic record-
ing is possible. In order to take spark pictures of
the waterdrop at known time intervals after it is
struck by an air shock, a shock tube containing
large planar glass windows is required.

2.1. Description of the Shock Tube and Waterdrop
Source

The shock tube used was located at the Naval
Ordnance Laboratory at White Oak, Maryland. It
has been described previously [1].? The 4-ft pres-
sure chamber of this tube was separated from the
14-ft expansion chamber by a plastic film. See
figure 1. The pressure chamber was filled with
helium gas to a gage pressure that was found suf-
ficient to produce the required air-shock velocity.
Sudden release of this gas by puncturing the plastic
film with a needle plunger resulted in the formation
of an air shock in the column of air that occupied
the expansion chamber.

The exit end of the expansion chamber contained
3- by 8-in. glass windows of interferometric quality.
To admit waterdrops, a set of %-in.-diam holes was
bored through the top and bottom walls of the shock
tube at the left-hand side of the window. A fiducial
marker was used to indicate the centers of these
holes. An additional set of holes existed at the cen-
ter of the window.

Drops of distilled water were formed at the tip of
a hypodermic needle that was mounted above the

2 Figures in brackets indicate the literature references at the end of this paper.

245



1
|
=Nt

Ficure 1. Shock tube and electronic circuits.

A, amplifier; B, plastic film barrier; C, high pressure chamber; D, waterdrop
source; E, exhaust; EC, electronic counter; H, helium intake; N, needle plunger
to puncture barrier; Pi, P2, pressure pickups; PD, proportional delay; S, spark;
VD, variable delay unit; W, glass window.

shock tube. The drops were allowed to fall through
the holes in the tube into a reservoir located below
the underside of it. The freely falling waterdrops
were photographed at various time intervals after
they were intercepted by an air shock. With use of
this arrangement, every spark picture that was taken
was of a different waterdrop. Due to the way in
which the waterdrop fell from the needle and to ad-
justments of the needle itself, the waterdrops did
not always fall on exactly the same path through the
holes in the shock tube. This resulted in a certain
amount of horizontal scatter in the location of the
waterdrop at the time that the air shock collided
with it. This horizontal scatter in the fall trajec-
tories of the drops proved to be a disadvantage both
in calculating the time that elapsed from the air-
shock-waterdrop collision to the taking of the pic-
ture and in determining the drift of the waterdrop
in the airstream behind the shock during the time
interval from the collision instant to the instant that
the picture was made. The scatter was greater in
the case of small waterdrops, which were formed at
the tip of a hypodermic needle of small bore, than
in the case of large waterdrops, which were formed
at the tip of a hypodermic needle of large bore.

The sizes of the drops that were produced varied
with the rate at which the drops were formed at the
tip of the hypodermic needle. When the dropping
rate was such as to place only one drop in the picture
with use of the small-bore needle, the drop was nearly
as large as those formed at the same rate by the large-
bore needle. It was, therefore, necessary to have
more than one drop in the picture in the case of
the small drops in order to have a notable difference
in drop size to observe the effect of water mass on
the time required for waterdrop fragmentation.

2.2. Photographic Recording

The shock tube extended from the NOL Ballistics
Range Laboratory into a small adjoining room which
served as the camera box as well as for a photographic

dark room. The pressure chamber and the major
part of the expansion chamber of the shock tube
were in the main laboratory; the exit end, which
contained the glass windows through which the
photographic observations were made, was housed
i the auxiliary room.

The light source for the pictures was a 1-usec spark.
See figure 2. Light from the spark was collimated
and the collimated beam was passed through the
windows of the shock tube. It was then concen-
trated by the field lens and focused by the camera
lens on film that was exposed in darkness in the
auxiliary room just before a picture was made.
The spark appears as a dim ecircle of light in the
pictures.

Pictures taken in this optical system were all
originally about 1.4 <. Figures 7 and 9 are enlarge-
ments of original photographs.

2.3. Time Measurement

The velocity at which the air shock was moving
down the shock tube was calculated from the time
that was required for it to traverse a known distance
between two points. Two barium titanate pressure
pickups were inserted 4 ft apart in the wall of the
shock tube. See figure 1. Signals received by
these pressure pickups, when the air shock passed
them 1n its progress down the tube, were used to
start and to stop a Potter electronic counter. The
reading on this counter was the time in microsec-
onds required for the air shock to move the 4-ft
distance between the pressure pickups.

The time that elapsed between the instant that
the air shock intercepted the waterdrop and the
instant that the picture was made was found by
measuring the distance between the air shock and
the center of the waterdrop as seen in the picture
itself. Eventually, a time was reached at which the
air shock had progressed beyond the right-hand
boundary of the picture. For the time range in
which no shock was visible in the picture, a second
Potter electronic counter was used to determine
the time that had elapsed between the air-shock-
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Ficure 2. Optical arrangement and spark.
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waterdrop collision and the instant that the picture
was taken. This counter was started by the signal
from the second pressure pickup and was stopped at
the instant that the spark for the picture was set off.
The time that elapsed from the instant that the
shock passed the fiducial marker to the instant that
the spark for the picture went off was found by
subtracting the observed time required for the shock
to advance from the second pressure pickup to the
fiducial marker from the second counter reading.

2.4. Conditions in the Airflow Behind a Shock That
Moves Into Still Air

The conditions that exist in the air through which
the shock has moved constitute the environment
in which the waterdrop finds itself after the air-
shock-waterdrop collision.

a. Velocity of the Airstream That Exists Behind a Moving Shock

The velocity of the airstream in which the water-
drop finds itself after the air shock has intercepted
it and passed by is an important factor in the frag-
mentation of the waterdrop. For the case of a sta-
tionary shock formed in a shock tube, the continuity
equation 1s

P1UL = paUs (1)
so that
P1
Up="— Uy (2)
P2

where u; is the velocity of the airstream entering
the shock and p, is the density of this air, u, is the
velocity of the airstream after passing through the
shock, and p, is the density of this air.

For the case of a moving shock, the airstream
velocities on either side of the shock are those seen
by an observer who is moving toward the shock at
the velocity u,. For this observer the velocity of
air approaching the shock is /; and

U]ZO. (3)
The shock appears to be approaching this observer
at a velocity U, and
Us:_u1~ (4)
The velocity of air on the opposite side of the shock
as seen by this observer is U, and

Uy=1u—u, (5)

or, by use of eq (2),

1'2:[31_ 1] Ul.
P2

In terms of the velocity of the shock, by use of eq (4),

U=, [1—’-"]
P2

from which it can be seen that [/, is constant for any
given shock velocity. For the moving air shock,
the sub-1 notation applies to the undisturbed air
ahead of the shock and the sub-2 notation applies
to the air through which the shock has passed.
In terms of the Mach number of the shock, M,
the inverse of the air density ratio is [2]

pa/pr= (y+1)M2/[(v—1)M+-2]. (8)

The constant velocity of the air behind a shock mov-
ing down a shock tube can be calculated, therefore,
if only the velocity of the shock itself is known.
The velocity of the airstream behind the shock can
also be calculated from the expression given in
reference [3]

(6)

U= (U2—e) 2U,[(v+1)/4] (9)

where ¢; is the speed of sound in the undisturbed air
ahead of the moving shock and ~ is the ratio of the
specific heat at constant pressure to the specific heat
at constant volume, which for air is 1.4.

The calculated values of the velocity of the airflow
behind shocks that have Mach numbers of 1.3, 1.5,
and 1.7 are given in table 1.

b. Temperature of the Air Behind the Moving Shock

A knowledge of the temperature of the air in which
the fragmentation of a waterdrop occurs is of interest
in establishing the mechanism of the fragmentation
process. The ratio of the temperature of the air-
stream behind the moving shock, 7%, to the tempera-
ture of the undisturbed air into which the shock is
advancing, 71, is given by the expression [2]

T2/T1:[27Ms2—(7‘“1)]

((y=DM2+2]/(v+1)°M,2. (10)

TaBre 1. Conditions in the constant-velocity airstream flowing behind the air shock
Conditions in the constant-velocity airstream flowing behind the air shock (assuming that p1=0.0011766 g/em?; T1=300° K; u1=184.2 micropoise)
Shock, o
Mach Reynolds
number, Sound Mach | Kinematic | number
M, Velocity, speed, ¢z number, | Density, Stagnation | viscosity, for the
U M; P2 Temperature, T2 | Pressure, ps | pressure, p: | Viscosity, us “ u2 2.7-mm-
| diameter
’ waterdrop
cm/sec cm/sec g/em3 °K °cC Dymnes/cm? Dymnes/cm? Poise cm?/sec
1.3 1. 52 X104 3.75X104 0.4 0.00178 357 84 1. 79X108 1.99X108 2.10X10 0.118 35, 000
1.5 2.37 3.96 <6 . 00218 396 123 2.43 3.10 2.27 .104 61, 000
T 3.16 4.16 .76 . 00256 438 165 3.17 4.65 2.46 . 096 89, 000
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The calculated values of the temperature of the air
that is flowing behind shocks that have Mach num-
bers of 1.3, 1.5, and 1.7, taking the temperature of
the undisturbed air ahead of the advancing shock to
be 300° K, are given in table 1.

c. Viscosity of the Air Behind the Moving Shock

It is necessary to know the viscosity of the air that
is flowing behind the moving shock to evaluate the
Reynclds number of the airflow around the water-
drop. The viscosity coefficient of the air flowing
behind the shock, w,, can be approximated from the
expression [2]

pof = (T T1)"". (11)

The calculated values of the viscosity coefficient of
the air flowing behind shocks having Mach numbers
of 1.3, 1.5, and 1.7, found by use of eq (10) and by
taking the viscosity of the undisturbed air ahead of
the advancing shock to be 184.2 upoise, are given
in table 1. The calculated values of the density,
p2, and of the kinematic viscosity, », of the air
flowing behind shocks having these Mach numbers,
found by use of eq (8) and by taking the density of
the undisturbed air ahead of the advancing shock to
be 0.0011766 g/em?®, are also given in table 1.

d. Reynolds Number for the Flow Around the 2.7-mm Diameter
Waterdrop

Knowing the velocity, Us, the viscosity coefficient,
ug, and the density, ps, of the airstream that is flowing
behind the shock, the Reynolds number of the flow
around the waterdrop, p.Usl/us, where [ is a charac-
teristic length, can be calculated. The drift velocity
has been neglected. The values of the Reynolds
number of the flow around the 2.7-mm-diam water-
drop, taking [ to be the diameter of the drop, are
given in table 1 for the case that the Mach number
of the shock was 1.3, 1.5, and 1.7.

e. Mach Nurﬁber of the Airstream Flowing Behind the Moving
Shock ’

To determine the Mach number of the airflow
behind the moving shock, M,, it is necessary to
know the speed of sound in this air, ¢;,. The sound
speed can be calculated from the expression given
in [3]

6222012+2ﬂ—*1—)

(v+1)*

where ¢, is the speed of sound in the undisturbed
air ahead of the shock. The values of the sound
speed and of the Mach number of the airflow behind
the shock, U,/c,, found by use of eq (7) and (12) are
given in table 1 for the condition that the Mach
number of the shock is 1.3, 1.5, and 1.7.

4
YU 22— (’Y—l)c,z~%2j| (12)

f. Pressure in the Airstream Flowing Behind the Moving Shock

A knowledge of the free-stream pressure in the
airflow behind the moving shock is needed to deter-

mine the pressure that exists on the windward and
leeward faces of the waterdrop. The free-stream
pressure, s, 18 given by [3]

P2:P1+P1U3U2; (13)
and because
n=c’p/v, (14)
012
P2=p1 ?Y‘+U2Us P (15)

Taking p; to be 0.0011766 g/cm?, ¢, to be 3.44x10*
cm/sec, and using the values of U/, found from eq (7),
the values of p, were found for the condition that
the Mach number of the shock was 1.3, 1.5, and 1.7.
They are listed in table 1.

2.5. Pressure on the Windward and Leeward Faces
of a Waterdrop in an Airstream

As soon as an air shock intercepts a waterdrop,
the waterdrop exists in the airstream behind the
shock, and pressure differences are established around
it. Potential flow, in which there are no vortices,
exists at first. There is a high pressure at the stag-
nation point in the center of both the windward
and leeward face of the waterdrop, and these pres-
sures are equivalent as long as potential flow persists.
Low pressure exists at the equatorial belt between
the two stagnation points. Eventually vortices
appear at the leeward face of the drop. The pressure
at the leeward face of the drop then falls to a value
thtltt is only slightly higher than that at the equatorial
belt.

Fage [4] measured the pressure that developed on a
6-in.-diam sphere in an airflow. For Reynolds
numbers up to 424,500, the results of Fage indicate
that the pressure distribution on the windward face
is essentially unchanged as the Reynolds number is
increased but that at high Reynolds numbers the
pressure drop around the equatorial belt becomes
more intense and the pressure on the leeward face
rises. Comparison of the valuesobtained for Reyn-
olds number of 110,000 and 157,200 shows that
there is little difference in them except that the pres-
sure drop around the equatorial belt is less for the
lower Reynolds number. In view of the value of
the Reynolds number for the flow around the 2.7-mm-
diam waterdrop when it exists in the airstream behind
shocks having Mach numbers of 1.3, 1.5, and 1.7
(see table 1), it can be expected that the pressure
distribution around it is closely the same as that
found by Fage for a Reynolds number of 110,000
except that the minimum in the curve at an angle
of about 75° is probably less pronounced. See
section 4.7.

a. Stagnation Pressure on the Windward Face of the Waterdrop

The highest pressure that is developed on a water-
drop, which exists in the airflow behind an air shock,
occurs at the center of the windward face. This is
the stagnation point where the airstream velocity is
zero. If the air is brought to rest isentropically, the
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stagnation pressure is given by the expression [2]
—il -v/(r=1)
(72 ) Mf]

where p,1s the total pressure at the stagnation point.
Values of p,, which were calculated with use of
values of p, obtained from eq(15) and with use of
values of M, obtained from eq (7) and (12) for the
condition that the Mach number of the shock is 1.3,
1.5, and 1.7, are given in table 1

(16)

Do/ D :I:l g

b. ‘Pressure on the Leeward Face of the Waterdrop

After vortices form at the leeward face of the
waterdrop, the pressure there drops to a value below
the stagnation-point pressure on the windward face
of the drop. From the data of Fage [4],

Pe—pr=—0.4(zp:U>) (17)

where py, is the leeward face pressure. Because
p2="D2/Cs%, (18)
pr=p:[1—(0.29U%/¢c,?)]. (19)

Using eq (9), (12), and (15), the value of p, for a
waterdrop that exists in the airflow behind a shock
having a Mach number of 1.3 is 1.71<10° d/em?
(1.69 atm).

2.6. Temperature on the Windward and on the
Leeward Face of a Waterdrop in an Airstream

If the airstream is brought to rest isentropically,
the stagnation-point te 1111)(\1(11111(‘ T,, at the center of
the windward face is given by the expression (2]

. il
)T, —[1+ ''''' *”'22]

When the Mach numbm' of the air shock is 1.3, 7,
is found to be 368°K (95°C) by use of eq (7), (10),
and (12).

It is necessary to know the air density at the lee-
ward face of the drop to evaluate the leeward-face

(20)

temperature. From the adiabatic equations
p o= (constant) p,”, (21)
pr=(constant)p.”, (22)
it follows that
PL—PZ\/I)L (23)

When the Mach number of the air shock is 1.3, p, is
0.00178 g/em?® (see section 2.4.c). From eq (23), py 1s
then 0.00172 'z/em®. Because

PL:PLRTL

Using the value of p,, found in section 2.5.b, the value
of the gas constant, /2, in ergs per degree per gram,
and the value of p, found just above, 77, 1s 353° K
(80° C) when the Mach number of the shock 1s 1.3.

3: Observed Stages in the Fragmentation of
Two Waterdrop Sizes After Collision with
Air Shocks that Were Moving at Three
Different Velocities

The dropping rates used were such that waterdrops
formed with use of the large hypodermic needle had
an approximate average diameter of 2.7 mm and
waterdrops formed with use of the small hypodermic
needle had an approximate average diameter of
1.4 mm.

3.1. Mach Number of the Shock Is 1.3

The observed stages in the fragmentation of the
large and of the small waterdrop in the airflow behind
the shock when the Mach number of the shock was
1.3 are given in the following two sections. The
veloeity of the airflow behind the shock, which is the
environment in which the fragmentation is accom-
plished, is 1.52 10" em/see for this air-shock velocity.

a. Stages in the Fragmentation of the Large Waterdrop

Casual inspection of a spark picture taken of a
2.7-mm-diam waterdrop 76 wsec after it was struck
by an air shock leaves the impression that it is un-
disturbed. Actually, this is not the case. The high
light in the shadowgraph of the drop, which appears
as a dim pinpoint of light to the unaided eye, has a
distinet structure at low magnification. It consists
of a starlike cluster of sharp prongs of light. This is
quite different from the appearance of the high light
in a waterdrop that has not been struck l)v an air
shock. In the undisturbed drop the high light is
more or less circular and has little structure.  More is
said about this observation in section 3.2.a, and the
possible significance of it is discussed in section 4.2.
In a picture taken 84 pusec after the air-shock-
waterdrop collision, the high light in the drop was so
dim that the exact structure of it could not be deter-
mined. In addition to the change in the appearance
of the high light, there is a slwht corrugation on the
windward face of the drop. The corrugation of the
windward face is also evidence that the drop is not
quiescent.

The first response of a waterdrop of this size that
can be detected with the unaided eye is apparent in
a spark picture taken at the end of 93 usec after the
air-shock-waterdrop collision. See figure 3, picture
1. The leeward face of the waterdrop appears to be
flattened in this picture, and there is some evidence
of the start of a radial flow of water from the drop
in a plane through the center of it that is also per-
pendicular to the wind direction. This is manifested
by a slightly pointed appearance of the top and bot-

(24) | tom of the drop as it is viewed in the picture. The
T.=pr/Rpr. points are somewhat more apparent on the waterdrop
455334—58——1T 249



150 ML SEC
X1.41

| AFTER 93 M SEC 5 AFTER

X1.41

2 AFTER 100 ALSEC 6
X1.4l

3 AFTER 142 M SEC 7
X1.41

AFTER 152 ML SEC
X1.41

AFTER 158 M SEC

X1.42

4 AFTER 144 M SEC 8 AFTER 164 M SEC
X1.41 Xl.41
Ficure 3. Views of the 2.7-mm-diam waterdrop showing the

flattening of the leeward face (right-hand side) of the drop, the
development of the radial flow, the beginning of the formation
of water mist, and the flattening of the drop perpendicular to
the wind direction.

Mach number of the air shock was 1.3.

shown in figure 3, picture 2, which was taken 100
wsec after the air-shock-waterdrop collision. The
flattening of the leeward face of the waterdrop is dis-
cussed in section 4.3. The radial flow of the drop
becomes more marked with the passage of time after
the air-shock-waterdrop collision; the length of the
protrusions increases with the time elapsed since the
collision incident. The flow is, of course, not two
spouts of water from the top and bottom of the drop
as it is observed in the pictures; it is a ring of water
moving radially out of the drop and appears as the
rings of Saturn do when they are viewed on edge.
From the pictures of figure 3 it can be seen that after
this ring of water has moved out far enough from the
drop, it is bent in the wind direction (toward the
right) by the force of the rapid airflow. Possible
causes of this radial flow of water from the drop are
discussed in section 4.5. .

The radial flow is accompanied by another process
that is more important as far as the fragmentation
of the waterdrop is concerned. This is the forma-
tion of water mist. Evidence of the formation of
mist from the radially flowing water and from the
leeward face of the waterdrop can be seen in figure 3,
pictures 3 through 8. The limiting stage to which
the mist formation goes can be seen in ficure 4. In
ficure 4, picture 6, the streamers of mist extend to
the right-hand boundary of the picture. Mecha-
nisms that may be responsible for the formation of
this mist are discussed in section 4.4.

The formation of water mist and of the beginning
of radial water flow are accompanied by a gradual
flattening of the drop, that is, by an increase in its
diameter in all directions perpendicular to that of the
rapid airflow. A graph of the measured values of
the maximum diameter of 2.7-mm-diam waterdrops,
after various intervals of time up to 420 usec after
they were struck by an air shock, 1s shown in figure 5.
There are four distinct regions in the curve. The
first region is a plateau from zero time after the air-
shock-waterdrop collision to about 90 usec after the
collision incident. This corresponds with the time
during which the waterdrop appears to be quiescent.
Inspection of the experimental curves for the flatten-
ing with time after 2.7-mm-diam waterdrops collided
with shocks when the Mach number of the shock
was 1.5 and 1.7 (see fig. 5) leads to the conclusion
that a very slight flattening probably does occur
during at least part of the period of apparent qui-
escence and/or that the length of the period of
quiescence is a function of the Mach number of the
shock.

The second region in the curve of waterdrop
flattening, as a result of collision with air shocks
when the Mach number of the shock was 1.3, is an
almost linear increase of the drop diameter perpen-
dicular to the direction of the airflow. That the
flattening is not a linear function of the time but
that instead there is a very slight increase in the
degree of flattening with time, can best be seen by
inspection of the flattening curves when the Mach
number of the air shock was 1.5 and 1.7. For the
case of air-shock-waterdrop collisions when the
Mach number of the shock was 1.3, the flattening
appears to terminate at the end of 220 usec after
the collision incident.

The third region in the curve extends from 220
usec to about 300 psec. It is a plateau and the exist-
ence of it appears to indicate that at the end of 220
usec the water of the drop has given a maximum re-
sponse to the pressure difference that is set up by the
airflow between the poles and the equator of it.
Further flattening appears to be checked. Because a
similar plateau appears to exist in the flattening
curve at about this same time interval for the case
that the Mach number of the shock was 1.5, it seems
likely that it is the force of surface tension that acts
as a check against further flattening of the drop. See
section 4.6 and, for a further discussion of this point,
section 4.8.
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! AFTER 106 MSEC X1.41

2 AFTER 305 M SEC X1.43

3 AFTER 391 MWSEC X1.43

4 AFTER 490 AL SEC X1.42

5 AFTER 589 M SEC X1.44

6 AFTER 742 MW SEC X1.44

Fiaure 4. Stages in the fragmentation of a 2.7-mm-diam waterdrop.

Mach number of the air shock was 1.3,
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TIME AFTER COLLISION , p sec
Ficure 5. Flattening of waterdrops after collision with air
shocks having Mach numbers of 1.3, 1.5, and 1.7.
Mach number of shock
Empirical curve Calculated curve

O, 1.7 o o o Bl
A'15 M
0,13 DU T

In the fourth region, the diameter of the drop
perpendicular to the direction of the airflow down
the shock tube again increases, but the increase is at
a slower rate. The intact portion of the waterdrop
eventually segments. The fourth region of the
flattening curve of figure 5 may mark the drifting
apart of the separate segments of the waterdrop after
segmentation has occurred.

It might be supposed that the waterdrop would
start to move down the shock tube with the air-
stream as soon as the air shock had struck it and

passed by. This, however, does not seem to be the
case. Measurements of the distance from the edge of
the fiducial marker to the leading edge of the water-
drop at various time intervals after a 2.7-mm-diam
waterdrop collided with an air shock when the Mach
number of the shock was 1.3 indicate that there was
essentially no drift under 100 usec atter the collision
incident. These data are not presented, but the con-
dition of essentially no drift in the initial 100 wsec
after the air-shock-waterdrop collision can be seen
in graphs of similar data for collision of 2.7-mm-diam
waterdrops with air shocks when the Mach number
of the shock was 1.5 and 1.7. See figure 6, A and 6, B.
The drift velocity of the waterdrop is discussed in
section 4.7.

The final stages of the disintegration of the water-
drop are a distinct corrugation of its windward face
followed by breakup of the remaining portion of the
waterdrop into separate sections. KFrom a compari-
son of calculated with observed values of the accelera-
tion of the waterdrop in the airflow behind a shock,
it appears likely that a hole forms in the disk of
water to which the waterdrop flattens. See sec-
tion 4.7. If indeed, a hole is forced through the
water disk in the early stages of the fragmentation
process, the final stage is a segmentation of the re-
sulting water ring into a chain of water beads.

b. Stages in the Fragmentation of the Small Waterdrop

The large waterdrop shows essentially no response
76 pusec after the passage of the air shock. The
small waterdrops are streaming water mist and are
in an advanced stage of radial flow 75 usec after the
passage of the shock. At the end of 93 usec after
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Fraure 6. A, Drift of 2.7-mm-~diam waterdrops after colliston with air shocks that had a Mach number of 1.5; B, drift of 2.7-mm-~
diam waterdrops after collision with air shocks that had a Mach number of 1.7 ; C, plot of driftvelocity versus time for 2.7-mm-diam
waterdrops.

a) Mach number of the air shock was 1.7, and (b) Mach number of the air shock was 1.5.
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the collision, the large waterdrop has only responded
to the extent of dovolopuw a square appearance of
the leeward face. By the end of less time than this,
that is, after 82 and after 88 usee, the small (lropq
have flowed radially and have flattened in a plane
perpendicular to the direction of motion of the shock
and are emitting water mist both from the leeward
face and from the periphery of the radial flow. A
comparable stage of fragmentation is reached for the
large waterdrop only at the end of about 200 usec
after the air-shock-waterdrop collision. From these
observations, the large waterdrop is lagging the small
waterdrop IW better than 100 wsec in (lv\'vlopmo an
initial stage of fr agmentation.

Evidence of the corrugation of the windward face
of the small waterdrop can be seen at the end of 75
psec after the air-shock-waterdrop collision, and
strong corrugation of the windward face can be seen
160 and 170 wsec after the collision incident. The
stage of fragmentation reached by the small water-
(h'o])s 30 usec after the air-shock-waterdrop collision
about compares with that reached by the large water-
drop at the end of 331 psec. In the de \'vlopmont of
this stage of fragmentation, the large waterdrop has
again lagged behind the small waterdrop by about
100 usec.

At the end of 593 usec after the air shock collided
with the waterdrop, the remaining portion of the
small waterdrop is seriously corrugated; 698 pusec
after the collision incident, the remaining portion of
the small waterdrop is broken up. The remaining
segments of the drop continue to emit water mist.
The breakup of the intact portion of the large water-
drop when the Mach number of the shock was 1.3
was not observed; it occurs at a time longer than 742
wsec after the air-shock-waterdrop collision.

3.2. Mach Number of the Shock Is 1.5

In the following sections, the observed stages in
the fragmentation of the large and of the small water-
drop in the airflow behind air shocks that have a
Mach number of 1.5 are given. The velocity of the
airflow behind the shock is 2.37 < 10* em/sec for this
air-shock velocity.

a. Stages in the Fragmentation of the Large Waterdrop

At the end of 7 usec after the waterdrop has been
struck by the air shock, the high light in it is very
bright and seems to contain three points or prongs.
See figure 7, picture 1. The pictures with primed
numbers in figure 7 are of the high lights in water-
drops before they were struck by an air shock. The
waterdrops, the high lights of which are shown in
pictures 1’ and 2/, were both contained in the same
spark picture. The waterdrop, the high light of
which is shown in picture 17, had just detached from
the tip of the hypodermic needle and emerged
through the hole in the top of the shock tube. Hence
there 1s a strong probability that this waterdrop was
disturbed. The high light of it has some structure.
The waterdrop, the high light of which is shown in
picture 2/, was close to the bottom of the shock tube
and therefore had had some time in free fall in which

| 7 MSEC 2 I8 L SEC 3 23 MSEC
. .
1 0O MSEC 2! OM SEC 3 OAMSEC

Fraure 7. - Magnified views of the high light in waterdrops at
vartous tvme intervals after they were struck by an air shock.
Mach number of the air shock was 1.5. Pictures with primed numbers are

of drops that were not yet struck by an air shock.

to recover from disturbances. The high light in it

has no structure. The bright high light of a water-

drop shown in picture 3” also has no structure. In
view of these observations, the structure that ap-
pears on the waterdrop hl"l) light shown in picture

I may indicate that the \\.ll(nlml) in which it ex-

isted was disturbed as a result of collision with the

air shock, although there 1s no other apparent in-
dication of it.

The waterdrop high light shown in picture 2,
which was taken 18 usec after the air-shock-water-
drop collision, consists of two hazy pinpoints of
light that are close together but that are entirely
distinet. Each of these pinpoints of light consists
of prongs and gives the appearance of a star. The
waterdrop high light shown in picture 3, which was
taken 23 usec after the air-shock-waterdrop colli-
sion, 1s very large and diffuse and may consist of
two high lights that are merged or partially super-
imposed. The diffuse high light is surrounded with
spikes or prongs.

In a picture taken 27 usec after the collision of
the air shock with the waterdrop the high light in
the drop was so dim that on first examination it was
missed entirely. No picture was made in the time
interval between 27 wsec and 57 wsec. 'The picture
taken 27 usec after the collision is the last picture
in which any evidence of a high light can be seen in
the waterdrop; it is the last picture in which the
waterdrop shows no visible sign of distortion, or of
reaction to its environment in the airstream l)«hm(l
the shock, or of reaction to having been struck by
the air shock itself. In section 3.1.a, it was noted
that in the case of large waterdrops that were struck
by air shocks having a Mach number of 1.3, a high
light could be detected in the drop up to 84 usec
after the air-shock-waterdrop collision. These times
after the collision at which the high licht may be
said to have vanished determine curve A in figure 8
in which the time required to produce comparable
stages of fragmentation is plotted against the Mach
number of the shock.
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Ficure 8.  Timeto produce comparable stages of fragmentation.

QO large waterdrop; [J small waterdrop. A, Time at which high light vanishes;

B, time to produce a mist cone having a width-to-length ratio of 1 to 3; C, time to
produce a trace of mist only.

In a picture taken 57 psec after the air-shock-
waterdrop collision, the waterdrop has no high light
at all, and there is no high light in any of the pictures
of waterdrops that were taken at longer intervals of
time after the collision. The windward face of the
waterdrop shows slight evidence of corrugation; mist
is emanating from points on the leeward face and
from the ends of the major axis of the ellipsoid. A
second drop that appears in the picture taken at this
interval of time after the collision has two point pro-
trusions at the upper end of the major axis of the
ellipsoid and one point protrusion at the lower end of
it. These pointed protrusions are bent in the direc-
tion of the airflow, and a trail of mist extends into
the airflow at the leeward side of the drop from each
of them. The production of water mist must, there-
fore, have started sometime in the 30-usec interval
between 27 and 57usec after the collision of the
waterdrop with the air shock. The disappearance of
the high light may accompany a radial flow of the
drop in all directions perpendicular to that of the air-
flow behind the shock. Such a radial flow of the drop,
which was observed in the case of waterdrops struck
by air shocks having a Mach number of 1.3 (see sec-
tion 3.1.a), would destroy its ability to act as a lens
for the collimated light in which the radial flow is
viewed edge-on.

Because radial flow and production of mist oc-
curred at slightly under 100 usec for large waterdrops
that were struck by air shocks having a Mach number
of 1.3, and occur sometime between 27 and 57 usec
after the collision for the same size waterdrop that is
struck by an air shock having a Mach number of 1.5,
it would appear that an increase of 0.2 in the Mach
number of the shock in this velocity range may have
caused these phenomena to occur about 50 usec
sooner.

A view of the waterdrop at the end of 59 usec after
collision with the air shock is shown in figure 9. Very
small irregularities or bumps can be detected on the
windward face, and brushlike structures of mist ex-
tend out of the leeward face. The mist has been
swept into a stubby, somewhat conical, structure in
the airflow downstream beyond the leeward face of
the waterdrop. Pictures 2, 3, and 4 of figure 9 show
how the corrugation of the windward face of the drop
increases with time elapsed since the air-shock-
waterdrop collision. They will be referred to in
chronological order.

At the end of 94 usec after the collision of the air
shock with the waterdrop, the drop is distinctly flat-
tened against the airflow. See figure 9, picture 2,
and figure 10, picture 1. The windward face is
strongly corrugated. Brushes of mist extend from
points all over the profile of the leeward face, but the
largest and most dense are at the top and bottom of
the drop as it appears in the pictures.

The mist has been blown into a conelike structure
downstream beyond the leeward face of the drop.
Pictures of waterdrops taken 97, 98, and 118 usec
after the air-shock-waterdrop collision are very
similar in appearance to that shown in figure 10,
picture 1, except that the mist cone becomes denser
and longer with time elapsed since the collision. At
the end of these time intervals after the collision,
the leeward face of the drop appears essentially
straight, while the windward face is curved and
strongly corrugated.

At the end of 159 usec after the air-shock-water-
drop collision, the contour of the remaining portion
of the drop has taken on a distinet quarter-moon
shape in which the horns of the quarter moon are on
the leeward face and are pointed downstream. See
figure 10, picture 2. Mist seems to be spraying
from the leeward face in distinct streams, and the
mist-cone extending downstream from the leeward
face has grown in size and has a width-to-length
ratio of about 1 to 3. The closest approximation to
this degree of fragmentation for the case that the
Mach number of the shock was 1.3 is that which is
observed 273 uwsec after the air-shock-waterdrop
collision. Hence the lag of the lower over the higher
velocity shock for producing this degree of fragmen-
tation is 114 wsec. See curve B of figure 8. Pic-
tures of waterdrops taken at the end of 168, 209, 222,
and 242 usec after collision of the air shock with
waterdrops are similar in appearance to that shown
in figure 10, picture 2, except that the mist-cone is
longer and denser. The windward face continues to
appear highly corrugated. See figure 9, picture 3.

At the end of 280 usec after the air-shock-
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| AFTER 59 p sec

3 AFTER 209 p sec

Increase in corrugation of the windward face with time elapsed since the air-shock-waterdrop collision.

Ficure 9.

Mach number of the shock was 1.5.

waterdrop collision the windward face appears very
fringy and the mist extending from the leeward face
is hairlike and curled by the turbulence in the wake
downstream. See figure 10, picture 3. The remain-
ing portion of the drop is mushroom shaped and is
bent at an angle to the airflow. In a picture taken
299 uwsec after the collision, the corrugations on the
windward face appear to be sharply pointed. In a
picture taken 336 wsec after the collision, distinct
sections of the remaining part of the drop appear in
the mist cone extending downstream from the
leeward face.

At the end of 410 wsec after collision of the water-
drop with the air shock, the corrugations of the
windward face of the drop are distinctly pointed and
appear to be tufted with mist. See ficure 9, picture
4, and figure 10, picture 4. However, here, as in all
similar appearances at shorter times since the colli-
sion, there does not seem to be an orientation of the
pointed protrusions on the windward face with the
radial flow about the stagnation point. If these
pointed protrusions are the ecrests of waves, or
centers of any kind for mist production, the mist
emanating from the separate points must be of such
low density that it does not show in the photographs.
The crests or pointed protrusions also do not appear

b

2 AFTER 94 p sec

4 AFTER 410 p sec

to be bent in the direction of the airflow from the
stagnation point in the center of the windward face.
In figure 10, picture 4, a dense hood of mist appears
to extend downstream from the leeward face.

In a picture taken 501 wsec after the air-shock-
waterdrop collision, the hood of mist that extends
downstream from the leeward face is longer. In
this picture, the pointed protrusions from the wind-
ward face are also longer and there is some sag of
the windward face itself which may indicate that
the remaining part of the drop is no longer a coherent
structure and may possibly consist of mist. In a
picture that was taken 589 wsec after the collision,
the windward face of the drop has definitely slumped
in the wind direction, and in picture 5 of figure 10,
which was taken 667 usec after the collision, this
state of affairs is even more marked. A photograph
taken 764 usec after the collision is shown in figure
10, picture 6. Dense spots of mist with corrugated
windward faces remain. The trail of mist has spread
into a diamond-shaped structure.

In summary, the effect of an increase in the Mach
number of the shock from 1.3 to 1.5 appears to be
not only a shortening of the time required to bring
about the various stages of fragmentation, which
was to be expected from the graphs of the flattening
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of the waterdrop and of the drift velocity of it in
the airstream behind the shock, but also a much
more copious production of water mist and of turbu-
lence in the wake downstream behind the waterdrop.

b. Stages in the Fragmentation of the'Small Waterdrop

The stage of fragmentation of the 1.4-mm-diam
waterdrop shown in figure 11, picture 1, appears to
be about the same as that of the 2.7-mm-diam
waterdrop shown in figure 10, picture 2. In each
case, the remaining part of the drop is bent into a
quarter moon with the horns of the quarter moon,
which are on the leeward face, pointing downstream.
The width-to-length ratio of the mist cone, which is
about 1 to 3 in each case, also indicates that these
are about comparable stages of fragmentation. The
time-after-collision that was required to produce
this stage of fragmentation for the 2.7-mm-diam
waterdrop i1s 80 wsec longer than that required to
produce the similar stage of fragmentation for the
1.4-mm-diam waterdrop. This may be compared
with the time interval of about 100 wsec by which
the large waterdrop lagged behind the small water-
drop in reaching a somewhat similar stage of frag-
mentation when the Mach number of the shock was
1.3. See section 3.1.b and curve B of figure 8.
The fact that the lag becomes smaller when the
Mach number of the shock is increased may point
to the existence of a shock velocity at which the
effect of a size difference in the waterdrop is un-
important. Comparison of the pictures of figure 10
with those of figure 11 shows that at the time the
1.4-mm-diam drop is reduced to mist, the windward
face of the 2.7-mm-diam waterdrop has just begun
to sag in the wind direction.

3.3. Mach Number of the Shock is 1.7

To produce air shocks that had a Mach number of
1.7, a high-helium pressure was required. For safety,
the pressure chamber of the shock tube, which was
already reinforced with armor plate, was laced with
cord. Even with this precaution, however, it was
considered inadvisable to take a large number of
pictures at this air-shock velocity with the shock
tube that was used, and only a sampling was taken
over the range of time-after-collision that was ex-
plored at the lower shock velocities. The velocity
of the airflow behind a shock that has a Mach
number of 1.7 1s 3.16 X 10* em/sec.

a. Stages in the Fragmentation of the Large Waterdrop

The state of fragmentation of the 2.7-mm-diam
waterdrop 55 pusec after it was struck by the air
shock is shown in figure 12, picture 1. Although
the head of water of the drop is obscured by the
fiducial marker, it is evident that the drop is already
copiously emitting water mist. The state of frag-
mentation of the 2.7-mm-diam waterdrop 91 usec
after it was struck by the air shock is shown in figure
12, picture 2. The stage of fragmentation shown here
i1s almost the same as that which resulted 159 usec
after a waterdrop of the same size was struck by an
air shock that had a Mach number of 1.5. See

figure 10, picture 2. The difference in the times re-
quired to produce this comparable stage of frag-
mentation is 68 usec. Because the lag for the shock
that had a Mach number of 1.3 over the shock that
had a Mach number of 1.5 to produce a similar
degree of fragmentation was 114 usec, it can be seen
that the reduction of the time required becomes
smaller as the velocity is increased. The time re-
quired to produce this stage of fragmentation is
plotted in curve B of figure 8.

From a comparison of the pictures of figure 12
with those of figure 10 it can be seen that the stage
of fragmentation of the 2.7-mm-diam waterdrop
was always much more severe when the Mach num-
ber of the shock was 1.7 than for comparable times
after the air-shock-waterdrop collision when the
Mach number of the shock was 1.5. The appearance
of the waterdrop in figure 12, picture 5, about com-
pares with its appearance in figure 10, picture 5, and
it can be concluded that at the end of about 430
usec after collision with a shock that had a Mach
number of 1.7, a 2.7-mm-diam waterdrop was re-
duced to a cloud of mist. The difference in time
after the collision for the two pictures is about 200
wsec. Figure 12, picture 6, at the end of 594 psec
after collision of the 2.7-mm-diam waterdrop with
a shock that had a Mach number of 1.7, shows a
far greater degree of dissipation of the mist that is
left of the drop than does figure 10, picture 6, at
the end of 764 usec after collision of the 2.7-mm-diam
waterdrop with a shock that had a Mach number
of 1.5.

b. Stages in the Fragmentation of the Small Waterdrop

The stage of fragmentation acquired by the 1.4-
mm-diam waterdrop 53 usec after collision with a
shock that had a Mach number of 1.7 about com-
pares with its stage of fragmentation 79 usec after
collision with a shock that had a Mach number of
1.5. See figure 11, picture 1. The difference in the
time required to attain this stage of fragmentation
in the two cases is about 25 wsec. The points are
plotted in curve B of figure 8. The 1.4-mm-diam
waterdrop is found to be in more advanced stages of
fragmentation than at comparable times after the
air-shock-waterdrop collision when the Mach num-
ber of the shock was 1.5. In a picture taken 574
wsec after collision of the 1.4-mm-diam waterdrop
with an air shock that had a Mach number of 1.7,
the state of fragmentation is about the same as that
in a picture taken 696 usec after collision of the
1.4-mm-diam waterdrop with an air shock that had
a Mach number of 1.5.

3.4. Observed Dependence of the Fragmentation
Time on the Diameter of the Drop and the Velocity
of the Shock

Because the fragmentation of waterdrops has been
observed in this study at only three air-shock veloci-
ties for two waterdrop sizes, the amount of general-
ization as to the effect of the diameter of the drop
and the velocity of the shock on the fragmentation
time which it is possible to make is limited. In
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1 AFTER 94 M SEC X1.44

2 AFTER 159 M SEC X1.44

3 AFTER 280 MSEC X1.44

4 AFTER 410 M SEC X 1.44

5 AFTER 667 M SEC X 1.45

6 AFTER 764 MSEC X .46

Fraure 10.  Stages in the fragmentation of 2.7-mm-diam walerdrops.

Mach number of the air shock was 1.5.
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1 AFTER 79 AL SEC

N

AFTER 152 M SEC

3 AFTER 263 M SEC

4 AFTER 4I1 M SEC

5 AFTER 492 M SEC

6 AFTER 576 A SEC

7 AFTER 696 ALSEC

8 AFTER 766 ALSEC
Ficure 11. Stages in the fragmentation of 1./-mm-diam waterdrops.
Mach number of the air shock was 1.5. X 1.46.
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| AFTER 55 MSEC

2 AFTER 91 ALSEC

3 AFTER 173 M SEC

Fn o

5 AFTER 428 ALSEC

6 AFTER 594 A SEC

Fraure 12.  Stages in the fragmentation of 2.7-mm-diam waterdrops.
Mach number of the air shock was 1.7. X 1.44.
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several instances in section 3 a comparison was made
of the time required to produce a comparable stage
of development in the course of the fragmentation
of the waterdrops. The required time for three of
these stages of development is plotted against the
shock velocity in figure 8. Curve A in figure 8 gives
the time required to extinguish the high licht in the
large waterdrop as a function of the shock velocity.
Curve B in figure 8 gives the time required to form
a cone of mist having a width-to-length ratio of 1 to
3 downstream from the leeward face of the disinte-
grating waterdrop as a function of the Mach number
of the shock. Data for both the large and for the
small waterdrop are given for this stage of frag-
mentation, and horizontal tie-lines have been drawn
between the large-drop and the small-drop values.
From curve B it appears that the inerement of short-
ening of the time required to produce this configura-
tion that results on replacing the large waterdrop
with the small waterdrop (reduction of the diameter
by a factor of 2) is about the same as that which re-
sults when the Mach number of the shock is in-
creased by 0.2 in the range of 1.3 to 1.7; that is, a
change in the Mach number of the shock is more
effective in the rate of waterdrop fragmentation than
a change in the drop diameter. Curve C gives the
time required to reduce the small waterdrop com-
pletely to a trail of mist as a function of the Mach
number of the shock. Visual extrapolation of these
curves indicates that complete reduction of a small
waterdrop to mist may occur within a time interval
of the order of 100 wsec when the Mach number of
the shock is as high as 3

4. Mechanism of the Fragmentation of
Waterdrops as a Result of Collision With
an Air Shock

The data reported in section 3 show only the
variation of fragmentation time with drop size and
with shock velocity for drops of water in the velocity
range that was investigated. The effect of changing
the surface tension, viscosity, and density of the
liquid of the drop was not explored. Therefore, the
information available for deducing the mechanism
by which fragmentation occurred is limited. How-
ever, in this section, an attempt is made to 1ntelpre
the observations that were reported in section 3.

4.1. Reaction Time

The 2.7-mm-diam waterdrop showed no visible
change in shape immediately after it was struck by
an air shock that had a Mach number of 1.3 and,
in fact, it existed in the airstream (499 ft/sec) that
was ﬂowmg behind the shock for nearly 90 usec
before it showed a visible response by change of
shape. See section 3.1.a. This bebavior is in agree-
ment with the idea that a reaction time is associated
with every conceivable movement of matter. Dur-
ing the reaction time, the signal for movement is
received and the mechanism of movement is set into
operation. An aggregate of molecules of any kind

is a coupled system and this is especially the case
with water because of the high degree of hydrogen
bonding to which it is subject. Therefore it can
be expected that the reaction time should be shorter
the smaller the mass of water that is involved (drop
size) and the stronger the signal for flow that is given
(velocity of the shock and of the airflow behind it).
This is in agreement with the observed response of
two waterdrop sizes after collision with air shocks of
three different velocities. See section 3.

4.2. Changes in the Appearance of the High Light

Although the shape of the waterdrop was appar-
ently unaffected for short times after the air-shock-
waterdrop collision, the high light in the waterdrop
after the collision was noticeably different from the
high light in an undisturbed drop. The high light
in each of the pictures of waterdrops that were taken
after the drop had been struck by the air shock, but
before it had shown a visible response by flow, con-
sists of a starlike cluster of prongs or points of light.
In some cases, the high light is a double star. See
ficure 7. It was pointed out in section 3.2.a that
the high light in a waterdrop that had been disturbed
to the extent of breaking away from the tip of the
hypodermic needle and then passing through the
hole in the top of the shock tube had some structure
in it. The high light in a drop that had fallen freely
for several inches, which was contained in the same
spark picture, was only a circular pinpoint of light.
It seems reasonable to suppose that the structure on
the high light is the result of some disturbance of
the drop.

The time, 7, required for a complete oscillation
of a liquid drop for the nth spherical function has
been found by Rayleigh [5] to be

pr o=
T”-ZW\/T[n(n— Dnt2)] (25)
where 7 is the radius of the drop; p, 7" are the density
and surface tension, respectively, of the liquid of
which it is composed. See reference [5], article 364,
Vibration of Drops. According to Lenard [6] the
case n=1 results in no motion, that is, the shape of
the drop is spherical; the case n=2 is that of the
slowest vibration and represents deformation into
what is close to an ellipsoidal shape; the cases n=3,
4, . . . correspond to more rapid ])Elltldl vibrations
toward the ellipsoidal shape which are anharmonic
because their periods do not have a rational relation
to the period of the ellipsoidal deformation. A cross
section of the solid shapes corresponding to n=1,
n=2, and n=3 is in each case a circle when the cut
is taken perpendicular to the axis of symmetry. A
cross-sectional cut from these shapes taken parallel
to the axis of symmetry is a circle for the case n=1,
an ellipse for the case n=2, and a pear shape for the
case n=3. Models of these shapes were molded of
Plasticine and glass models of them were made.?
Spark pictures of some of these models were taken.
Inferences drawn from these pictures must be qual-

3 These models were made by L. Testa of NBS glassblowing shop.
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ified by the fact that the models were about three
times larger than the real waterdrops and that they
were photographed in the center of the shock-tube
window rather than at the extreme left of it as the
real waterdrops were so that the optical system was
not equivalent.

A high light could be seen in the picture of the glass
ellipsoid when viewed through the end and when
viewed through the side; it was, in each case, less
symmetric than the high light in the picture of the
glass sphere. The high light in the picture of the
glass ellipsoid that was viewed from the side con-
tained a dim structure somewhat similar to the
prongs of licht seen on the high lights in pictures of
waterdrops that had been struck by an air shock,
but it was very much less pronounced. A very dim
pinpoint high light that had no structure could be
seen in the enlarged end of the pear shape in a picture
of this glass model that was viewed from the side; an
end view of the glass pear-shaped model was not
made. Very little can be concluded from the pictures
that were taken of these models; however, a calcula-
tion of the period of vibration for the 2.7-mm-diam
waterdrop using eq (25) gave the result: for n=2,
7,=0.014 sec; for n=3, 73=0,007 sec. Because the
appearances that were observed in the high lights of
waterdrops that were struck by air shocks were all
realized in times of less than 100 psec, it is out of the
question to ascribe their existence to oscillations of
the waterdrop to these shapes.

In the spark picture of the opaque spherical model
that was made of Plasticine, there was no high light,
but in the spark picture of the spherical model that
was made of glass there was a central pinpoint of
light. That the high light is formed by transmitted
rather than by diffracted light can be inferred from
this observation; the inference must be qualified by
the fact that the optical system was not equivalent.
If the observed high lights are produced because the
waterdrop acts as a lens to the light from the spark, ¢
sharp circular pinpoint of light will form at the focus
of the water sphere if the sphere is essentially unde-
formed. Two modifications of the water sphere that
would be capable of causing prongs of light at its
focus are the existence of surface ripples and changes
in the density of the water of the drop. Either one
or both of these disturbances could be caused by the
air-shock-waterdrop collision. The passing of the
air shock over the waterdrop could conceivably
result in microscopic ripples on the surface of the
waterdrop; it is also possible that a pulse of compres-
sion may be initiated in the waterdrop over the time
interval from the first instant that the air shock
strikes the center of the windward face of the drop
until it passes the center of the leeward face. It
would be very difficult to distinguish between these
two possibilities even with glass models that were the
same size as the waterdrops and that were photo-
graphed in the same optical system.

The existence of some structure on the high light
of the waterdrop shown in figure 7, picture 1/,
indicates that the effect can be produced by ripples
alone. This waterdrop was only disturbed to the

extent of having just broken away from the hypo-
dermic needle and of just having passed through the
hole in the top of the shock tube. It would seem
that the possibility of density differences in this drop
is remote in comparison with the possibility of
surface ripples which should have formed when the
residue of the stem of water that was produced as
the drop broke away from the hypodermic needle
was drawn into the drop under the force of surface
tension. The structure on drops that were struck
by air shocks is very much more pronounced, how-
ever, especially at times after the collision that were
of the order of 20 usec. This could be construed to
indicate that density differences may play some role.

The pictures in figure 7 show that while the water-
drop appears to be quiescent during the first 100
usec after the air-shock-waterdrop collision, it ig
responding to the collision blow.

4.3. Windward Face Remains Spherical; Leeward
Face Becomes Flat

Although the windward face of the 2.7-mm-diam
waterdrop was essentially undeformed at the end
of nearly 100 usec after the collision with an air shock
that had a Mach number of 1.3, the leeward face
appeared flat at the end of 93 usec after the collision.
See figure 3. It has been pointed out [7,8] that a
large air bubble rising in water is spherical on top,
that is, has a spherical leading surface in the direction
of motion, but is flat on the bottom. Taylor [7]
has postulated that this shape results as the pressure
due to the hydrodynamic flow around the bubble
exactly neutralizes the variations in pressure due to
eravity at all points on the upper surface of it. = The
Bernoulli equation is

(26)

where p is the pressure, » is the flow velocity, pis the
density of the liquid, and z is an axis of the coordinate
system which is taken in the direction of rise through
the liquid. The stagnation point of the flow of
liquid around the rising bubble is at the center of its
spherical leading surface. Here 2 is at a maximum
but » is zero. If points are considered along any of
the streamlines that run radially from the stagnation
point around the surface of the bubble, z decreases
and » increases. Taylor [7] thought that the net
effect is that the second and third terms of eq (26)
cancel so that the pressure along a streamline
remains constant, that roughly the flat bottom of
the bubble occupies the plane at which the pressure
on the upper surface is equal to the pressure at the
same level far from the bubble, and that surface
tension plays no part in producing the observed
shape.

Taylor [7] applied the same theory to the shape
that should be assumed by a liquid drop in a high
speed air blast for the case that the surface of the
drop does not disintegrate. On this picture the
forces acting to accelerate the waterdrop in the
direction of the airflow replace the force of gravity.
It is noteworthy in this connection that there is no

P+ 30v°+ pgz=constant,

261



apparent drift of the waterdrop during the time
interval during which the flattening of the leeward
face of the waterdrop is observed. See figure 6, A
and B. It is possible, however, that a very small
drift does occur.

4.4. Formation of Mist

In deducing a mechanism for the origin of the mist
which is observed downstream from the leeward
face of fragmenting waterdrops after the air-shock-
waterdrop collisions, it is essential to account for all
the details that can be observed. The mist appears
to emanate from the leeward face of the waterdrop,
while the remaining portion of the waterdrop itself
remains essentially intact. The mist may, however,
actually form on the windward face of the drop and
be carried around the drop by the airflow, or it may
form at the periphery of the drop between the wind-
ward and leeward faces. Viewed from the side, the
mist structure has its greatest density at the top
and bottom for relatively short periods after the
air-shock-waterdrop collision. If a hoop or circle of
fringe is viewed edge-on, the observer sees a straight
line of fringe with maximum density at either end.
In the light of these observations the cone-shaped
structure of mist that forms downstream from a
fragmenting waterdrop is a hollow funnel. In the
case of the 2.7-mm-diam waterdrop, no mist was pro-
duced up to 100 wsec after the collision when the
Mach number of the shock was 1.3. See figure 3.
As the air-shock velocity was increased, the mist
formed sooner and more copiously; as the waterdrop
diameter was decreased the mist also formed sooner.
In the following sections, possible sources of the mist
are considered; in the final section an evaluation of
the most probable of the sources is made.

a. Vaporization

The appearance of the water mist suggests the
possibility of a hot-water-vaporization-to-form-
steam mechanism. As soon as the air shock passes
the waterdrop, the waterdrop exists in the airstream
that is flowing behind the shock. The temperature
in this airstream is considerably higher than the
room temperature of the undisturbed air in front of
the shock. For air shocks having Mach numbers
of 1.3, 1.5, and 1.7, the temperature in the airstream
behind the shock is 84° C, 123° C, and 165° C,
respectively, if the initial temperature was 27° C.
See table 1.  There is, furthermore, an elevated tem-
perature at the stagnation point of the airflow in the
center of the windward face of the waterdrop. This
temperature was found in section 2.6 to be 95° C
when the air shock had a Mach number of 1.3. In
section 2.5.a, the pressure at this point for the same
air-shock velocity was found to be 1.99><10° d/em?
(1.96 atm). Because water boils at 100° C at 1
atm, no vaporization would be expected on the
windward face in terms of an equilibrium picture.
On the leeward face, the pressure is reduced only to
1.69 atm and the temperature on this face is 80° C
when the air shock has a Mach number of 1.3. See
sections 2.5.b and 2.6. Consequently, in terms of
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the equilibrium picture, no vaporization would be
expected on this face either. Although equilibrium
conditions have certainly not been reached in the
order of 100 wsec, which is the time after the air-
shock-waterdrop collision at which mist was first
seen, it seems doubtful if a hot-water-to-form-steam
mechanism is the source of it.

To determine whether or not clouds of mist form
behind a waterdrop that is falling through a layer
of hot air, high speed moving pictures were taken
of incidents of this kind. Glass windows were
installed in the ends of a heavily insulated electric
oven which contained a small electric fan to dis-
tribute the hot air. Light from a carbon arc was
passed through a collimating lens and then through
the windows of the oven. Drops of distilled water
were allowed to fall from the large-bore hypodermic
needle through a hole in the top of the oven located
at the focal point of the lens of the 15,000-frame/
sec camera that was used to take pictures of the
falling drops. The camera was placed at the end
of the oven opposite the arc light so that the pictures
of the falling waterdrops were shadowgraphs.

Moving pictures of waterdrops were taken both
after a short and after approximately the longest
possible distance of fall through the oven (6.1 in.)
at oven temperatures of about 80° C, 125° C, 160° C,
and 260° C. Still enlargements of consecutive
frames from the movie films show that no cloud of
mist was trailing the falling drop at any of the oven
temperatures for which observations were made
either for the short or for the long distance of fall
through the oven. Because the time of fall of the
waterdrops through the oven was of the order of
tenths of a second, it was concluded from these
pictures that the time required for heat transfer
to and subsequent vaporization of water from the
surface of a falling drop is too long to account for
the formation of the water mist which was detected
100 wsec after a waterdrop was hit by an air shock
that had a Mach number of 1.3. Consequently a
hot-water-vaporization-to-form-steam mechanism
based on the elevated temperature of the air that
is flowing past the waterdrop after it has been struck
by the air shock cannot be a correct explanation
of the water mist that emanates from it.

b. Mechanical Origins

The circumstances under which the water mist is
formed suggest that the mechanism by which it is
produced 1s mechanical. , Mechanisms in this cate-
gory are that by which mist is produced as a result
of sound waves, the stripping off of a surface layer
of water by the rapid airflow around the drop, and
the breaking of the crests of surface waves. These
possible mechanisms are discussed and evaluated
below.

(1) Sound Waves as a Source of Water Mist. 1t
is known that liquids can be converted to mist
by sound waves [9]. In the case of liquids of low
viscosity, at a liquid-air interface, the forces in play
drive the liquid into the air in the form of a spray

4 Lee Dunlap and W, K. Stone assisted in these experiments.



of minute droplets to form a fog [9]. Because sound
waves may be initiated in a waterdrop that has been
struck by an air shock, it is possible that the mist
that is carried downstream from waterdrops that
have been struck by an air shock could have this
origin.

T'wo experiments were made by Martin Greenspan
and Max Swerdlow of the Bureau, to observe directly
the reduction of a liquid to mist by means of ultra-
sonic waves. Drops of ethyl alcohol were placed
on the bottom of a glass vessel which was then set
into rapid vibration by an oscillating crystal.
Clouds of white fog rose from the drops “of alcohol
and the small drops of alcohol emitted mist more
copiously than the large drops did.

A second demonstration of the effect was made
using a powerful Crystalab Ultrasonorator. This
instrument consists essentially of a crystal that is
driven at high frequency while it remains submerged
in an oil bath. A beaker containing a small amount
of water was placed so that the bottom of it was in
contact with the surface of the oil. When the crys-
tal was set into oscillation, a small and rapidly fluc-
tuating mound of water rose above the surface of
the water in the beaker. It gave the appearance of
what might be expected if a water nozzle, located
below the surface of the water in the beaker and
pointed toward the surface, were delivering a jet of
water through the surface. Periodically dense clouds
of mist rose from the head of the water jet. A mov-
ing picture was taken of the phenomenon. The fluc-
tuating action of the jet on the surface of the water
can be seen in a still enlargement of consecutive
frames from this movie. Mist was thrown off wildly
in various directions as the jet of water thrashed
about. To establish whether this mist is produced
mechanically, or as a result of local heating, a small
quantity of Ascarite was added to the water in the
beaker. A piece of pink litmus paper that was
held in the mist underwent a definite though slight
color change. This would have been impossible if
the mist had consisted of distilled water. However,
it seems that the presence of hydroxyl ion in the
vapor above the water could be accounted for as a
result of cavitation in the water itself ° which de-
stroys the conclusiveness of this evidence that the
origin of the mist was mechanical.

In the case of the evolution of water mist from
waterdrops after they have been struck by an air
shock, it seems that the actual process could consist
of a spalling of water from the free surface of the
leeward face of the drop after a pressure pulse re-
verses there in tension because water, except under
very special conditions, has very little tensile strength.
On the other hand, it could consist of the breaking
of the crests of waves that may be produced by the
successive reflection of an initial pressure pulse from
the two faces of the drop. These two possibilities
are discussed in the following paragraphs.

The spalling mechanism is briefly as follows [10].
When a pressure pulse of steep front reverses in ten-
sion at a free surface, interference occurs at first
between the incident compressional wave and the

5 Suggested by Virginia Griffing of the Catholic University.

reflected tension wave. Tension increases as the re-
flected wave moves away from the surface. When
the medium in which the wave is moving is no longer
able to withstand the tension, fracture occurs, and
a scab or thin layer is thrown off the free surface.
Because water has such low tensile strength, this
layer, in the case of a water scab, should be vanish-
ingly thin. Tt is possible for a second scab to form
as the remainder of the pressure pulse reflects in
tension from the fresh surface produced by the for-
mation of the first scab. In this way, multiple scab-
bing can be accounted for [11]. These scabs or thin
sheets of water would break up into droplets of very
small size [12].

Compressional waves which may b& initiated on
the windward face of the waterdrop at the instant
that the air shock strikes it would reflect in tension
from the leeward face of the drop which is a free sur-
face. After the reflected tension wave returned to
the windward face of the drop, it would reflect there
as a compressional wave because the windward face
is also a free surface (reflection occurs with change of
sign at a free surface). The process of successive
transits of the waves through the waterdrop at the
speed of sound in water, and of their successive re-
flection, would continue until the waves were damped
out. The attenuation of sound in water is low.

It has been shown that the thickness of an air
shock that has a Mach number of 1.7 is 0.000031
cm. Because this is approximately 1/10,000 the di-
ameter of the waterdrop, the initiation of a pulse of

compression in the waterdrop is possible. The
amplitude of it may not be large. However, there

is no clear evidence of mist formation up to 100 usec
after a 2.7-mm-diam waterdrop has been struck by
an air shock having a Mach number of 1.3, although
the time that is required for a pressure pulse to make
one trip through a 2.7-mm-diam waterdrop at the
speed of sound in water is about 2 usec. There does
not seem to be an answer to this discrepancy other
than the observation that it is hard to decide just
when mist can first be detected in the spark pictures
of waterdrops that have been struck by air shocks
and that there are periods of quiescence even in the
case where water is exposed to ultrasonic waves.

If reflecting waves are the cause of the mist, there
should be a more or less even density of mist forma.-
tion over the whole leeward face of the waterdrop
and the mist structure that forms downstream from
the leeward face should have its greatest density in
the center when it is viewed from the side. How-
ever, it can be seen from the spark pictures that for
relatively short times after the air-shock-waterdrop
collision, the greatest density of the mist structure
is not at the center but at the top and bottom as the
mist structure is viewed from the side. This cer-
tainly seems to indicate that the mist structure is
hollow which would lead to the conclusion that the
mist is not being formed on the leeward face but, in-
stead, is being formed on the windward face and is
being carried around the drop by the airflow or is
being formed at the periphery of the drop between
the windward and leeward faces. Furthermore, if
the reflection of pressure waves as tension waves at
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the leeward face of the drop is the source of the mist,
the greatest density of mist formation should occur
at short times after the air-shock-waterdrop col-
lision, that is, before the traveling wave has time to
become attenuated. However, from the spark pic-
tures of fragmenting waterdrops it appears that the
density of mist production increases with time elapsed
since the collision incident until quite long periods of
time have elapsed. For these reasons it seems very
doubtful that the observed water mist is produced
from water scabs formed at the leeward face of the
waterdrop as a pressure pulse reverses in tension.

It is possible that a pressure pulse may be initiated
but that the ultimate effect of its subsequent reflec-
tions from the faces of the waterdrop may not be to
spall mist from the leeward face of the drop. The
sucecessive reflection of the pressure pulse may result
in waves on the surface of the drop; the crests of these
waves may break, or may be whipped off by the rapid
airflow around the drop. Because such waves could
form on the windward face of the waterdrop, this
view of the function of the pressure pulse, if one is
formed in the waterdrop, would be in agreement with
the observation that the mist density behind the lee-
ward face is not uniform, but is greatest at the top
and bottom when the fragmenting waterdrop is
viewed from the side. On this picture the formation
of the mist would also be delayed until the waves
were set up on the surface of the drop. This would be
in agreement with the observation that the mist does
not form immediately after the air-shock-waterdrop
collision.

(2) Surface Waves as a Source of Water Mist. 1t
was pointed out in the preceding discussion that
waves may be produced on the surface of a waterdrop
as a consequence of a successively reflecting pressure
pulse which may have been initiated by the air-
shock-waterdrop collision and that these waves may
break or that the crests of these waves may be blown
off by the rapid airflow around the drop to produce
the water mist. It is also possible that surface waves
may be produced by the wind that is blowing out
radially around the stagnation point in the center of
the windward face of the waterdrop and that crests
of these wind waves may break or be blown off.

Whatever may be their origin, surface waves
certainly appear on the windward face of a water-
drop after it has been struck by an air shock and
exists in the high-speed stream of air that flows
behind the shock. The development of windward-
face corrugations with time is shown in figure 9 for
waterdrops that were struck by air shocks that had
a Mach number of 1.5. For short times after the
collision incident they are only rounded mounds on
the surface as in figure 9, picture 2; later they become
choppy or sharp-pointed waves as in figure 9,
picture 4.

There is some evidence for identifying the waves
seen in the profile of the windward face of the water-
drop in figure 9, picture 4, as wind waves. In general,
in the presence of gravity two sets of waves are pro-
duced by a given wind velocity. It can be seen that
very small ripples are superimposed on larger waves

in the profile of the windward face of the waterdrop
in figure 9, picture 4. The evidence can be further
confirmed by calculating the ratios of the values of
the allowed wavelengths that capillary waves should
have under the experimental conditions and by noting
if the observed wavelengths are in approximately
this ratio.

The theory of waves produced by wind under the
condition that surface tension and the field of gravity
are both acting is known [13]. The case being con-
sidered here is that a freely falling waterdrop is
struck by an air shock in a shock tube. The water-
drop is then accelerated downstream in the rapid air-
flow in the tube behind the shock. For this case the
acceleration due to gravity is negligible in comparison
with the horizontal downstream acceleration that,
neglecting the drag of the flowing air, is due to the
pressure difference between the windward and lee-
ward faces of the drop. For this case the air-water
interface is the windward face of the waterdrop and
it is perpendicular to rather than parallel with the
surface of the earth. The theory for this case is the
same as that for waves produced by wind on a body
of water under the condition that surface tension
and the gravitational field of the earth are both
acting. See Lamb, [13], chapter 1X, Surface Waves,
article 246. '

It leads to the equations

2__?'\/01/'_ pn'\Ja_-T"

Cp = — 27)
putpa @7)

T
Apy=2 \/1 28
i c(pyu=—1) ( )

(FEE I N et
Vo] BRI (29)

where ¢ is the velocity of the waves, X is the wave-
length, 7'is the surface tension, p,, p, are the densities
of water and of the air flowing behind the shock, re-
spectively, « is the acceleration of the waterdrop in
the airflow behind the shock, and the sub-m notation
indicates the minimum value of the quantity.

For every value of ¢?/c,’>>1, there are two values
of N\, that is, there are two values of the wave-
length as was noted above. Two values of these
ratios given by Lamb [13] are: ¢/c,=1.2, M\,,=2.476
and 0.404; ¢/c,=1.4, \/A\,=3.646 and 0.274. From
these ratios, the equations for ¢,? and A, and taking
the average value of «, the slope of the drift-velocity-
against-time curve for the time interval up to
400 uwsec to be 6X10° ecm/sec? for the case that the
Mach number of the shock is 1.5 (see fig. 6, C), and
pa=p> for the airflow behind shocks that have a
Mach number of 1.5 (see table 1), it is possible to
calculate the ratio of the wavelengths that should
be observed on the windward face of the waterdrop
shown in figure 9, picture 4. From eq (27)

10,0218~ T
piet wwmﬁxloﬁ)] —203.6 cm/sec

1.00218
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and from eq (28),

2(3.1416)4/72

= =0.02179 cm.
v (6><10°) (1—0.00218)

m

By use of the ratios given above, when ¢=244.3
cm/sec, \,=0.05395 cm, A,=0.008803 c¢m, and when
¢=285 cm/sec, \=0.07945 cm, N\,=0.00597 cm.
The calculated values of the wavelength, \, are
plotted against the values of the wave velocity, ¢, in
figure 13. The measured wavelength of the coarse
waves on the windward face of the waterdrop shown
in figure 9, picture 4, is roughly 0.06 cm. From
figure 13 the wavelength of the ripples between the
coarse waves should be 0.0082 em. Measurements
indicate a value of 0.014 em.

The evidence seems to indicate that surface waves
do form, that two wave lengths exist as is to be ex-
pected from theory, and that the ratio of the wave-
lengths is roughly what should be expected from
theory. Waves are observed on the windward face
of waterdrops before the waterdrops are accelerated
downstream. See figure 9, pictures 1 and 2. Wind
waves can form in the absence of a gravitational field;
under this condition, however, only one wavelength
is to be expected.

(3) Unstable Waves. Taylor [7] (see also Lane
and Green [14]) suggested that the formation of
unstable waves might constitute a mechanism of
fragmentation. The crests of the waves may blow
off to form droplets. The diameters of the droplets
produced in this way are likely to be of the same
order as the wavelength of the most unstable wave.
For high airflow rates, calculations based on this
hypothesis produce much smaller values for the size

280 —

270 —i

cm/sec
n
o
o
T

250— —

240|— =

WAVE VELOCITY (c),

220— -

210= —

| | | | 1 L l L

0.0l 002 0.03 0.04 0.05 0.06 0.07 0.08
WAVELENGTH (X\), cm

2000 0.09

Ficure 13. Corresponding values of the wavelength and wave
velocity for a water surface that is being accelerated at the
average rate of 6 X 10° cm/sec?.

of the droplets than are found experimentally.
Taylor [7] has suggested that it is possible that the
discrepancy may result from the fact that the air
close to the fluid surface is moving slower than the
air outside the boundary layer and is therefore less
effective in producing waves.

(4) Stripping of a Surface Layer of Water by the
Airflow.  Taylor [7] has considered the possibility
that waterdrops may disintegrate in a high-velocity
airstream by means of the stripping off of a surface
layer of water which then breaks up. Air is flowing
radially from the stagnation point on the windward
face to the equator of the waterdrop midway between
the windward and leeward faces of it. The motion
of the air sets the surface layer of the water on the
windward face of the drop into motion. This thin
moving layer of water spills off the drop at the
equatorial belt that separates the windward and lee-
ward faces of the drop and breaks up to form the
;nist that is observed downstream from the leeward
ace.

It can be shown (see appendix A) that the total
efflux or total loss of volume from the boundary
layer per unit time is

- 1/3 we
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where p is the density, » is the kinematic viscosity,
U, is the velocity of the airflow, W is the drift
velocity of the waterdrop, and z is a distance along a
radius of the windward face of the waterdrop meas-
ured from the center of the windward face. The
sub-a notation refers to the air and the sub-w nota-
tion refers to the water. Taylor [7] used eq (30) to
develop an expression that was intended to give the
decay of a lenticular drop from the time that it had
undergone maximum flattening (see section 4.6) to
the time of complete disintegration by means of
efflux of liquid at the periphery between the wind-
ward and leeward faces and found the condition that
the drift velocity, W, should have reached the airflow
velocity, [/, at the time that complete disintegration
was accomplished. He later [14] modified this con-
clusion. At the time that fragmentation of the 2.7-
mm-diam waterdrop was essentially complete, the
drift velocity was about 33 percent of the airflow
velocity when the Mach number of the shock was
1.5, and about 50 percent of the airflow velocity
when the Mach number of the shock was 1.7. See
section 4.7. The condition that the waterdrop
should acquire the airflow velocity before fragmen-
tation is complete may possibly be realized when
the fragmentation of waterdrops in the airflows be-
hind shocks having Mach numbers greater than 1.7
is investigated. Lane and Green [14] report that
a 0.5-cm drop of dibutyl phthalate disintegrating
in a 3.4X10* cm/sec air blast had attained 90 per-
cent of the airflow velocity at the time that the drop
was essentially completely fragmented.

Results of the present investigation seem to
indicate that a marked reduction in the drag force
of a waterdrop occurs between 100 and 200 usec
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after the air-shock-waterdrop collision (see section
4.7). The fragmentation mechanism may be more
complicated than was assumed by Taylor [7] when
he wrote the expression that was intended to give
the decay of a lenticular drop from the time of
maximum flattening to the time of complete dis-
integration by means of the efflux of liquid at the
periphery between the windward and leeward faces.
It is possible that instead of remaining in the form
of a water disk during the disintegration process
the water disk is converted to a ring of water when
a hole forms at the center of the windward face and
that eventually the water ring segments into a
chain of water beads. To evaluate surface-layer
stripping as a possible mechanism for liquid-drop
fragmentation by determining what the drift velocity
should be at the time that fragmentation is complete,
it 1s necessary to determine experimentally whether
these large changes in the form of the liquid mass
that remains of the drop actually do take place.
If they do occur, it will be necessary to apply the
surface layer stripping mechanism to these forms
of the water mass in an equation designed to trace
the complete decay of the liquid drop to mist. For
a further discussion of this point, see section 4.7.
However, there may be a Mach number of the air
shock considerably higher than 1.7 for which the
airflow behind the shock would have a sufficiently
high velocity to reduce the waterdrop radius to zero
by a surface-layer stripping mechanism before the
complication of hole formation or of segmentation
of the remaining water ring would have time to occur.

(5) Turbulence as a Source of Mist. Potential
flow exists around the waterdrop immediately after
the air shock has struck it. This means that there
are no vortices in the flow and that the stagnation
pressure at the center of the leeward face is equal to
the stagnation pressure at the center of the windward
face. Vortices will form, however, in a time interval
of the order of 100 usec after the air-shock-waterdrop
collision and as the vortices form, the pressure on
the leeward face will drop. The vortices themselves
may be a source of the water mist, that is, they may
gradually eat away the leeward face of the waterdrop.

Because the direction of the airflow in the vortices
is toward the equator of the drop, the mist that may
be produced as a result of the vortex motion would
be carried back toward the equator of the drop
before it entered the airflow downstream from the
leeward face. This would require that the mist cone
should be a hollow funnel as is observed.

The time that is needed for the formation of the
vortices would require that there should be a time
interval after the air-shock-waterdrop collision in
which no mist is formed. This is the case where the
air shock had a Mach number of 1.3, but for this air-
shock velocity there is no evidence of turbulence in
the mist structures that form downstream from the
leeward face of the fragmenting drops for any time
after the collision incident at which pictures were
taken. See figure 4, pictures 1 through 6. On the
other hand, in the case of collisions of waterdrops
with air shocks that had a Mach number of 1.5, there
is already a well-developed mist-cone in pictures

that were taken at about 85 usec after the collision
incident (see fig. 10) and in the case of collision of a
waterdrop with an air shock that had a Mach number
of 1.7 there is a mist structure behind the leeward
face of the drop at the end of about 55 usec. See
figure 12. Furthermore, in pictures of waterdrops
that were taken at time intervals less than 100 usec
after the waterdrops were struck by air shocks that
had Mach numbers of 1.5 and 1.7, there was no
evidence of swirling in the mist structure downstream
from the leeward face, but in pictures that were
taken at the end of longer time intervals after the
collision of a waterdrop with air shocks that were
moving at these velocities, strong evidence of swirling
exists.

These observations seem to indicate that mist can
be produced in the absence of vortices, that is, that
the mist has an origin other than the vortices. The
existence of vortices may, however, contribute to the
production of mist after they form. This is in agree-
ment with the observation that the mist density is
greater for comparable times after the air-shock-
waterdrop collision as the air-shock velocity was
increased.

(6) Most Probable Sources of the Water Mist.
From a consideration of the evidence for and against
the various postulated mechanisms for mist produc-
tion that have just been given, it seems that the
most likely mechanisms are those which take into
account the effect of the rapid airstream on the
waterdrop. The mist that is observed is probably
made up of contributions from the whipping off or
from the breaking of the crests of waves, from the
spill-off at the equatorial belt of the moving boundary
layers on the windward face, and from the stripping
of water from the leeward face by the vortices that
form there in the airflow. It seems unlikely that one
of these mechanisms operates to the complete ex-
clusion of the others,

4.5. Radial Water Flow

The start of evolution of water mist from the
leeward face of a waterdrop after it has been struck
by an air shock is accompanied by the first evidence
of a radial flow of water from the drop. The thin
sheet of water that is just beginning to move out
radially at the equator of the drop appears only as a
protrusion from the upper and lower surface of the
silhouette of the drop as it is seen in the spark pic-
tures. The gradual development of it over a period
of about 70 usec can be seen in figure 3, pictures 1
through 8, for the 2.7-mm-diam waterdrop after
cgllisions with air shocks that had Mach numbers
of 1.3.

To determine the cause of this radial flow, it is
necessary to account for all the variations of it with
the conditions under which it forms. From the pic-
tures that were just referred to, it is seen that (A)
when it is produced as a result of collision of a water-
drop with an air shock it moves out of the drop on
a plane that extends through the center of the drop
and that is perpendicular to the direction of motion
of the air shock that struck the waterdrop. Com-
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parison of spark pictures of the large and of the
small waterdrop at various times after the air-shock-
waterdrop collision shows that (B) the radial flow
forms sooner for a small than for a large waterdrop.
When the Mach number of the shock 1s 1.3 the for-
mation time for the 2.7-mm-diam waterdrop is of
the order of 100 usec, but for the 1.4-mm-diam water-
drop it is much less than 75 psec, because for this
size of waterdrop the radial flow is already well
developed 75 usec after the air-shock-waterdrop
collision. A comparison of the size of the radial
flow with the diameter of the residue of the drop
seems to indicate that (C) the radial flow may be
larger the smaller the diameter of the drop.

This interesting phenomenon also results if liquid
drops are suspended in a sound field. It is very
evident, for example, in pictures taken by Hanson,
Domich, and Adams [15]. In this case (A’), the
radial flow forms perpendicular to the direction of
the sound field. For drops of methyl alcohol of
different sizes which Hanson, Domich, and Adams
[15] suspended in a sound field, only drops having a
diameter of 0.0334 em or less, have the radial flow.
The high light in the drops that have the radial
flow is completely extinguished whereas the larger
drops that have no radial flow have distinet high
lights. It is noteworthy that the limiting size of
drop that will develop a radial flow in the sound
field that was used by Hanson, Domich, and Adams
is lower for drops of water than for drops of methyl
alcohol because a 0.0315-em waterdrop suspended
in the sound field has a distinet high light and no
radial flow. There is no way of knowing (B’) the
rate at which the radial flow formed on these drops.
However, (C') among the drops of methyl alcohol
that have a diameter of 0.0334 cm or less, the smaller
the drop is, the more extensive is the radial flow.
A 0.0168-cm drop has a large radial flow, a 0.0334-
cm drop has a small radial flow, and 0.0511- to
0.0793-cm  drops have no radial flow. Although
the sound frequency is not indicated on the picture
given by Hanson, Domich, and Adams [15], it ap-
pears probable from their discussion that a 50-ke
field was used. After these drops were struck by
an air blast that had a velocity of 60 ft/sec, the
radial flow was blown off the drop and existed as a
mist structure downstream from the leeward face of
it [15]; this appears to be evidence to indicate that
the water mist, which was discussed in section 4.4,
had its origin at least partly in protrusions of one
kind or another that formed on the surface of the
drop. The cause of the radial flow is undoubtedly
the same regardless of whether it occurs as a result
of collision of a drop with an air shock or as a con-
sequence of supporting a drop in a sound field.

The lowest pressure that occurs around a sphere
that is located in an airflow exists in a belt around
it that separates the windward from the leeward
face. The pressures that were found by Fage [4]
to exist at all points from the center of the windward
face to the center of the leeward face for a 6-in.-
diam sphere in a 35 ft/sec airflow are given in figure
14, B. From these data the low-pressure belt be-
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Ficure 14. A, Differential area; B, distribution of pressure
around a 6-in.-diam sphere in a 35-ft/sec airflow.
Reynolds number 110,000. Data of Fage [4].

tween the windward and the leeward face exists from
60° to 85°. It can be expected that the high pres-
sures that exist on the windward and leeward faces
of a deformable water sphere during the period
when potential flow occurs, that is, when the stag-
nation pressure on the leeward face i1s the same as
the stagnation pressure on the windward face, will
drive water out through the low-pressure belt.
This water flow, however, occurs throughout the
drop and is not restricted to a very narrow zone at
the equator. These exterior pressure differences
are the cause of the gradual flattening of the drop,
which is discussed in section 4.6, but they are not
the cause of the very localized thin circular sheet
of water that moves out of the equatorial belt of
the drop.

It is shown in section 4.6 that a memory of some
kind may exist in the water of the drop. This mem-
ory may be a pulse of compression. 1t is seen from
figure 3 that an air shock that is moving at super-
sonic velocity can collide with a waterdrop without
producing an immediate distortion of it. However,
a layer of water on the windward face of the drop
may be given an almost instantaneous acceleration
at the instant that the shock wave passes over the
drop, that is, a pulse of compression could be ini-
tiated. This pressure pulse would move at the
speed of sound in water from all points on the
hemispherical windward face through the geomet-
rical center of the drop and would be reflected as a
tension pulse from the mirror-image points on the
hemispherical leeward face of the drop. The center
of the drop which is the point of intersection of the
reverberating pulse, may be the point where maxi-
mum pressure amplitude occurs because maximum
superposition occurs there.

The radial flow of water that moves out of a water-
drop that has been struck by an air shock, comes out
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ona plane that is perpendicular to the direction
in which the air shock was moving and that runs
through the center of the drop. Likewise, the radial
flow that comes out of a drop of methyl alcohol that
is suspended in a sound field also moves out on a
plane that is perpendicular to the direction in which
the sound pulses strike the liquid sphere and that
runs through the center of the drop. Thisisin agree-
ment with observations (A and A’) cited above. The
maximum pressure that would result from super-
position of waves would develop sooner in a small
waterdrop than in a large waterdrop because the time
required for the pressure pulse to make a trip across
the drop would be shorter. This would also be the
case for pressure pulses set up in waterdrops sus-
pended in a sound field. This is in agreement with
observation (B) cited above. Finally, the pressure
that would be developed in the center of the drop
as a result of collision of the drop with an air shock
moving at a given velocity or as a result of a sound
field of specified intensity would be capable of driving
a radial flow of water a certain distance. Compared
with the diameter of the drop, this distance would
be larger for a small drop than for a large drop. This
is in agreement with observations (C and C’) cited
above. If the pressure developed is incapable of
driving a water flow to a distance larger than the
diameter of the drop itself, no flow would be observed.
This is in agreement with the observation that in
the case of drops of methyl alcohol that were sus-
pended in a sound field, no radial flow at all was
observed on the largest of the drops. To make a
comparable statement for waterdrops that were
struck by air shocks, it would be necessary to ob-
serve the behavior of waterdrops that had a diameter
larger than 2.7 mm after they were struck by an air-
shock that had a Mach number of 1.3 or to observe
the behavior of the 2.7-mm-diam waterdrops after
collision with air shocks that have Mach numbers
less than 1.3.

On the other hand, it is possible that this radial
flow may be produced by instability on the surface
~of the drop. The airflow, which follows the air shock,

blows against the windward face of the drop and
water waves are initiated by it. Similarly, there is a
periodic movement of air past a liquid drop that is
suspended in a sound field and this air movement
could have the same effect. The stability of waves
on the surface of a liquid drop is a function of their
latitude on the sphere with respect to the stagnation
point in the center of the windward face which may
be considered as a pole. The line of maximum in-
stability is at the equator of the drop and it is pos-
sible that surface waves may grow to a very high
amplitude at the equator to give the appearance of
a radial flow. This would be in agreement with
observations (A, A’) cited above.

The growth of an unstable wave on the surface of
a spherical body is mathematically an extremely dif-
ficult problem. This is especially the case at the
later stages of the growth of instability when the
radial flow develops. However, from stability the-
ories on simple models, it is to be expected that
waves of small wavelength, produced as the result

of eigenvibrations, are likely to be associated with
small bodies and that, under many circumstances,
waves of small wavelengths are more unstable than
waves of large wavelengths [16]. Small bodies also
respond readily to the influence of an external un-
steady field because of their small inertia. This
evidence may provide an explanation of observations
(B) and (C, C’) cited above.

4.6. Flattening of the Waterdrop in the Airflow

The flattening of the waterdrop perpendicular to
the direction of the airflow in the shock tube is the
result of the pressure difference that exists around it
in the airflow behind the shock. Burgers [17] has
accounted for the flattening with time by use of a
simple model, namely, that at the instant that the
air shock has just passed the waterdrop streamlines
converge at the center of both the windward and
leeward face of it and the pressure at the center of
each of these faces is the stagnation pressure. See
appendix B. The outward displacement d at the
equator of the drop and perpendicular to the direc-
tion of the airflow 1s found to be given by

_157_’,52
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(31)

where Ap is the pressure difference between either
the windward- or the leeward-face stagnation point
and points along the equator of the drop, » is the
drop radius, p is the density of the liquid of the drop,
and ¢ is the time. The increase in the diameter of
the waterdrop perpendicular to the direction of the
airflow is 2d.

From eq (31) it can be seen that the smaller the
waterdrop is, the larger is the increase in its diameter
perpendicular to the direction of the airflow for any
given time after the air-shock-waterdrop collision.
This is in agreement with observation. See section
3.1.b. It appears that with a constant pressure
difference between the poles and equator of a liquid
sphere, the pressure gradient inside the sphere be-
comes larger with decreasing radius so that the ac-
celeration of the water also becomes larger.

The curves of the equatorial diameter (maximum
diameter) of the 2.7-mm-diam waterdrop at time
intervals up to 200 usec after the collision incident
calculated by use of eq (31) for the three air-shock
velocities for which experimental data were obtained
are shown in figure 5 with the empirical curves.
For the case that the Mach number of the shock
was 1.3, the calculated curve lies above the empirical
curve; for the case that the Mach number of the
shock was 1.5, the calculated curve lies below the
empirical curve; for the case that the Mach number
of the shock was 1.7 the calculated curve lies very
much below the empirical curve. In calculating
points for the theoretical curves, the value of p,,
the stagnation pressure at the center of the wind-
ward face, was used for Ap. This is the very highest
pressure that could be used for Ap. Actually, it
may be a larger value than should be used and may
account for the fact that the calculated curve for
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the case that the Mach number of the shock was
1.3, the shape of which is closely similar to that of
the empirical curve, lies above the empirical curve.
However, if some fraction of p, were used for Ap,
the calculated curves for the cases that the Mach
number of the shock was 1.5 and 1.7 would lie even
further below the respective empirical curves. This
observation leads to the thought that it may not be
possible to explain the flattening of the waterdrop
wholly in terms of the pressure difference which is
set up between the poles and equator of the drop as
a result of the airflow around it.

One possible explanation of the discrepancy may
be that the waterdrop remembers the collision. If
this is the case, the memory is a function of the air-
shock velocity, and the memory is greater the higher
the air-shock velocity is because the curves calculat-
ed by use of eq (31) have an increasingly poorer fit
to the empirical curves for the case that the Mach
number of the shock is 1.5 and 1.7, respectively.
The memory may be a pressure pulse that is initi-
ated in the water of the drop as the air shock passes
and that subsequently undergoes successive reflection
from the windward and leeward faces of the drop.
As has been noted, because both faces of the water-
drop are free surfaces, this pulse will always reflect
as a tension pulse from the leeward face and will
always reflect as a pressure pulse from the windward
face. In this way the value of Ap could become
larger than p, in air-shock-waterdrop collisions where
a shock effect occurs.

There is another possible explanation. Attempts
to calculate the acceleration of the 2.7-mm-diam
waterdrop in the airflow behind shocks for which the
Mach number is 1.5 (see section 4.7) indicate strongly
that a central hole may form through the water disk
to which the waterdrop flattens. The gradual de-
velopment of this hole (see section 4.8) may account
for an increase in the observed diameter of the water
disk in excess of what can be accounted for by the
pressure difference between the poles and equator
of it alone.

4.7. Drift Velocity

Measurements of the distance from the edge of the
fiducial marker to the leading edge of the waterdrop
at various time intervals after the air-shock-water-
drop collision were made for three air-shock veloci-
ties. The fact that the waterdrops fell from the tip
of the hypodermic needle with a slight scatter, and
that the hypodermic needle itself was adjusted from
time to time to insure that the waterdrops would fall
through the hole in the floor of the shock tube,
introduced a considerable amount of variation in the
drift distances. It was arbitrarily decided that all
negative values of drift should be recorded as zero
drift and that wherever two consecutive spark pic-
tures showed a zero or a negative value of drift all
positive values for earlier periods of time should be
disregarded. The measured distances of drift at
various time intervals after the air-shock-waterdrop
collision are plotted against the time elapsed since
the collision in figures 6,A and 6,B for the case that
the Mach number of the shock is 1.5 and 1.7, re-

spectively. The slope of the drift-time curves of
figures 6,A and 6,B were determined at 100-usec
intervals and these values, which are the drift veloci-
ties, are plotted against the time elapsed since the
collision 1 figure 6,C. From figure 6,C it can be
seen that the slope of the drift-velocity-against-time
curve increases as the air-shock velocity increases.
This is logical because the velocity of the airflow
behind the shock is higher the higher the air-shock
velocity,

From figure 6,C and table 1 it can be seen that 750
usec after the air-shock-waterdrop collision, the drift
velocity of the 2.7-mm-diam drop is about one-third
of the airstream velocity for the case that the Mach
number of the shock was 1.5. Reference to figure 10,
picture 6, shows that at approximately this time
after the air-shock-waterdrop collision the 2.7-mm-
diam waterdrop was almost completely reduced to
mist. Also, from figure 6,C and table 1 it can be
seen that 600 wsec after the air-shock-waterdrop
collision the drift velocity of the 2.7-mm-diam
waterdrop is approximately one-half the airstream
velocity for the case that the Mach number of the
shock was 1.7. Reference to figure 12, picture 6,
shows that 594 usec after the air-shock-waterdrop
collision the 2.7-mm-diam waterdrop is essentially
a trail of mist. These observations show that the
waterdrop does not acquire the airstream velocity
before fragmentation is complete. This condition
is more nearly realized when the Mach number of the
shock is 1.7 than when it is 1.5. It may be found to
be true for Mach numbers of the shock higher than
1.7. See section 4.4.b.

The slope of the curve of drift velocity plotted
against the time elapsed since the air-shock-water-
drop collision is the acceleration given to the water-
drop. It is possible to calculate the acceleration
for comparison with the observed slopes. In the
case where there is relative accelerated motion
between an object and a fluid there is an apparent
change in the mass (M) of the object. The apparent
addition to the mass (M) of the object is (M”) and
in this paper is referred to as the additional mass.
The force acting on the object is given by (M-M’)
(dU|dt) where U is the relative motion between the
object and the fluid. See reference [13]. The force
on a water sphere that is moving in an infinite body
of air is, assuming potential flow,

2
F=2 wpsiart mrpuc, (32)

3

where p,, p, are the densities of the airstream and
of water, respectively, » is the radius of the sphere,
and « is its acceleration. See reference [13]. The
force can be evaluated from the distribution of pres-
sure around a sphere in an airflow. Fage [4] has
measured this pressure distribution for a 6-in.-diam
sphere when the airflow velocity was 35 ft/sec. A
graph of his measured values of the pressure on the
sphere, p, above the free-stream pressure, p,, is
given in figure 14, B. The Reynolds number for his
measurements was 110,000. Because the Reynolds
numbers for the 2.7-mm-diam waterdrop in the flow
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behind air shocks that had Mach numbers of 1.7,
1.5, and 1.3 were 89,000, 61,000, and 35,000, respec-
tively, the pressure distribution around the water-
drop will be most nearly like that found by Fage [4]
for the case that the Mach number of the shock was
1.7. However, the variation of the pressure distri-
bution. over this range of the Reynolds number
should not be important. From the data of Fage [4],
it appears that the minimum in the curve at 75°
tends to be less marked as the Reynolds number is
reduced. For the purpose of evaluating the accelera-
tion of the waterdrop in the airflow behind a shock,
it was assumed that the pressure follows the experi-
mental curve of figure 14, B to 60°, that the min-
imum in the curve at 75° is absent, and that the
pressure is constant over the remainder of the sphere
from 60° to 180°. See appendix C. The total force
on the sphere found by use of these assumptions is
0.244 7°p,U,* where r is the radius of the sphere
and p,, U, are the density and the velocity of the
airflow, respectively. KEquating this to the force on
a sphere in terms of its acceleration, «, given by eq
(32) yields
0.244 Uf_)?pg
S P vy (82)

The velocity of the airflow behind the shock for
the case that the Mach number of the shock is 1.5
is 2.37>X10* em/sec. Substituting the radius of the
2.7-mm-diam waterdrop for r, the acceleration « is
found to be 1.64<10° em/sec? in the airflow behind
a shock that has a Mach number of 1.5. An en-
larged graph of the waterdrop drift velocity after
collision with a shock that has this Mach number is
given in figure 15 for small values of time after the
collision incident. At the end of 50 usec after the
air-shock-waterdrop collision, at which time the
waterdrop is still close to its original spherical shape,
the slope of the empirical drift velocity curve is
2X10°% cm/sec?.

A value of the acceleration similar to that obtained
in the preceding calculation is found by equating the
total force in terms of the acceleration as it is given
in eq (32) to the drag resistance, 7w CppU,%/2 where

'p is the drag cocfficient. From this equality,
a=CpUs%por*/[§par*+5p "] (34)
For a Reynolds number of 100,000, from the data
of Wiesselsberger [18] and Allen [19], (', for a sphere
is 0.48. By use of this value of (5, a is found to be
1.57<10°% em/sec? for the 2.7-mm-diam waterdrop in
the airflow behind the shock for the case that the
Mach number of the shock is 1.5. This is to be
compared with the value of 1.64%<10° cm/sec?
obtained by the preceding calculation and with the
observed value of 2>X10°% cm/sec?.

When, however, an attempt is made to calculate
the acceleration of the 2.7-mm-diam waterdrop in the
airflow behind a shock that has a Mach number of
1.5 for times longer than 50 wsec after the air-shock-
waterdrop collision, the result is found to be very
different from the slope of the experimental drift
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Ficure 15.  Drift velocity of 2.7-mm-diam waterdrops in the

airflow behind shocks for short times after the air-shock-
waterdrop collision.

Mach number of the air shock was 1.5. The slope of the curve at various times
after the air-shock-waterdrop collision is as follows:

Time Slope of curve
|
usec cmjsec?
50 2X108
100 4
200 7.5
300 8.3
400 10

velocity curve shown in figure 15. The discrepancy
appears to result from the fact that the waterdrop
is changing shape. The calculated values of the
acceleration should provide some additional evidence
for the shape that the waterdrop assumes.

At the end of 94 usec after the air-shock-waterdrop
collison, for the case that the Mach number of the
shock was 1.5, the waterdrop has already flattened
in all directions perpendicular to the airflow (see
fig. 9, picture 2) and at the end of 209 usec after the
collision incident it appears to have flattened into a
water disk (see fig. 9, picture 3). The additional
mass and the drag coefficient of a disk in an airflow
are different from those of a sphere. If the water-
drop has become a water disk, its acceleration, «,
should be given by

CD (LVQ i L17) 2p27r7“2
a— =
180013 4-§mp o

(35)

where 7 is the radius of the water disk, 7, is the radius
of the original water sphere, and W is the waterdrop
drift velocity. The drag coefficient (', for a disk is
about unity and does not seem to change with change
in the Reynolds number of the flow. Using values
of W from the graph of figure 15 and values of r
found from eq (31) (see fig. 5), the acceleration of
the waterdrop under the assumption that it is a solid
disk with a drag coefficient of unity was calculated
by use of eq (35) for time intervals of 100, 200,
and 300 psec after the 2.7-mm-diam waterdrop
collided with an air shock that had a Mach number
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Fraure 16.  Caleulated acceleration of 2.7-mm-diam waterdrops
. arrflow behind shocks for three assumptions about the
waterdrop shape.

Mach number of the shock was 1.5. A, calculated with Cp=1.0 (solid disk);

B‘, calculated with Cp=0.48 (solid sphere); C, observed; D, calculated with
Cp, et=0.25 (perforated disk).

of 1.5. The values of the acceleration obtained for
this assumption in regard to the waterdrop comprise
curve A of figure 16.  Curve B of figure 16 is a graph
of the values of the acceleration of the waterdrop
obtained by use of eq (34) assuming that the water-
drop was a sphere of radius 7 as far as its drag coeffi-
cient ((',=0.48), additional mass, and area presented
to the flow are concerned, but a sphere of radius 7,
as far as its real mass is concerned. It can be seen
that the calculated acceleration-against-time curve,
assuming that the waterdrop is a sphere, closely
resembles the curve of the observed waterdrop
acceleration up to 100 usec after the air-shock-water-
drop collision but deviates sharply from the curve
of the observed values of the acceleration for longer
time intervals after the collision incident.

Inspection of eq (34) and (35) indicates that con-
sideration of the loss from the original mass of the
waterdrop in the form of mist will worsen rather than
improve the agreement of the calculated with the
observed values of the acceleration. It would appear
that somewhere between 100 and 200 usec after the
air-shock-waterdrop collision the drag force is effec-
tively reduced. Calculated values of the accelera-
tion found with use of eq (35) and with an effective
drag coefficient, ('}, ;. arbitrarily taken to be one-
fourth, were made and are plotted as curve D in
figure 16. It can be seen that the values of the
acceleration calculated with this arbitrary assump-
tion about the drag coefficient are in fair agreement

with the observed values of the acceleration for time
intervals of 200 and 300 wsec after the collision inei-
dent but do not fit the experimental curve for smaller
mtervals of time after the collision incident. It can
be deduced from the curves of figure 16 that a 2.7-
mm-diam waterdrop remains essentially a sphere up
to 100 usec after collision with an air shock that has
a Mach number of 1.5, but that somewhere between
100 and 200 wsec after the collision incident the drag
force on it is materially reduced for some reason.

It is useless to look for an explanation of this
behavior in the formation of a turbulent boundary
layer. A turbulent boundary layer could logically
be expected to form because of the irregularities that
are observed on the windward face of the waterdrop,
and a turbulent boundary layer does markedly reduce
the drag coeflicient of a sphere by causing the sepa-
ration of the flow to move further back from the
windward face. However, the waterdrop has flat-
tened to a disk and the presence of a turbulent
boundary layer does not affect the drag coeflicient
of a disk for which separation of the flow always
occurs at the periphery. It would appear that the
only explanation of the effective reduction of the drag
force is the presence of a central hole or even of
many holes in the disklike shape to which the water-
drop flattens. The presence of holes would reduce
the area of the disk that is presented to the airflow
and would therefore reduce the drag force.

To hypothesize that a central hole forms in the
water disk to which the waterdrop flattens would
relate the behavior of waterdrops in airstreams of
very high velocity to what has been observed at
lower velecities [15, 22]. See section 4.8. In view
of the fact that the waterdrop probably does not en-
large by flattening into a solid disk, but that it is
reduced to a water ring, the substantiation of Tay-
lor’s hypothesis of water loss by the stripping away
of a surface layer which then breaks up to form mist
(see section 4.4.b) should be reconsidered. An equa-
tion designed to trace the history of the waterdrop
to the point of complete reduction to mist would
have to take into account the loss of water from a
moving water boundary layer during the successive
stages when: (A) The original drop flattens to a disk
and the moving boundary layer spills off the pe-
riphery of the water disk, (B) the water disk is per-
forated to form a water ring and the moving boundary
layer spills off both the outer and inner periphery of
the ring, and finally, (C) the ring of water eventually
segments to form a chain of water beads and the
moving boundary layer formed on the windward face
of each of the beads spills off the periphery of the
bead. After the water ring has segmented to form
water beads, the total loss of water per unit time from
moving windward-face boundary layers would be the
sum of the losses per unit time from the aggregate of
the individual small water spheres. In his equation
to trace the history of the decay of the drop, Taylor
[7] has only considered case (A).

The loss of water from a waterdrop that simply
flattened into a coherent solid disk which did not
develop holes can be found for various intervals of
time after the air-shock-waterdrop collision from
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Taylor’s treatment. If = is taken to be the radius
of the solid water disk, then eq (30) is simply

2\ (v \Y8 —T [
V=[47r (;-) (7) \\Vw:l J U—W)'23edt  (36)

t
V:0.241f (U—W) 2p3i2d¢, (37)

The lower portion of the drift velocity curve given in
figure 15 is quite accurately represented by
W =Fkt? (38)

where £ is a constant which, from the empirical curve,
has the value of 210",  Using eq (31),

o AP 4
r=rotg -t (39)
where 7 is the radius of the water disk and », is the
radius of the original undeformed water sphere.
Substituting eq (38) and (39) into eq (37),

. . Ap 3/2
V=0.241 S [U—2X10% tﬁ]l/Q[roJrg——t?] dt.  (40)

P2l

The value of the right-hand side of eq (40) was found
for ¢ equal to 100, 200, and 300 wsec after the air-
shock-waterdrop collision, respectively, for the case
that the shock had a Mach number of 1.5. These
values were plotted against the time and the area
under the curve, that 1s, the total loss of volume of
the drop, up to 100, 200, and 300 usec after the
collision incident or time zero was found to be
1.69X 1074, 8.19X107%, and 18.89X10~* cm? re-
spectively.

The calculated acceleration at the end of 100
usec after the air-shock-waterdrop collision, assum-
ing that the waterdrop was still a sphere with Op,=
0.48, was found to be 3.74<10° ecm/sec? when no
account was taken of the loss of mass by efflux and
was found to be 3.83<10° em/sec’ when the loss
of mass by efflux at the periphery was subtracted
from the mass of the drop. The observed accelera-
tion at the end of this time interval after the col-
lision incident is 4.0 10° em/sec®. The acceleration
was also calculated for the time intervals of 200 and

TABLE 2.

300 psec after the air-shock-waterdrop collision.
For these intervals of time after the collision incident,
it was assumed that the waterdrop was a perforated
disk with an effective drag coeflicient O, ¢ =1/4
to compensate for the loss of area and for the reduc-
tion of the actual drag coefficient and of the addi-
tional mass. The calculated acceleration for 200
usec after the collision incident was found to be
6.94><10° em/sec® when no account was taken of
the loss of mass by efflux and was found to be 7.19
% 10° em/sec® when the loss of mass by efflux was
subtracted from the sum of the real mass and of the
additional mass (of a solid disk). The observed
acceleration at the end of this time interval after
the collision incident is 7.5X10° cm/sec’.  The
calculated acceleration for 300 usec after the collision
incident was found to be 7.34>10° ¢cm/sec* when no
account was taken of the loss of mass by efflux and
was found to be 7.96>10° em/sec* when the loss of
mass by efflux was subtracted from the sum of the
real mass and of the additional mass (of a solid disk).
The observed acceleration 300 usec after the collision
incident is 8.3<10° em/sec’. A summary of the
calculated values of the acceleration of a 2.7-mm-
diam waterdrop in the airflow behind a shock that
has a Mach number of 1.5 for various assumptions
in regard to the shape of the drop is given in table 2.
It would appear that the loss of mass by efflux is
too low at the end of 200 and of 300 wsec after the
air-shock-waterdrop collision because larger values
of this loss would improve the agreement between
the calculated and observed acceleration for each of
these time intervals. However, this is incorrect.
For the case that the water disk is really a water ring
having a width that would make the area ot the ring
equal to one-fourth the area of the disk,
mr*—wR?*=0.257r?

(41)
where 7 is the radius of the di§k and R is the radius
of the hole. Therefore, R=+/3 7/2~0.87 r, and the

width of the ring is 0.13 ». The volume loss with
time for a solid water disk from eq (30) is

WV oermfa-K[f ()]

at 2

where K is a coustant, f(£) is a function of the time,

Calculated acceleration for a 2.7-mm-diam waterdrop in the airflow behind a shock (My=1.5) with various assumplion

in regard to the shape assumed by the drop

Drag coefficient,
Cp

Acceleration, o

After 1X10~* sec

Cp=0.48, solid sphere
Cp=1solididiske == <" S oy T e eI
Cp=0.25, perforated disk-_________________
Cp=0.48, solid sphere with Taylor loss__
Cp=0.25, perforated disk with Taylor lo:
Observed acceleration

|
After 210~ sec | After 3X10~* sec i

cm/sec? cm/sec? cm/sec? ‘
- 3. 74108 | 1.34 X107 1.42X107 |
7. 78 X108 2. 78 X107 2.93X107 |
- ggxmg 6. 94 X108 7.34X108 |
3. 835108 i feaato e tn SNl s
,,,,,,,,,,,,,, | 7.19X108 7.96X106
4.0X108 ‘ 7.5X108 8. 3X108
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7 1s the radius of the solid water disk, and z is the
distance that the wind blows over the water. Be-
cause the wind will blow from the stagnation point
at the center of the disk to the periphery of the disk,
the volume loss per unit time from the boundary
layer that will form on the windward face of a solid
water disk in an airflow is

(fllt]=27rr-r”2-K[f(t)].

(43)
In the case of a water ring facing an airflow at 90°
incidence, the stagnation point is a stagnation ring
located at the center of the water ring. For the
case that the water ring has one-fourth the area of a
water disk of the same radius, the inner periphery is
is 27(0.877), the outer periphery is 277, and z is 0.13
7/2. Therefore, the volume loss with time for the
water ring is

‘%:1,87(27”-) (0250 K[ f(t)]

~0.5{2rr-r 2 K[f(£)]}. (44)
Per unit time, the loss of mass by efflux from a ring
that has one-fourth the area of a solid disk of the
same radius is only half of that which would occur
for the solid disk. The proper correction to bring
the calculated values of the acceleration of the water-
drop at the time intervals of 200 and 300 usec after
the air-shock-waterdrop collision into agreement with
the observed values should consist of a combination
of reduction of the loss of mass by efflux, reduction
of the real drag coefficient, and reduction of the
additional mass.

4.8. Breakup of the Intact Portion of the Drop

Taylor [20] has shown theoretically that when two
superposed fluids of. different densities are accelerated
in a direction perpendicular to their interface, this
surface is unstable if the acceleration is directed from
the lighter to the heavier fluid. Lewis (21] has
shown experimentally that a layer of water driven
by compressed air is unstable and that small dis-
turbances, introduced into its surface against which
the air is pressing to drive the liquid, grow so that
it appears as though fingers of air move through
the water layer. When these fingers reach the op-
posite surface of the water layer thin bubbles of
water blow out ahead of them.

The acceleration of a waterdrop in the high-velocity
airflow behind an air shock that has a Mach number
of 1.5 18 4X10°% em/sec? 100 usec after the air-shock-
waterdrop collision. Because this acceleration,
which is very much greater than the acceleration of
gravity, is perpendicular to the air-water interface,
and because the acceleration is directed from the
low-density air into the high-density water, the
accelerating waterdrop is unstable.

Lane [22] and Hanson, Domich, and Adams [15]
have observed that a waterdrop in a relatively low-

velocity airstream first flattens in a direction perpen-
dicular to that of the airflow and then develops a
bubble. The bubble blows out downstream from
the leeward face of the flattened waterdrop. In
some cases the bubble that forms bursts and the re-
maining walls of it retract to the supporting ring of
water that is left of the waterdrop. In other cases
a head of water gathers at the center of the bubble
and begins to move back toward and eventually
through the water ring that is left of the drop,
drawing the remaining walls of the bubble with it.
Because bubble formation is in agreement with what
Lewis [21] observed to happen in an unstable accel-
erating layer of liquid, this observation suggests the
possibility that a dimple, formed at the stagnation
point of the windward face of a waterdrop which is
unstable because it is in a very rapid state of acceler-
ation, may move through the drop like the fingers
of air deseribed by Lewis [21].  On reaching the lee-
ward face of the waterdrop, 1t would blow a bubble
precisely as the fingers of air observed by Lewis [21]
blew out bubbles when they reached the leeward
surface of the accelerating water layer. After the
bubble burst, the waterdrop would have been re-
duced to a ring of water. Lewis [21] found that in
the case where a layer of water was accelerated with-
out first mechanically introducing surface irregulari-
ties on it, the slight surface tension curvature at the
sides of the channel he used and other unavoidable
sources of small disturbances are sufficient to start
the instability. In this case, however, there is a
time lag before an appreciable top surface amplitude
oceurs.

In the present investigation, no evidence of bubble
formation was seen in any of the spark pictures that
were taken of fragmenting waterdrops in the high-
velocity airflows behind air shocks that had Mach
numbers of 1.3, 1.5, and 1.7. However, the time
interval between spark pictures was not made very
small se that it is possible that, if bubble formation
occurs very rapidly in these high-velocity airstreams,
it could have been missed.

Lewis [21] found that the velocity of penetration
of an air finger was given by the expression

v,=Ci[(g1—g)r]'

where () 1s a constant which for water has the value
of 1.11, ¢, is the acceleration of the water layer, ¢ is
the acceleration of gravity, and 7, is the radius of
curvature of the air finger. He states that this
equation, with C,=1.11, overestimates the value of
the velocity when 7, is small (~0.25 in.) and under-
estimates the value of the velocity when 7, is large
(~0.9 in.).

From the requirement that an effective drag co-
efficient of one-fourth is needed to obtain agreement
between calculated and observed acceleration of the
waterdrop at the end of the interval of 200 usec after
the air-shock-waterdrop collision, it would seem that
the bubble has formed and burst by this time if the
process of bubble formation actually occurs. From
eq(45) it is possible to estimate very roughly the

(45)
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time that would be required for an air finger, which
may form at the stagnation point of the windward
face, to pass through the thickness of the drop. The
average value of the acceleration of the waterdrop
in the airflow behind a shock that has a Mach number
of 1.5 over the first 200 usec after the air-shock-
waterdrop collision is 3.8 X 10° em/sec®. The original
radius of the waterdrop was 0.14 em and it can be
assumed that the radius of the air finger is about half
of this. If these values are substituted into eq(45),
the velocity of penetration is found to be 580 cm/sec.
From figure 9, picture 2, the thickness of the flatten-
ing waterdrop at close to 100 usec after the air-shock-
waterdrop collision is 0.208 ¢m so that the time re-
quired for penetration would be about 360 usec.
This is of the right order of magnitude but is too
large because the requirement of an effective drag
coefficient of one-fourth is needed to obtain agree-
ment between the calculated and observed value of
the acceleration, which was taken to be evidence
that a hole has formed in the water disk, 200 usec
after the collision. However, the roughness of the
assumption that the radius of curvature of the air
finger is about half the radius of the original water-
drop could account for the discrepancy.

If a water ring forms, its diameter should remain
constant because the water ring is subject to the
check of surface tension and because there is no
longer a pressure difference acting between the
centers of the faces and the periphery of the water
ring that would tend to drive it to larger size. This
constant diameter is precisely what is observed in
the plateau region in the time interval that extends
from about 220 usec to about 300 usec in the curves
of figure 5. In the pictures obtained by Hanson,
Domich, and Adams [15] of the fragmentation of
waterdrops in lower velocity airflows, it can be seen
that the water ring itself eventually segments into a
chain of water beads. It can be assumed that this
breakup of the water ring has occurred at the end of
the plateau region in the curves of figure 5, that is,
300 psec after the air-shock-waterdrop collision,
because after this there is a further increase of the
apparent diameter of the waterdrop perpendicular
to the direction of the airflow. This further increase
in the diameter of the structure that remains of the
waterdrop could be accounted for as a drifting apart
of the water beads into which the ring of water that
remains of the drop has broken.

For the case of shocks having Mach numbers of
1.3 and 1.5, for which sufficient data exist to identify
the plateau region, the formation of the plateau
seems to occur in about the same time interval,
namely, from about 220 to about 300 usec after the
air-shock-waterdrop collision. It seems reasonable
to think that the plateau should be displaced to
lower values of the time as the air-shock velocity is
increased because the acceleration of the waterdrop
is higher as the velocity of the airflow about it is
higher, and the time required to pierce the waterdrop
with an air finger to form a water ring is proportional
to its acceleration. More data than those presented
here are needed. It will require taking pictues of

fragmenting waterdrops with the camera arranged to
look down the length of the shock tube rather than
to look through it from the side to determine what
actually does occur.

The importance of knowing that segmentation of
the water ring occurs at the end of 300 usec after the
air-shock-waterdrop collision and of knowing whether
or not it occurs sooner as the shock velocity is in-
creased is the bearing that this information has on
the high-speed-rain-erosion problem. Segmentation
of the ring of water that remains of the original
waterdrop into small water beads would represent a
large reduction of its ability to produce erosion dam-
age on striking a solid surface.

It is noteworthy that the small waterdrop started
to drift sooner than the large waterdrop. From
inspection of either eq (33) or of eq (34), 1t can be
seen that a small waterdrop has a greater acceleration
than a large waterdrop in airstreams of the same
velocity. It is evident from eq (45), therefore, that
the small waterdrop will be pierced to form a water
ring sooner than a large waterdrop will. The 1.4-
mm-diam waterdrop should be expected, therefore,
to become unstable and to undergo ring formation
and segmentation before the 2.7-mm-diam waterdrop
does.

4.9. Limitations of the Observations

It is noteworthy that Hanson, Domich, and Adams
[15], using a 0.3-mm-diam drop of methyl alcohol
and an airflow having a velocity of 0.695>10*
cm/sec, found that the drop of alcohol had reacted
to the airflow in a marked way at the end of only 10
usec; the drop of alcohol was flattened against the
wind, streamers of /iquid were pouring off the periph-
ery of it, and a pointed structure that was oriented
in the direction from which the wind was coming
had developed in the center of the windward face
of it. 'This evidence indicates that the fragmentation
mechanism is dependent on the drop diameter, the
velocity of the airflow, and the density, surface
tension, and viscosity of the liquid of the drop.
The results that were obtained and the conclusions
that have been drawn in the study that is reported
here apply only to drops of water that have a diam-
eter in the range of 1.4 to 2.7 mm and that disin-
tegrate in airstreams, the velocities of which are in
the range of 1.52X10* to 3.16X10* cm/sec. To ex-
trapolate the conclusions to the fragmentation of
liquid drops under conditions for which the values of
the variables are outside the range for which the
observations of this study were made may result in
spurious inferences because it appears that not only
the rate of the fragmentation but also the very mech-
anism by which 1t occurs is strongly dependent on
these variables. The mechanism by which the frag-
mentation occurs for various sized drops of liquids
of different properties in airstreams of different veloc-
ities has many aspects of basic interest. Much more
experimental work will be required to show the cor-
rectinterdependence of the variables that are involved.
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5. Importance of the Fragmentation Time of
Waterdrops to the Problem of Collision
With Rain of Objects Moving at Super-
sonic Velocities

A blunt object moving through air at supersonic
velocity is accompanied by a shock wave that is
separated from the leading surface of the object by
a zone in which air is moving at high velocity ahead
of the object. The width of the zone of separation
between the shock wave and the leading surface of
the object that is producing it depends on the radius
of curvature of the object and on the velocity at
which it 1s moving. [t was pointed out earlier that
the existence of this phenomenon might prove to
be of considerable importance to the high-speed
rain-erosion problem for objects moving at super-
sonic velocities. If a waterdrop would be shattered
under the conditions that exist in the zone by which
a shock is separated from the leading surface of the
object that is producing it, and if this fragmentation
of the waterdrop would have time to occur before
the surface of the object collided with the water-
drop, the erosion problem might be much less serious
at supersonic velocities than at subsonic velocities.
It seemed possible that it might be bypassed entirely.
It was to determine whether or not such an escape
from the problem of rain erosion exists at super-
sonic velocities that the present investigation of
the time required for the fragmentation of water-
drops was undertaken.

The distance by which the detached shock, formed
in front of a sphere that is moving at supersonic
velocity, is separated from the sphere that is pro-
ducing 1t, is plotted against the Mach number at
which the sphere is moving for four sphere diameters
in figure 17. The time required to traverse, at the
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Frcure 17.

.l'\, 4-ft-diam sphere; B, 3-ft-diam sphere; C, 2-ft-diam sphere; D, 1-ft-diam
sphere.

Shock detachment distance for spheres.

sphere velocity itself, the distance by which the
shock is separated from the sphere is plotted against
the Mach number at which the sphere is moving for
four sphere diameters in figure 18. The velocity of
the sphere is the same as the velocity of the shock.
The data used to produce these curves are those of
Heybey [23] for shocks having Mach numbers of 2
and 3 and those given by Shapiro [24] for shocks
having Mach numbers less than 2. See table 3.

TaBLE 3. Shock-detachment distance, ds,
for various shock velocities

Shock velocity ds/sphere radius = |

1.48
\
\
|
|

s See references [23, 24].

If a sphere moving at a Mach number of 1.3 were
to encounter rain, the detached shock preceding it,
and the zone of separation between this shock and
the sphere, would run over the raindrops. From the
graph of figure 18, the time that the raindrops would
have to become completely fragmented so as not to
damage the sphere at all on colliding with the lead-
ing surface of it is 345 wsec if the sphere diameter is
1 ft, 670 wsec if the sphere diameter is 2 ft, and 1,025
usec if the sphere diameter is 3 ft. The stage of
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Ficure 18.  Time during which fragmentation must occur to
prevent a waterdrop-sphere collision.

A, 4-ft-diam sphere; B, 3-ft-diam sphere; C, 2-ft-diam sphere; D, l-ft-diam
sphere. Observed time required to reduce a small waterdrop to a trace of mist is
indicated with triangular points.
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disintegration that a 2.7-mm-diam waterdrop would
have reached at the end of the protection time af-
forded by a 1-ft-diam sphere moving at a Mach
number of 1.3 is between that shown in pictures 2
and 3 of figure 4. The stage of disintegration that
a 2.7-mm-diam waterdrop would have reached at the
end of the protection time afforded by a 2-ft-diam
sphere moving at a Mach number of 1.3 is between
that shown in pictures 5 and 6 of figure 4. That is,
the waterdrop residues shown in figure 4, pictures 2
and 3, and those shown in figure 4, pictures 5 and 6,
are about representative of the waterdrop fragments
that would strike the leading surface of a 1-ft-, and
of a 2-ft-diam sphere that was moving at a Mach
number of 1.3, respectively. It can be seen that
the waterdrop is not reduced completely to a trace
of mist at the end of the allowed times when the
Mach number of the shock is 1.3. However, from
a comparison of the degree of fragmentation of 1.4-
mm-diam waterdrops, it appears that this condition
may be realized within the protection time afforded
by a 4-ft-diam sphere, which on extrapolation of
curve A of figure 18, might be as much as 1,200
usec.

Similarly, if the Mach number of the sphere were
1.5 when it intercepted rain, the time interval in
which the raindrops must fragment if they are not
to damage the leading surface of the sphere when
they collide with it is 200 usec for a 1-ft-diam sphere,
390 psec for a 2-ft-diam sphere, 600 usec for a 3-ft-
diam sphere, and 780 usec for a 4-ft-diam sphere.
By inspection of figures 10 and 11 it can be seen
that both 3-ft- and 4-ft-diam spheres would be com-
pletely protected from 1.4-mm-diam waterdrops and
that the 4-ft-diam sphere would be fairly well pro-
tected against 2.7-mm-diam waterdrops.

Finally, if the sphere were moving at a Mach
number of 1.7 when it intercepted rain, the time
interval in which the waterdrops must disintegrate
if they are not to damage the leading surface of the
sphere when they collide with it is 120 psec for a
1-ft-diam sphere, 245 psec for a 2-ft-diam sphere, 365
psec for a 3-ft-diam sphere, and 495 usec for a 4-ft-
diam sphere. From the appearance of waterdrop
residues seen in spark pictures when the Mach num-
ber of the shock was 1.7, it seems probable that a
4-ft-diam sphere would be completely protected from
1.4-mm-diam waterdrops and that it may be fairly
well protected from 2.7-mm-diam waterdrops. See
figure 12.

'I:hg sphere diameters required in order to provide
sufficiently long protection times to reduce 1.4-mm-
diam and 2.7-mm-diam waterdrops to mist are listed
in table 4 for the case that the sphere is moving at
a Mach number of 1.3, 1.5, and 1.7. How much
damage will be done by the impingement of water-
drop fragments on spheres having diameters smaller
than the minimum required for complete protection
can only be a matter for conjecture until an actual
test 1s made. Certainly, the damage will be found
to be very much less severe than would be expected
if the entire waterdrop should impinge as a spherical
projectile at these velocities.

TABLE 4. Sphere diameters that will afford suffi-
ciently long protection time to reduce waterdrops
of two sizes to mist

|

| Minimum sphere
diameter required
so that water mist
only will impinge
on the leading sur-

‘ face of the sphere

M.=13 1t
1.4-mm waterdrop diameter. __ 4
2.7-mm waterdrop diameter____| >>4

M:=1.5 |

1.4-mm waterdrop diameter____

Velocity of shock or of sphere

3
S4

4 |
St |

A 2.7-mm waterdrop diameter____
M=1.7
1.4-mm waterdrop diameter.___
2.7-mm waterdrop diameter.___

It is important to know whether the degree of frag-
mentation reached at the end of the protection time
afforded by any sphere diameter is greater or less as
the velocity of the shock is increased. For the case
of the 1-ft-diam sphere i1t is a question of evaluating
the degree of waterdrop fragmentation 345 usec after
collision with a shock moving at a Mach number of
1.3 (fig. 4), 200 psec after collision with a shock hav-
ing a Mach number of 1.5 (fig. 10), and 120 usec after
collision with a shock moving at a Mach number of
1.7 (fig. 12). For the case of the 2-ft-diam sphere it
is a question of comparing the extent of waterdrop
fragmentation 670 usec after collision with a shock
moving at a Mach number of 1.3, 390 usec after
collision with a shock moving at a Mach number of
1.5, and 245 usec after collision with a shock moving
at a Mach number of 1.7. For the case of the 3-ft-
diam sphere, comparison must be made of the ob-
served fragmentation 1,025 usec after collision with a
shock moving at a Mach number of 1.3, 600 usec after
collision with a shock moving at a Mach number of
1.5, and 365 usec after collision with a shock moving
at a Mach number of 1.7. From a comparison of
the degree of fragmentation observed at approxi-
mately the end of the allowed protection time for
three sphere diameters at each of the three air shock
velocities, it appears that the degree of fragmentation
of waterdrops that exist within the zone of detach-
ment within the protection time afforded by a de-
tached shock will be found to be either about com-
parable for shocks of different velocities or may be
somewhat greater the higher the velocity of the shock.

Finally, it may be asked whether there is a basis
for assuming that at some much higher velocity than
any used in this investigation the waterdrop will be
completely reduced to a trace of mist within the
protection time available for 1-ft- or 2-ft-diam spheres
before the residue of the drop will strike the leading
surface of the sphere at that velocity. The data at
hand are not sufficient to answer this question. It
is not even known that it is necessary to reduce the
waterdrop completely to mist before the damage
done by it on impingement will be negligible. A
rough answer can be attempted on the assumption
that complete reduction to mist is necessary. Be-
cause only the 1.4-mm-diam waterdrops were com-
pletely reduced to mist after collision with shocks
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moving with Mach numbers of 1.3, 1.5, and 1.7
within the time intervals that were investigated, an
answer can only be attempted for waterdrops of this
size. The approximate time required to reduce a
1.4-mm-diam waterdrop to a trail of mist is plotted
in figure 18 against the Mach number of the shock
with which it collided. The arrow drawn down from
the time required when the shock had a Mach num-
ber of 1.7 indicates that it may be lower than 574
wsec. The arrow drawn upward from the point on
the graph for the time required when the shock had a
Mach number of 1.3 indicates that the time actually
required to reduce a 1.4-mm-diam waterdrop to mist
is greater than 901 psec. The fewness of the points
and the ambiguity in them leave unanswered the
question as to whether at some high Mach number of
the shock the curve on which these three points lie
will ever intersect and drop below curve C or curve D
of figure 18. It is conceivable that at a Mach num-
ber of the shock greater than 3 this condition may be
realized, but further observations at Mach numbers
of the shock higher than 1.7 will be needed to justify
such an extrapolation.

Even if it is found that there is no high Mach
number of the shock at which 1.4-mm-diam water-
drops are completely reduced to mist before they
impinge against spheres of small diameters, there is
another means which may be used to au(ompllsh
this. By proper design, the detached shock wave
produced by a blunt object moving through air at
supersonic velocity can be pushed out to increase
the detachment distance and hence to increase the
time during which fragmentation of waterdrops may
oceur before they impinge against the leading sur-
face of the object. Construction of a retractable
cowl around a sphere, for example, would have this
effect, and the increased aerodynamic drag need
only be a disadvantage during actual flight llnmwh

rain. It appears that rec ourse to such a device will

bypass the high-speed rain-erosion problem com-
pletely at supersonic velocities. Use of such a device
to insure complete immunity from rain-erosion dam-
age at supersonic velocities could only be justified,
how ever, if the aerodynamic disadvantage is pref-
erable to the impaired performance of pointed
radomes which are only slightly vulnerable to rain
erosion attack.

The author thanks J. M. Burgers, Z. 1. Slawsky,
W. H. Heybey, Edward F. bmlley, Adolf H. Lﬁll"‘(‘
Chan Mou Tchen, and John Mandel for contribu-
tions to theoretical aspects of the problem and Ben
Crapo, Harriet A. Baker, and Robert R. Pizer for
assistance with the ()])tl(‘b electronics, and photog-
raphy.

6. Appendix A. Loss of Water Per Unit
Time From the Moving Boundary Layer °

Consider that air (sub-a notation) in the airflow
behind an air shock is moving at velocity U/, over the

6 With minor changes, the treatment presented here is that given by Taylor in
reference [7].

water (sub-w notation) of the windward face of a
waterdrop. A boundary layer is set up in the water
and in the air on either side of the interface. The
velocity in the boundary layer is w. In the water
boundary layer, u=u,U,; in the air boundary layer,
wu=1u,l5; u, and u, are dimensionless coeflicients.
At the interface, u,=u,; at some depth below the
surface, u,=0; at some beight above the air-water
interface, u,—=1. If the z-axis lies in the air-water
mterface of the windward face of the waterdrop, and
the y-axis, perpendicular to it, is positive both up-
stream in the air and downstream in the water, the
boundary layer velocities may be expressed as

ua:u/UQZ —Ag—y/(aaﬁ)

Up=2ufUy=(1—A)e~ ¥/ (xev?)

where A, «,, and «, are quantities that must be de-
termined. This choice satisfies the boundary con-
ditions that as y—>w, u,—1, and wu,—0, and that
for y=0, u,=u,. This choice also satisfies Karman’s
boundary layer momentum equations. The Kar-
man equation for air is

d (" ., ou
7). wu(U 2—*11,)([1/*—1/,,[0—1/]”:

dr

(A1)

where » is the kinematic viscosity
Dividing both sides by 0V,? gives the form

i Caull, w W ﬁu/l'g) o
az ), 1'2[‘ Ii_,:l”-”‘" UL oy oo 0

=V %y =y
41(’“” \.I: Va a __411(/ ®q YT

[, oy

or
L
(I.I’J[;

Performance of the indicated operations produces
the result

1» g YT

dy=—

y=0

(A3)

(A4)

The Karman equation for the water is

d (., __ Tou i
(I;I?Ju W dy=—vy, ay:l,,=o (A5)

Dividing through by 7, gives the form

d © T\2 vy [ O T \
(I'Jﬂ[) (w/U,)? dy= UQI:by (u/[,/g)]”: (A6)
or
=2 —I/
(“f (1— A)2e™ Ve dy—— = O (1—Aye= ¥ | .
=0
(A7)
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Performance of the indicated operations produces
the result
4 Ty

% =7, T—A) Sl

The condition of continuity of tangential stress, [,

III).[)()SE:S lrlle C()“dltl()ll tllat/
[a? (lu2> ly—-i
./

e[ o))
)]
= pgVa 1 = ]

=
:'—Pu'le:aayi a“x :l

L—Y—

1—A)
== PaV a[a \/—]41710 Vw ( u\/x:l (Ag)
From eq (AS),
A=1—[4r,/(a,’U3)], (A10)

and by substitution of the expression for (1—A4) in
eq (A9)
ik \/x

PuwVw 4v,
U2 Ay [aw2 U2] (All)
Similarly from eq (A4)
A=2—[4n,/(aT5)] (A12)
and by substituting eq (A12) into eq (A9)
F\/E__PaVa ooy 4v, i

Equating the expression for A given by eq (A10)
and (A12)
4y, 4y,

= —1
(04 w2U2 03 a2U2

(A14)

and by equating the expressions for I z/U, given
by eq (A11) and (A13)

PuwVw vy __Pd¥a [ 4v,
Ay aw2U2 g Oéa2U

From eq (A14) and (A15) by use of the condition
that when »,/(a,?Us,) 1s small, v,/(2U,) =1/4, it can

be shown that
2/3 1/3
a,,ﬁbz 4<pu> (w)

Substituting the values of p,, », for the airstream
flowing behind an air shock that has a Mach number
of 1.5 (see table 1) and the values of p,=0.998, »,—

(A15)

(A16)

1.6 WATER

IS S |

|

2.0 | | | \ | | I | [\

Ficure 19.  Boundary layers in air and water under the condi-
tions that exist in the airstream flowing behind a shock.

Mach number of the air shock is 1.5.

0.01, produces the result that v,/(a,*l/,) ~0.009187,
from which «,=10.43 (v,/[5)'*. From eq (A14) and
the value of v,/(a,?U5), it 1s found that »,/(a,*U,) =
0.2592, and a,=1.964 (v,/17,)*%. Using these expres-
sions for «, and a,, values of the dimensionless
quotient of the boundary layer velocity divided by
the free-stream velocity, u/l/,, were calculated from
the exponential expressions for u, and u, that were
chosen initially. The kinematic viscosity of the air-
flow behind an air shock that has a Mach number
of 1.5 was used for », in the expression for «,. The
calculated values of u/U; are plotted in figure 19.

The efflux of water out of the boundary layer per
unit length of periphery when the mass of water
itself has velocity W is

i =1
Jo Ur=W) (1= Aoy = (Uy—W) (1— Aoy
(A17)

By use of eq (A10) and of eq (A16) and by multi-
plying by the periphery, 2, the total efflux or total
loss of volume per unit time is

e ()

7. Appendix B. Flattening of the Water-
drop With Time

The sphere of liquid is located at the origin of a
rectangular coordinate system in which the z-axis
runs parallel to the direction of the airflow in the
shock tube. The stagnation pressure exists at
z= =7 where 7 is the radius of the liquid sphere. It

—W\ VM\J' (AlS)

7 This solution of the time dependence of the flattening of a waterdrop in an air
flow was developed by J. M. Burgers.
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is assumed that the liquid in the sphere is incompres-
sible and that motion throughout the whole volume
of the sphere as a result of the pressure distribution
begins instantaneously.

The continuity equation is

ow
oz

ou , o

oz oy Dz

(B1)

where u, », w are the velocities along the -,
z-axis, respectively.
tion

Y-, and
To satisfy the continuity equa-
B2)

u=—2bx, v="by, w=bz,

where b is a function of the time that must be

determined. Also, because
__ 9% 9 . _9¢
U= aJ} V= ay; == 02’ (B3)

where ¢ is the velocity potential, it follows that ®

o=b| —a+5uy 2| (B4)
2 2
The equation of motion is
P=—"r3 = +constant (B5)

where p is the density of the liquid and ¢ i1s the time.
The term 3 p (u*+42°+w?) is neglected as small for
short times after the air-shock-waterdrop collision.
Applying the equation of motion at the points z= +r
on the surface of the sphere

Pp=pr* %%—constant (B6)

and applying the equation at the points y= 47,
z= 47 on the surface of the sphere

1

Dr:="3 pr [ +con%tanl (B7)
The pressure difference is
Ap=P;—Dy.: ;pﬂﬁ (BS)
and therefore
ﬁ iﬁ (B9)

If the pressure difference is independent of the time,

2 A
L (B10)
5 pr?
The outward velocity of liauid at the equator of the
sphere is given by v=by, w=bz from eq (B2), and at
8 The solution given is not unique but consideration of the general case shows

that an equation of the form of eq (B9) should be found except that the dimen-
sionless coefficient 2/3 may be different.

the points where y= +r, z=4r,
2Ap
v=w=z—- s t- (B11)

The outward displacement ¢ at the points y= -+,

z2=47r1s
2Apf
= tdt
‘ 3 pr 0

_1Ap

i Bi2

3 pr ( )

The increase in the diameter of the waterdrop per-
pendicular to the direction of the airflow is 2 d.

8. Appendix C. Total Force Acting on the
Waterdrop

Consider the differential area to be a narrow band
around the sphere. See inset, figure 14, A. The
width of the differential area is the arc subtended
by the angle d6 and is 7d6 where 7 is the radius of the
sphere. The radius of the band of differential area
is 7 sin 6, the circumference of the band is 277 sin
6, and the area of the band is 277?sin 6 d 6. Because
the pressure curve of figure 14, B is quite accurately
given by % p, (/5% (1—2 sin?6) up to 60°, the horizontal
component of the force on the differential area at
any angle 6 is ¥ p.U,* (1—2 sin® 0) (cos ), and the
differential force, dFy, is

dfg— p2U5? (1—2 sin? ) (cos 0) (2m? sin 6df). (C1)
Hence, the force, Fjy, is
0=n/3 B LE /3
F =arip,Uj? [f sin 6 cos 0(/0—2J sin® 6 cos Bde:l;
=0 0 0
(C2)
0=m/3 12 1n4 T/3
F =2, Uy 8711170_2 sin® f , (C3)
=0 2 4 0
=0.094 7"/'2[)2 U22. (04)

The horizontal component of the force on the
differential clemont in the region 7/3<6<7 is given
by —0.4(3 pUy%) cos 6, so the force on this part
of the sphere is given by

O=m T
F =—0.4 <% P2 Uf)f 2mr? sin 0 cos 6df  (C5)
/3

0=mx/3

sin? g |
D)

=—0.4 7|'I‘2p2 L’Yzz (Cﬁ)

/3

:0.15 71'7'2/)2 U22. (C?)

Therefore, the total force on the sphere is 0.244 772
P2U22-
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