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Stress-Strain Relation of Pure-Gum Rubber Vulcanizates 
in Compression and Tension 

Lawrence A . Wood 

The stress-strain curve in t ension for a typical pure-gum rubber vulcanizate after a 
given period of creep, according to Martin , Roth, and Stiehler, can be represented by an 
empirical equation 

F = M (L -l- L-2)expA(L - L -I) 

where F is the stress based on t he original-cross sectional area, and L is the ratio of s tressed 
t o unstressed length, M is the slope of the stress-strain curve at L = 1 and A. normally has 
a value close to 0.38. The present paper shows by an examination of data published by 
Sheppard and Clapson, Treloar, and Rivlin and Saunders that the equation is also valid 
in the region of compress ion for values of L as small as 0.5 (50 percent compression). The 
features of the empirical equation are discussed, and comparisons are made with the equation 
predicted by the statistical theory of rubber elasticity and the equation derived by assuming 
I-l ooke's law for the stressed cross seeLion . The consequ ences of t he validity of the empirical 
equation ill terms of the Moon ey-Rivlin presentation of t he strain energy function are 
pointed out. The equat ion predicted by the statistical theory represents observed data 
very well in t h e compression region from L = 0.5 to L = 1.0. The :'I100ney equation is 
approximately valid from .1, = 1.5 to L = 3.5. Neither of these equations is sati<; factory in 
the importan t intermediate region from L = 1.0 to L = 1.5. The empirical eq ll!l,tioll repre­
sents the observed data over all three of these regions. It is concluded that Young'ti 
modulus N1 can best be obtained frol11 the intercept of a plot of log F /(L - I - L - 2) against 
(L - L - I). ForO.75< L < 2.00 i t is thoroughly satisfactory to determi ne ilf as the inte rcept 
of a plot of F / (L - l - L - 2) against (L - 1). 

1. Introduction 1.0 ,-----.,----,----,----,------, 

The stress-elongation curve of a Lypical pure-gum 
rubber vulcanizate aILer a given period of creep , 

--" 

according Lo recent wo),k of 11artin, Roth, and 01--.--------/ 

Stiehler [1]/ can bc 1'eprescnLed up Lo 200 percent 
elongation 01' more by an empirical equation 

(1) 

where F is the stress based on the original C1'OSS­

sectional area, L is the ratio of stressed lengoth to 
unstressed length, and ).\.1 and A are constants. lt1 
is Young's modulus, the slope of t he sLress-clongation 
curve at zero stress (where L = l ). A normally has 
a value close to 0.38. 

A graph of FIN! against L as computed from eq 
(1) is given by the solid line of figure 1, reproduced 
from a recent review [2] . Although the range of 
condiLions of applicability of eq (1) has not been 
thoroughly explored, Martin, Roth, and Stiehler [1] 
showed it to be valid for the fu'st extension of pure­
gum vulcanizates of natural rubber, GR-S, GR- I , 
and Neoprene over a 10-fold range of Limes of vul­
canization and for consLan L Limes of creep from 1 to 
10,000 min, It was found noL applicable to vulcan­
izatcs conLaining carbon black or other fillers. 

The iuvesLigations of MaL'tin, Roth, and SLiehler 
were limited to specimens in simple tension. Con­
sequently it was consid ered Lo be of interest to 
deLermine wheLherLbe same empirical equation can 
be applied Lo the compression region. The present 
paper shows from data already published by 
Sheppard and Clapson [3], Treloar [4], and Rivlin 
and Saunders [5], that, until the compression 

, F igures in brackets indicate the literature references at the end of this paper. 
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FIGURE 1. R elation between st1"eSS-mod1tlus mtio F / ill and 
length mlio L . 

Solid line: empiri cal function (L-'-L-2) cxp 0.38 (L-L-'). Dashed line: sta­
t istical t heory function (1/3) (L-L -2) , 

exceeds about 50 percent (L = 0.50 ), Lhe equation 
is valid with the same co nstants that apply in the 
extension region. 

2 . Compression and Tension Data 

The friction that arises wh en compressional forces 
arc applied to a flat specimen is a major source of 
experimental difficulty. I t was poin ted out years 
ago by Sheppard and Clapson [3] Lhat a system 
fully equivalent to fricLioll-frce compression with 
freedom of displacement normal Lo the compressive 
force is obtained by subjecting a sheet to tv".o­
dimensional stresses in the plane of the sheet while 
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FIGURE 2. Determination of constants in empirical equation 
from plot suggested by eq (1 ). 

X. Dat3 from figure 10 or Sheppard and Olapson [3]; 0. data from figure 9 or 
Sheppard and Clapson [3]. 

allowing freedom of displacement. in the direct~on 
normal to the sheet. Data obtamed by studYlllg 
the relation between deformation and inflation 
pressure in balloons were presented ~y these auth~rs. 
Values obtained on both compreSSlOn and tenSIOn 
shown in figures 9 and 10 of the paper by Sheppard 
and Clapson [3] have been read from the figur~s 
to obtain log F/L-l _ L-2) and (L- I:-~) , the quantI­
ties necessary for checkmg the vl;1hdIty.of eq (1 ). 
They have been plotted as eo-ordmates m figur e 2 
of the present paper. It has already been pointed 
out [1] that such a plot in the tension region should 
yield a straight line with A as slope and log M 
as intercept. The linearity of the I?lot shown here 
covering both compression and tenslOn seems qUlte 
satisfactory. Sheppard and Clapson themselves 
have called attention to the probable inaccuracy 
of the two points obtained at the smallest value 
of compression (where L = 0.8 ~nd 0.9). ~he valu~s 
of A obtained from the plot III figme 2 IS 0.36 III 

close agreement with values found by Martin,. Roth, 
and Stiehler [1]. The value for log 11.1 of 0.91, 
corresponding to a Young's modulus of 8.1 kg/cm2, 
is quite reasonable for a "cold-cure~". balloon 
rubber. It is presumed that the vulcamzmg agent 
was sulfur chloride. 

The upper curve of figure 3 represents data from 
the work of Treloar [4], who made measmements 
similar to those already described but used a 
vulcanizate compounded with 8 parts of sulfur per 
hundred parts of rubber. The data in the com­
pression region are taken from Treloar's. table. 1. 
For the points correspondmg to compressIOn ratlOs 
of 0.80, 0.77, and 0.69 the values of the equivalent 
compressive force were taken as 3.39, 3.89, and 
5.82 kg/cm2, respectively, after correcting an apparel!t 
typographical error in Treloar's table 1. Values m 
the tension region were read from figures 3 and 5 of 
Treloar's paper. 

For values of L greater than 0.5 the experimental 
points lie quite close to the straight line drawn in 
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FIGURE 3. Determination of constants in empirical equation 
from plot suggested by eq (1). 

• • Data or Treloar [4]. X. Data of P.ivlin and Saunders [5]. 

figure 3, with the exc~ption of the ,Point f~n' L= 0 .9~. 
The value of A obtamed from thIS plot IS 0.394, m 
satisfactory agreement with previous work [1]. The 
value for log 11.1 of 1.1 corresponds to a Young's 
modulus of 12.7 kg/cm2, nearly the same as the value, 
12.0 kg/cm2, tal.mn by. Treloar to represent the data 
in the compreSSlOn reglOn and up to about 30 percent 
elongation. 

The lower curve of figure 3 represents data from 
the work of Rivlin and Saunders [51, whose measure­
ments were similar to those of Treloar. The rubber 
was a conventional sulfur vulcanizate accelerat~d 
with benzothiazyl disulfide (MBTS). The data m 
the compression region were taken fr?m table 8 ?f 
the paper by Rivlin and Saunders, while the data I.n 
the tension region were read from figure 14 of ~helr 
paper. Values of A = 0.382 and1\d= 11.1 kg/cm are 
obtained from figure 3. . . 

It will be noted that in 2 of the 3 sets of data m 
figures 2 and 3, the v~lues ?f the ordinate lie increa~­
ingly above the straight Ime as L aI?proaches 1 1.11 
the compression region. It is po~slble. that thiS 
represents a significant. charactenstlc or It may be 
that it was due to reSIdual stresses or other non­
isotropic phenomena. Martin, Roth, .and Stiehler [1] 
also reported instances of apparent hIgh values near 
L = 1 for certain vulcanizates in the tension region. 
However, in the present pap~r w.e s~an. negleet . the 
possibility that the observatIOn IS slgmficant s~nce 
better data in the region near L = 1 would be reqUIred 
to establish a definite conclusion of this sort. 

It is concluded from figures 2 and 3 that eq (1) 
provides a satisfactory repI:esentation of the stress­
strain relation for compreSSIOns less than 50 :percent 
(i. e., for L greater tha,n 0.5 ), and for elongatIOns up 
to about 250 percent (1. e. , L = 3.5). 

3. Features of the Empirical Equa tion 

The solid line in figure 1, depicting the v!1lues of 
F/M computed from eq (1) ~vith A~ 0.38, mcludes 
both compression and tenSIOn regIOns. The de-
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seen ding portion, beginning at the origin , of course 
has 110 physical significance. A minimum value of 
F jllJ= -3.3 at L = O.IS i followed by the rising 
pottion shown. A point of innection (corresponding 
to a maximum slope) at L = 0.26 is followed by a 
steady decrease of slope, passing through unit slope 
at L = 1, until another point of inOecLion (correspond­
ing to a minimum slope) is reached at L = 2.91. As 
pointed out in the preceding sections, the equation 
represents the experimental data reasonably well 
over the interval from L = 0.5 to about L = 3.5. 

One can find two approximations to eq (1) that arc 
useful over limited regions. The exponential term 
in eq (1) can be expan ded in a power series. If 
only the first two terms of the serie arc retained 
and a reciprocal term is approximated [1], the fol­
lowing equation is obtained: 

or 

F/L1J= 2A- (4A - l)L- l- (1 - 2A)L-2. (2b) 

For A = 0.38 this becomes 

F jM = 0.76-0.52L- l- 0.24L-2. (3) 

This equation approximates eq (1) within about 
0.5 percent over the range from L = 0.75 to L = 2.0. 
The compensating effect of some pairs of terms 
neglected in the expansions makes the approxima­
tion better than would be expected at fU'st glance. 

In the range above L = 2 the empirical function is 
nearly linear over considerable region. A useful 
appro:\.imation here is 

F/1I1 = 0.164L+ 0 .125. (4) 

Values computed from eq (4) difrer from values given 
byeq (1) by less than 4 percent from L = 2 to L = 4.5. 
The upper limit given is above the normal range of 
validity of eq (1). 

4 . Equation Predicted by Statistical Theory 

The dashed line in figure 1 shows the function 

F jN1 = (1/3) (L- L -2) (5) 

predicted by the statistical theory of rubber elas­
ticity [2, 6, 7] for the entropy component of thc 
"equilibrium" stress of an ideal network. The 
agreemen t between the two functions in the region 
between L = 0.5 and L = 1 is quite striking. Cal­
culation of numerical values hows that the dillerence 
is less than 4 percent throughout this interval. 
Since the precision of the available compre sion 
data is no better than this figure, no statement can 
be made a to which function conform better to 
experimental observations in this region. 

This agreement, together with the conclusion of 
Treloar [4] that eq (5) adequately represents his 
experimental data in this region, confirms the 

validity of eq (1) here, as already demonstrated 
directly by figures 2 and 3. Recent direct measure­
ments of compression of specimens 'with lubricated 
surfaces by Forster [8] have also shown conformity 
to eq (5) or eq (1) from L = 0.67 to L = l. 

In the region of tension, however, t he difference 
between Lhe two functions becomes steadily greater as 
Lincreases. The value of (1/3) (L -L-2) is about 4 
percent g reater than that of t he empirical function 
at L = 1.15, about 32 percent greater at L = 2.0, and 
about 57 percent greater at L = 3.0. These differ­
ences preclude the usc of eq (5) for values of Labove 
about 1.15. The slope of the graph of (1 /3) (L - L-2) 
against L approaches 0.333 as L is increased; th e slope 
of a similar graph of the empirical function is 0.164 
for a considerable region beyond L = 2, as shown by 
eq (4) . 

Equation (5) is intended to apply to the entropy 
componcnt of the stress of an iclealnetwork of per­
manen t cross links under "equilibrium" conditions. 
Equation (1), on the otlter hand, represents experi­
mental values of stress obtained on conventional 
pure-gum vulcanizates after a fixed period of creep. 
:Most, if not all, of the divergence between Lhe Lwo 
equations is Lo be ascribed to these differences. In 
the case of natmal rubber at least, the divergence is 
associated with the entrop:v and can noL be a cribed 
to changes of internal energy on stretching [2]. 

The observations arc consistent with the repre­
sentation of a conventional pure-gum vulcanizate as 
a neLwork difreriog from the ideal network in havina 

labile cross links that di appear during eXLension, 
the number disappearing increasing slightly with 
time at a fixed elongation and increasing considem­
bly with increasing elongation at a fL"ed time. The 
CTOSS links which have disappeared reform in time if 
the elongation is reduced. The data would indicate 
that the cross links arc not a ITectcd by moderate 
compression. Such a n etwork would be similar to 
an actual vulcanizate in showing creep in tension 
and a stress-modulus ratio increasingly less than the 
ideal as the elongation increases. 

5 . Equation Assuming Hooke's Law for 
Stress on Deformed Section 

Another equation that has often been suggested 
for representing the stress-strain curve is obtained by 
assuming the con tancy of Young's modulus N1 with 
the stress based on the stre sed cross section. The 
result is 

F j1l1= I - L -l. (6) 

Calculation shows that this function is not at all 
satisfactory in the compression region. This func­
tion yields values about 11.5 percent less in absolute 
magnitude than the emp irical function at L = 0.5 and 
the differ ence falls b elow 4 percent when L is greater 
than 0.S5. 

In the region of tension eq (6) gives a valu e about 
4 percent greater than that given b. eq (1) at 
L = LIS. The differellce has a maximum of about 
13.2 percent at L = 2.2 and falls to 9 percent at L =3. 
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It is clearly inaccurate to assume the validity of eq 
(6) up to about L = 2, as has been done by some pre­
vious workers. If one shoul d attempt to represent 
observations in the tension region by assuming an 
apparent modulus 6.6 percent less than 111., positive 
and negative differences of about 6.6 percent would 
be obtained between the values from eq (6) and those 
observed. In the compression region, however, the 
differences would be increased by about 6.6 percent 
to become as great as about 18 percent at L = 0.5. 
This is not a satisfactory representation of the ob­
served data, which are given by eq (1 ) within the 
experimental accuracy of the observations discussed. 

6 . Mooney-Rivlin Equation 

The work of Moone~T [9] and Rivlin [5 , 6, 7, 10] 
lcads to an equation which may be wTitten in the case 
of simple compression or tension, as 

where 8 1 and 8 2 are, in general, functions of L. In a 
region where :Mooney's assumptions are valid 8 1 and 
8 2 have constant values C1 and C2 , respectively . 

If one wishes to put eq (7) into a form suitable for 
a convenien t plot he has two choices, suggested by 
the following two modifications of the equation: 

F 
2(L - L - 2) = 8 1+ 82L -l (8) 

F 
(9) 

More general r elations are obtained by dividing 
both sides of each equation by M , the slope of the 
s tress-strain curve at L = 1. 
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F I GURE 4. Vallies of <P obtained fr om empirical eq (1) in plot 
suggested by the )Jl{ooney-Rivlin Equation in the f orm of eq 
(10). 

D asbed straigb t Jine sbows m-nl t predi cted by statistical theOlY. Solid 
st raight line shows result predicted by M ooney equation witb constants C, and 
C, detcrmined from rcgion wbere 1.5< L < 3.5. 

F 
(10) 2M(L - L 2) 

F 
(11) 

2M(1 - L 3) 

Figure 4 shows a plo t of <I> defined as FI[2M 
(L - L -2)] against L - l when F is obtained from the 
empirical equation, eq (1 ), giving .fl the value of 
0.38. Correspondingly figure 5 shows a plot of (J 
defined as FI[2M(1 - L -3) ] against L also utilizing 
eq (1). It will be noted, of course, that the com­
pression regions appear on opposite sides of the valu e 
corresponding to L = 1 in the two plots. From the 
equations it is obvious that the slope of the curve in 
figure 4 at any point is the intercept of the tangent to 
the curve of figure 5 at the corresponding point and 
vice versa. Furthermore it can readily be shown 
from their definitions that at L = 1 both <I> and (J have 
the same value, namely 1/6, and that this value is 
independent of the form of the stress-strain relation. 
Consequently from eq (10) or (11) it is clear that 
M = 6(8 1 +82)L~ I ' 

It will be noted from figures 4 and 5 that no por­
tions of the curves are linear for any extended r ange. 
However, over the range from L = 0.5 to L = 1 the 
values of <I> and (J are in reasonable agreement with 
the prediction of the s tatistical t heory of rubber 
elasticity which would set 8 dll1.= 0.1667 and 8 21M 
= 0. The actual value of 8 d ftf, as calculated from 
eq (1) , falls from 0.223 to 0.1267 in the range men­
tioned, while the value of 8 21M rises from - 0.03 to 
+ 0.04. The average values over the range may well 
be taken as those predicted by the statistical theory. 
It will be noted, as already mentioned, that both the 
statistical theory and the empirical function require 
that at L = 1 <I> = (J = 8dM + S2/M = 0.1667. 

Figures 4 and 5 show that over a range from per­
haps L = 1.5 to about L = 3.5 the values of <I> and (J fall 
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approximately on a straight line in accordance with 
the prediction of the Y[ooney eq (9) ealling for the 
constancy of SdM and S2/.NI. It is cl ar that this is 
only an approximate constancy ari ing from the faet 
that the value of SI /J.'{ passes through a minimum in 
this region, at a point of in nection of each curve, 
while the value of S2/J.'{ is correspondingly passing 
through a maximum. Values of SdM and S2/M at 
this point of inflection may be read from the solid 
lines of flgures 4 and 5, but may be obtained more 
accurately by computation from eq (1). The values 
obtained by either procedure are [Sd M]mln = 0.064 
and [S2/J'{]max = O.124. These values correspond to 
L = 2.3 - 2.4. A straight line corresponcling to a 
larger value of Sl iM a nd a smaller value of S2 /Ni 
would approximate the functions <P and 0 over a 
slightl~' larger range of values of L at the expense of 
accuracy of representation of the funcLions. 

Over the important intermedia Le range for L 
beLween 1.0 and l.5, however, neither statisLical 
theor~' nOlO ~rooney equation can satisfactorily 
represent <P and 0, as shown in flglll'eS 4 and 5. 
Instead, Sdll! decreases continuously from 0.1267 to 
0.08 in this LransiLion interval while S2/111 increase 
continuousl? from 0.04 to 0.096. 

A number of previous \yorkers [11 to 16] have 
evaluated the 1100ney constants 01 a nd O2 from 
stress-strain observations in Lension, lar·gcl~T between 
L = l.1 and L = 2.0. Almost all the specimens used 
differed considerably in degree of vulcanization from 
those for which eq (1) ha been shown to be valid. 
Even more significantly, most of the measurements 
were apparently made after a prescribed procedure 
of prestretching and recovery, whereas Llw other 
observations mentioned up to thi point were made 
with specimens stretched for the first Lime. From 
plots of Lhe t."pe suggested by eq ( ) it was con­
cluded [11 to 15] tha t O2 had a value of approxi­
mately 1.03 kg!cm2 for pure-gum vulcanizates con­
taining sulfur and an accelerator. Under the same 
condi tions 01 had values ranging from abou t l.0 to 
3.0 kg/cm2. Among more than 25 values given in 
these papers [11 to 15] there are onl.\T two instances 
where the same compound was investigated at 
different t imes of cure. In one case [11] covering 
12, 15 , and 17 min of cure 0 1 increased ,02 c1eer·eased, 
and their sum increased slightly with increasing cure; 
in the other case [12] with cures of 10 and 30 min 
01 and the sum increased, but there was little change 
in O2• 

Blackwell [16] using plots of the type suggested 
byeq (9) obtained values for O2 of about 0.8 kg/cm2 
and for 0 1 of about 1.25 or 1.55 kg/cm 2 depending 
on the kind of rubber, but showing no variation 
with time of cure. It appears, from an examination 
of the conditions employed, that even at the shortest 
time of cure his vulcanizates had already reached a 
point where little change of modulus would be 
expected . 

It is clear that under the experimental conditions 
employed by these workers, the value of O2/01 is 
malleI' than 0.124/0.064 = l.94 as given by the 

empirical function . A a resul t the size of the 

transitio n interval (in which 82 increases from zero 
to a nem1v constant vahlc) is smaller than that 
given by Lhe empirical fun ction . The reason fo!' 
the discrepancy is not clear but it is probably related 
to the very high degr ee of vulcanization and the 
previous mechani cal history of the specimens em­
ployed by the British workers, as contrasted with 
those used by Martill, H.oth, and Stiehler [1] and 
the observers whose r esults are given in figures 2 
and 3. 

In any case, unless <I> and 8 show a sharp discon­
tinuit~, in slope exactly at L = I , a transition inLeryal 
must exist and must lie in the region of low elonga­
tions. Consequently linear extrapolation of tension 
data to L = 1 is not justified in t he region of low 
elongations in plots similar to figures 4 and 5. It 
may be concluded that the), [ooney equation is noL 
valid in the region of low elongations, sin ce S[ and 
S2 show no approach to constancy in Lhis region. 
Some of the implications 0 f tb is conclusion in terms 
of the st rain energy fUllcLion have been pointed 
out in a recent review [2]. 

Thomas [17] has applied a correction Lerm Lo the 
stress predicted by the statistical theory. Allhough 
this operation yields a graph of <P qualitatively 
similar to figure 4 the stress-strain relationship pre­
dicted by Thomas's work departs so markedly from 
Lhe solid line shown in figure 1thaL the correction 
can not be regarded as satisfactory. 

7 . Young's Modulus from Experimental 
o bserva tions 

It is often a matter of considerable theoretical and 
practical importance to obtain a value of Young's 
modulus lI'{ from experimen tal observatiolls of stress 
at one or more fmi Le sLrains. 

Since ll'{ is defined as the slope of the graph of F 
against L at L = I , the simplest method o( deter­
mining its value would be to draw a ta,ngent to the 
curve at Lhis point and measure its slope. For values 
of L greater than 0.5 a plot of observed values of 
stress F against L will have the shape given by the 
solid curve of figure 1; . the ordinates will simply be 
those shown, multiplied by the constant factor Ai. 
It can be seen from fig ure 1 that the curvature at 
L = 1 is so great that the simplest method would not 
be very satisfactory. The tangent would be deter­
mined mainly by a few observation near L = l where 
the experimental precision is not high. 

Equations (I), (2a), (5), and (6) each represent 
satisfactorily the observed values of F in the region 
very near L = 1, but cliffeI' in their ranges of appli­
cability. Each equation can be pu t into such a form 
as to suggest coordinates that will give a lineal' plot 
near L = I, from which M may be obtained. Since 
eq (1) represents the data over a greater range than 
any of the others, a plot based on it can include a 
greater range of experimental observations than any 
of the others. The most satisfactory coordinates 
for a plot based on eq (1) are log F / (L -l_L -2) and 
(L - L - I), as illustrated by figures 2 and 3, where 
log M is obtained as tho intercept. If only tension 
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FIGURE 6. Determination of constants in empirical eq (1) from 
plot suggested by approximation given as eq (2a). 

e. Ditta of Treloar [4]. X. Data of R ivlin and Saunders [5]. 

data or only compression data are available this 
represents an extrapolation , but if data in both 
r egions can be plotted, as in figures 2 and 3, the 
advantages of interpolation can be realized. A plo t 
of this form shows by its linearity whether eq (1) is 
valid for the particular observations concerned and, 
if it is linear, its slope gives the value of A. E ven if 
the plot should not be linear, the procedure of 
obtaining log 11,1[ by interpolation should be 
satisfactory. 

If the range of observations is not too great, a plot 
based on the approximation given by cq (2a) can 
be made. It can be seen that a plot of F/(L-l_L -2) 
against (L - 1) should yield a straight line with 
intercept M and with slope 2.f1111. This is a 
thoroughly sa tisfactory procedure for observations 
between L = 0.75 and L = 2.0 since the approximation 
represents eq (1) within 0.5 percent over this region. 
Figure 6, showing this type of plot for the data of 
Treloar [4] and Rivlin and Saunders [5] may be 
compared with figure 3 showing the applicability of 
eq (1) to the same data. 

Under conditions where the validity of eq (1) with 
A = 0.38 may be reasonably presumed, M may be 
calculated from the equation, using a single obser­
vation of stress and the corresponding strain. If a 
repetition of the calculation with other observed 
values gives a constant value for M within experi­
m ental error, the validity of the equation is confirmed 
and the average obtained by such calculations may 
be taken as the desired Young's modulus. 

The equation predicted by the statistical theory of 
rubber elasticity, eq (5), in spite of its disagreement 
with observed values in the tension region, has 
been frequently used to determine M. Since values 
of F(M predicted by this equation in this region are 
systematically too high as noted in figure 1, the 
calculated values of M are systemically too small by 
the amounts indicated in section 4, unless the results 
are extrapolated in some manner to L = 1. The 
simplest graph based on eq (5) calls for a plot of F 
against (L - L -2) for a determination of M from the 
slope. This procedure has been followed in recent 

work of Charlesby and von Arnim [18] on rubber 
cross linked by radiation. Unlike the conventional 
vulcanizates considered in the present paper, this 
material appears to conform to eq (5) up to high 
elongations. .A similar method employed by Bueche 
[19] requires a plo t of FL2 against D for a determina­
tion of lo;[ by extrapolating the observed slope to 
L= l. 

A more sensitive method than either of these is 
to plo t F/(L - L-2) against L as in the work of Gee 
[20] or against L-l as in other work [5, 11 to 15, 21] . 

These graphs should have the constant value M/3 
where the statistical equation is applicable. This 
has indeed been found true [4, 8] in the compression 
region for L between 0.1 and 1. In t he tension 
region, however , the value is not constan t, and a 
linear extrapolation to L = 1 is not justified, as 
already mentioned. Figure 4, differing from the 
latter plot only by two constant factors, shows the 
curvature to be expected near L = l. 

The following modifications of eq (6) 

and 
F= M (l - L-l) 

FL= M (L - 1) 

(12) 

(13) 

show that straight lines of constant slope lv[ would 
result from a plot of F against (l - L- l) or of FL 
against (L - 1), if Hooke's law based on actual sec­
tion were valid. It has been shown in section 5 
that values of F/M obtained on this assumption are 
about 4 percent too high at L = 1.18. If greater 
accuracy than this is desired, the slope must be 
obtained from lower values of L. The usc of eqs 
(12) and (13) for L between 1.0 and 1.1 is a reason­
ably satisfactory approximation since the value of 
F/M obtained is less than 2.5 percent too great in 
this region. Baldwin, Ivory, and Anthony [22] have 
obtained linear plots of eq (13) for pure-gum vul­
eanizates of nitrile rubber and GR- I in this region. 

Considerations outlined more fully in th e section 
on the Mooney-Rivlin equation show that M can be 
obtained by determining the value of F/2(L - L-2) 
or the value of F/2(1- L-3) at L = l since these 
quantities both are equal to M/6 at this point. If 
these operations are done graphically, curves similar 
to figures 4 and 5 are obtained, except that the ordi­
nates are multiplied by a constant factor. It is 
clear that the curvature in the region of low elonga­
tions is so great as to make satisfactory extrapolation 
quite difficult . 

In summary, Young's modulus !vI can best be de­
termined from the intercept of a plot like figure 2 
or 3, based on eq (1). This will permi t the u tiliza tion 
of observations over the widest possible range of 
values of L in compression and tension. .A plot like 
figure 6, based on the approximation given by eq 
(2a) is thoroughly satisfactory between L = 0.75 
and L = 2.0. It is considerably superior to any of 
those based on eq (5), (6), or (7). The use of a plot 
based on eq (6) will give apparent values of M less 
than 2.5 percent too low if observations are confined 
to elongations of less than 10 percent. The use of a 
plot based on eq (5) will be satisfactory in the com-
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pression region and also will give apparen t values 
of M less than about 2.7 percen t too low if observa­
tions are confined to elongations of less than 10 
percen t. The use of a plo t based on eq (7), differing 
only in scale from figure 4 or 5, is not satisfactory 
for obtaining A1 by extrapolation because of i ts large 
curvature in the region from L = 1.0 to L = 1.5. 

8. Conclusions 

The empirical function of Martin, Roth, and 
Stiehler [1] represented by eq (1) wher e A has the 
value of 0.38 may be regarded as an adequate repre­
sentation of the available experimental data covering 
both the compression and tension of pure-gum 
vulcanizates. The stress and strain are to be mea­
sured after a constan t time of creep . Th e approxi­
mate validity extend s over the range 0.5< L < 3.5. 
The success of the single empirical fu nction in 
represenLing daLa obtained in bo th compression and 
tension over a range as great as Lhis is regarded as 
very significan t. 

In the range of values of L from 0.5 to l.0 (com­
pression) the empirical function gives results in 
agreement wi th. the predictions of th e staLis tical 
theory of rubber elasLicity. AfLer representing the 
stress and strain in a transition r egion extending 
from L = l.0 to 1.5, the empirical function gives 
approximately constant coefficients 01 and O2 in the 
Mooney equation over the range from 1.5 to about 
3.5. 

The behavior of the empirical function in the 
transi tion r egion from L = 1.0 to L = 1.5 shows tha t 
the statistical theory of elastici ty fails to represent 
the eA,])erimen tal data even at the lowest elonga tions 
while proving satisfactory in the compression r egion. 
The :Mooney-Rivlin equation also fails to furnish 
adequate representation of the experimental data at 
low elongations . 

The most satisfactory method of determining 
Young's modulus from experimental observation 
of stress and strain in pure-gum vulcanizates involves 
a plo t of log F /(L-I_L -2 ) against (L - L - I). For 
observations wi thin the range of L = 0.75 to 2.0 the 
simpler plot of F/(L-I_L-2) against (L -1) is 
thoroughly satisfactory. In bo th cases 1\1£ is ob­
tained from the intercept, and the constant A in 
eq (1) is determined from the slope. 

' VASHINGTON, September 16, 1957 . 
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