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The stress-strain curve in tension for a typical pure-gum rubber vulcanizate after a
given period of creep, according to Martin, Roth, and Stiehler, can be represented by an
empirical equation

F=M(L1'—L?%)expA(L— L™)

where F is the stress based on the original-cross sectional area, and L is the ratio of stressed
to unstressed length, M is the slope of the stress-strain curve at L=1 and A normally has
a value close to 0.38. The present paper shows by an examination of data published by
Sheppard and Clapson, Treloar, and Rivlin and Saunders that the equation is also valid
in the region of compression for values of L as small as 0.5 (50 percent compression). The
features of the empirical equation are discussed, and comparisons are made with the equation
predicted by the statistical theory of rubber elasticity and the equation derived by assuming
Hooke’s law for the stressed cross section. The consequences of the validity of the empirical
equation in terms of the Mooney-Rivlin presentation of the strain energy function are
pointed out. The equation predicted by the statistical theory represents observed data
very well in the compression region from L=0.5 to L=1.0. The Mooney equation is
approximately valid from L=1.5 to LL=3.5. Neither of these equations is satisfactory in
the important intermediate region from L=1.0 to L=1.5. The empirical equation repre-
sents the observed data over all three of these regions. It is concluded that Young’s
modulus M can best be obtained from the intercept of a plot of log F/(L~'— L~2) against
(L—L7). For 0.75< L<_2.00 it is thoroughly satisfactory to determine M as the intercept
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of a plot of F/(L='— L~2) against (L—1).

1. Introduction

The stress-elongation curve of a typical pure-gum
rubber vulcanizate after a given period of creep,
according to recent work of Martin, Roth, and
Stiehler [1],' can be represented up to 200 percent
elongation or more by an empirical equation

F=ML'—L%exp A(L—L™) (1)
where F'is the stress based on the original cross-
sectional area, L is the ratio of stressed length to
unstressed length, and M and A are constants. M
is Young’s modulus, the slope of the stress-elongation
curve at zero stress (where L=1). A normally has
a value close to 0.38.

A graph of F/M against L as computed from eq
(1) is given by the solid line of figure 1, reproduced
from a recent review [2]. Although the range of
conditions of applicability of eq (1) has not been
thoroughly explored, Martin, Roth, and Stiehler [1]
showed it to be valid for the first extension of pure-
gum vulcanizates of natural rubber, GR-S, GR-I,
and Neoprene over a 10-fold range of times of vul-
canization and for constant times of creep from 1 to
10,000 min. It was found not applicable to vulean-
izates containing carbon black or other fillers.

The investigations of Martin, Roth, and Stiehler
were limited to specimens in simple tension. Con-
sequently it was considered to be of interest to
determine whether the same empirical equation can
be applied to the compression region. The present
paper shows from data already published by
Sheppard and Clapson [3], Treloar [4], and Rivlin
and Saunders [5], that, until the compression

1 Figures in brackets indicate the literature references at the end of this paper.
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Ficure 1. Relation between stress-modulus ratio F[M and

length ratio L.

Solid line: empirical function (L-1—L-2) exp 0.38 (L—L-1). Dashed line: sta-

tistical theory function (1/3) (L—L™?).

exceeds about 50 percent (L=0.50), the equation
is valid with the same constants that apply in the
extension region.

2. Compression and Tension Data

The friction that arises when compressional forces
are applied to a flat specimen is a major source of
experimental difficulty. It was pointed out years
ago by Sheppard and Clapson [3] that a system
fully equivalent to friction-free compression with
freedom of displacement normal to the compressive
force is obtained by subjecting a sheet to two-
dimensional stresses in the plane of the sheet while
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Ficure 2. Determination of constants in empirical equation
from plot suggested by eq (1).

X, Data from figure 10 of Sheppard and Clapson [3]; ©, data from figure 9 of
Sheppard and Clapson [3].

allowing freedom of displacement in the direction
normal to the sheet. Data obtained by studying
the relation between deformation and inflation
pressure in balloons were presented by these authors.
Values obtained on both compression and tension
shown in figures 9 and 10 of the paper by Sheppard
and Clapson [3] have been read from the figures
to obtain log F/L'—L~%) and (L—L™), the quanti-
ties necessary for checking the validity of eq (1).
They have been plotted as co-ordinates in figure 2
of the present paper. It has already been pointed
out [1] that such a plot in the tension region should
yield a straight line with A as slope and log M
as intercept. The linearity of the plot shown here
covering both compression and tension seems quite
satisfactory. Sheppard and Clapson themselves
have called attention to the probable inaccuracy
of the two points obtained at the smallest value
of compression (where L=0.8 and 0.9). The values
of A obtained from the plot in figure 2 is 0.36 in
close agreement with values found by Martin, Roth,
and Stiehler [1]. The value for log M of 0.91,
corresponding to a Young’s modulus of 8.1 kg/em?,
is quite reasonable for a ‘“cold-cured” balloon
rubber. It is presumed that the vulcanizing agent
was sulfur chloride.

The upper curve of figure 3 represents data from
the work of Treloar [4], who made measurements
similar to those already described but used a
vulcanizate compounded with 8 parts of sulfur per
hundred parts of rubber. The data in the com-
pression region are taken from Treloar’s table 1.
For the points corresponding to compression ratios
of 0.80, 0.77, and 0.69 the values of the equivalent
compressive force were taken as 3.39, 3.89, and
5.82 kg/em?, respectively, after correcting an apparent
typographical error in Treloar’s table 1. Values in
the tension region were read from figures 3 and 5 of
Treloar’s paper.

For values of L greater than 0.5 the experimental
points lie quite close to the straight line drawn in
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Figure 3. Determination of constanis in empirical equation

from plot suggested by eq (1).
@, Data of Treloar [4]. X, Data of Rivlin and Saunders [5].

figure 3, with the exception of the point for £L=0.95.
The value of A obtained from this plot is 0.394, in
satisfactory agreement with previous work [1]. The
value for log M of 1.1 corresponds to a Young’s
modulus of 12.7 kg/cm?, nearly the same as the value,
12.0 kg/em?, taken by Treloar to represent the data
in the compression region and up to about 30 percent
elongation.

The lower curve of figure 3 represents data from
the work of Rivlin and Saunders [5], whose measure-
ments were similar to those of Treloar. The rubber
was a conventional sulfur vulcanizate accelerated
with benzothiazyl disulfide (MBTS). The data in
the compression region were taken from table 8 of
the paper by Rivlin and Saunders, while the data in
the tension region were read from figure 14 of their
paper. Values of A=0.382 and M=11.1 kg/cm® are
obtained from figure 3. ,

Tt will be noted that in 2 of the 3 sets of data in
figures 2 and 3, the values of the ordinate lie increas-
ingly above the straight line as L approaches 1 in
the compression region. It is possible that this
represents a significant characteristic or it may be
that it was due to residual stresses or other non-
isotropic phenomena. Martin, Roth, and Stiehler [1]
also reported instances of apparent high values near
L=1 for certain vulcanizates in the tension region.
However, in the present paper we shall neglect the
possibility that the observation is significant since
better data in the region near L=1 would be required
to establish a definite conclusion of this sort.

It is concluded from figures 2 and 3 that eq (1)
provides a satisfactory representation of the stress-
strain relation for compressions less than 50 percent
(i. e., for L greater than 0.5), and for elongations up
to about 250 percent (i. e., L=3.5).

3. Features of the Empirical Equation

The solid line in figure 1, depicting the values of
F/M computed from eq (1) with A=0.38, includes
both compression and tension regions. The de-

194



scending portion, beginning at the origin, of course
has no phvswal significance. A minimum value of
I'/\[*~33 at L=0.18 is followed by the rising
portion shown. A point of inflection (corresponding
to a maximum slope) at L=0.26 is followed by a
steady decrease of slope, passing through unit slope
at L=1, until another point of inflection ((onospon(l-
ing to a minimum slope) is reached at L=2.91. As
pointed out in the preceding sections, the equation
represents the experimental data rozlsonably well
over the interval from L=0.5 to about L=3.5.

One can find two approximations to eq (1) that are
useful over limited regions. The exponential term
in eq (1) can be e\pandod in a power series. If
only the first two terms of the series are retained
and a reciprocal term is approximated [1], the fol-
lowing equation is obtained:

FIM=[L'—L3[14+2A(L—1)] (2a)
o
FIM=2A—(4A—1)L7'—(1—2A4)L% (2b)
For A=0.38 this becomes
F/M=0.76—0.52L'—0.24 L~ (&)

This equation approximates eq (1) within about
0.5 percent over the range from L=0.75 to L=2.0.
The compensating effect of some pairs of terms
neglected in the expansions makes the approxima-
tion better than would be expected at first glance.

In the range above L=2 the empirical function is
nearly linear over considerable region. A useful
approximation here is

F/M=0.164L-+0.125. 4)

Values computed from eq (4) differ from values (rivon
by eq (1) by less than 4 percent from L=2 to L=4
The upper limit given is above the normal range of
validity of eq (1).

4. Equation Predicted by Statistical Theory

The dashed line in figure 1 shows the function
F/M=(1/3)(L—L™?) (5)

predicted by the statistical theory of rubber elas-
ticity [2, 6, 7] for the entropy component of the
“equilibrium” stress of an ideal network. The
agreement between the two functions in the region
between L=0.5 and L=1 is quite striking. Cal-
culation of numerical values shows that the difference
is less than 4 percent throughout this interval.
Since the precision of the available compression
data is no better than this figure, no statement can
be made as to which function conforms better to
experimental observations in this region.

This agreement, together with the conclusion of
Treloar [4] that eq (5) adequately represents his
experimental data in this region, confirms the

validity of eq (1) here, as already demonstrated
directly by figures 2 and 3. Recent direct measure-
ments of compression of specimens with lubricated
surfaces by Forster [8] have also shown conformity
to eq (5) or eq (1) from L=0.67 to L=1.

In the region of tension, however, the difference
between the two functions becomes steadll_\ greater as
Lincreases. The value of (1/3) (L—1.7?%) 1s about 4
percent greater than that of the empirical function
at L=1.15,about 32 percent greater at L=2.0, and
about 57 percent greater at L=3.0. These differ-
ences preclude the use of eq (5) for values of L above
about 1.15.  The slope of the graph of (1/3) (Li—L~?)
against L approaches 0.333 as Lis increased ; the slope
of a similar graph of the empirical func tion is 0.164
for a considerable region beyond L=2 as shown by
eq (4).

Equation (5) is intended to apply to the entropy
component of the stress of an ideal network of per-
manent cross links under “equilibrium’’ conditions.
Equation (1), on the other hand, represents experi-
mental values of stress obtained on conventional
pure-gum vulcanizates after a fixed period of creep.
Most, if not all, of the divergence between the two
oqu‘mtlons is to be ascribed to these differences. In
the case of natural rubber at least, the divergence is
associated with the entropy and can not be ascribed
to changes of internal energy on stretching [2].

The observations are consistent with the repre-
sentation of a conventional pure-gum vulcanizate as
a network differing from the ideal network in having
labile cross links that disappear during extension,
the number disappearing increasing %lwhtl_\ with
time at a fixed elongation and in(-reasing considera-
bly with increasing olonguion at a fixed time. The
cross links which have disappeared reform in time if
the elongation is reduced. The data would indicate
that the cross links are not affected by moderate
compression. Such a network would be similar to
an actual vulcanizate in showing creep in tension
and a stress-modulus ratio incre mm(rly less than the
ideal as the elongation increases.

5. Equation Assuming Hooke's Law for
Stress on Deformed Section

Another equation that has often been suggested
for representing the stress-strain curve is obtained by
assuming the constancy of Young’s modulus M with
the stress based on the stressed cross section. The

result is
(6)

Calculation shows that this function is not at all
satisfactory in the compression region. This func-
tion yields values about 11.5 percent less in absolute
magnitude than the empirical funetion at L=0.5 and
the difference falls below 4 percent when L is greater
than 0.85.

In the region of tension eq (6) gives a value about
4 percent greater than that given by eq (1) at
L=1.18. The difference has a maximum of about
13.2 percent at L=2.2 and falls to 9 percent at L=3.

FIM=1—L,
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It is clearly inaccurate to assume the validity of eq
(6) up to about L=2, as has been done by socme pre-
vious workers. If one should attempt to represent
observations in the tension region by assuming an
apparent modulus 6.6 percent less than M, positive
and negative differences of about 6.6 percent would
be obtained between the values from eq (6) and those
observed. In the compression region, however, the
differences would be increased by about 6.6 percent
to become as great as about 18 percent at L=0.5.
This is not a satisfactory representation of the ob-
served data, which are given by eq (1) within the
experimental accuracy of the observations discussed.

6. Mooney-Rivlin Equation
The work of Mooney [9] and Rivlin [5, 6, 7, 10]
leads to an equation which may be written in the case
of simple compression or tension, as
F2=8,(L—L*)+8;(1—L7) (7)
where S; and S, are, in general, functions of L. In a
region where Mooney’s assumptions are valid S; and
S, have constant values ) and (), respectively.
If one wishes to put eq (7) into a form suitable for
a convenient plot he has two choices, suggested by
the following two modifications of the equation:

I{V

2(—Ly LT )
F

v2<1_L;;5’)':S1L‘|’S2 (9)

More general relations are obtained by dividing
both sides of each equation by M, the slope of the
stress-strain curve at L=1.
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Ficure 4. Values of ® obtained from empirical eq (1) in plot
?}Lg)qested by the Mooney-Rivlin Equation in the form of eq
0).

Dashed straight line shows result predicted by statistical theory. Solid
straight line shows result predicted by Mooney equation with constants Cy and
C3 determined from region where 1.5<L<3.5.
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Figure 4 shows a plot of ® defined as F/[2M
(L—L7?%)] against L=' when F'is obtained from the
empirical equation, eq (1), giving A the value of
0.38.  Correspondingly figure 5 shows a plot of 6
defined as F/[2M(1—L~?)] against L also utilizing
eq (1). It will be noted, of course, that the com-
pression regions appear on opposite sides of the value
corresponding to L=1 in the two plots. From the
equations it 1s obvious that the slope of the curve in
figure 4 at any point is the intercept of the tangent to
the curve of figure 5 at the corresponding point and
vice versa. Furthermore it can readily be shown
from their definitions that at L=1 both ® and ¢ have
the same value, namely 1/6, and that this value is
independent of the form of the stress-strain relation.
Consequently from eq (10) or (11) it is clear that
‘/\/[:6(S1+S2)L=1-

It will be noted from figures 4 and 5 that no por-
tions of the curves are linear for any extended range.
However, over the range from L=0.5 to L=1 the
values of @ and # are in reasonable agreement with
the prediction of the statistical theory of rubber
elasticity which would set S;/M=0.1667 and S,/M
=0. The actual value of S;/M, as calculated from
eq (1), falls from 0.223 to 0.1267 in the range men-
tioned, while the value of S,/M rises from —0.03 to
+0.04. The average values over the range may well
be taken as those predicted by the statistical theory.
It will be noted, as already mentioned, that both the
statistical theory and the empirical function require
that at L=1 ®=0=2_,/M- S,/ M=0.1667.

Figures 4 and 5 show that over a range from per-
haps L=1.5 to about L=3.5 the values of ® and 6 fall
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Frcure 5. Values of 6 obtained from empirical eq (1) in plot

suggested by the Mooney-Rivlin Equation in the form of eq
(11).

Dashed straight line shows result predicted by statistical theory. Solid
straight line shows result predicted by Mooney equation with constants Cjand
C; determined from region where 1.5< L<3.5.
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approximately on a straight line in accordance with
the prediction of the Mooney eq (9) calling for the
constancy of S;/M and Sy/M. Tt is clear that this is
only an approximate constancy arising from the fact
that the value of S;/M passes through a minimum in
this region, at a point of inflection of each curve,
while the value of S;/M is correspondingly passing
through a maximum. Values of S;/M and S,/M at
this point of inflection may be read from the solid
lines of figures 4 and 5, but may be obtained more
accurately by computation from eq (1). The values
obtained by either procedure are [S;/M]y,=0.064
and [So/M]nax=0.124. These values correspond to
L=23—24. A straight line corresponding to a
larger value of S;/M and a smaller value of S,/M
would approximate the functions ® and 6 over a
slightly larger range of values of L at the expense of
accuracy of representation of the functions.

Over the important intermediate range for L
between 1.0 and 1.5, however, neither statistical
theory nor Mooney equation can satisfactorily

represent ® and 6, as shown in figures 4 and 5.
Instead, S;/M decreases continuously from 0.1267 to
0.08 in this transition interval while S,/M increases
continuously from 0.04 to 0.096.

A number of previous workers [11 to 16] have
evaluated the Mooney constants € and ¢ from
stress-strain observations in tension, largely between
L=1.1 and L=2.0. Almost all the specimens used
differed considerably in degree of vulcanization from
those for which eq (1) has been shown to be valid.
Even more significantly, most of the measurements
were apparently made after a prescribed procedure
of prestretching and recovery, whereas the other
observations mentioned up to this point were made
with specimens stretched for the first time. From
plots of the type suggested by eq (8) it was con-
cluded [11 to 15] that (% had a value of approxi-
mately 1.03 kg/em? for pure-gum vulcanizates con-
taining sulfur and an accelerator. Under the same
conditions (), had values ranging from about 1.0 to
3.0 kg/em®.  Among more than 25 values given in
these papers [11 to 15] there are only two instances
where the same compound was 1nvesticated at
different times of cure. In one case [11] covering
12, 15, and 17 min of cure (; increased |, decreased,
and their sum increased slightly with increasing cure;
in the other case [12] with cures of 10 and 30 min
(; and the sum increased, but there was little change
1 5.

Blackwell [16] using plots of the type suggested
by eq (9) obtained values for % of about 0.8 kg/cm?
and for ) of about 1.25 or 1.55 kg/cm? depending
on the kind of rubber, but showing no variation
with time of cure. It appears, from an examination
of the conditions employed, that even at the shortest
time of cure his vulcanizates had already reached a
point where little change of modulus would be
expected.

It is clear that under the experimental conditions
employed by these workers, the value of C./C; is
smaller than 0.124/0.064=1.94 as given by the
empirical function. As a result the size of the

transition interval (in which S, increases from zero
to a nearly constant value) is smaller than that
given by the empirical function. The reason for
the discrepancy is not clear but it is probably related
to the very high degree of vulcanization and the
previous mechanical history of the specimens em-
ployved by the British workers, as contrasted with
those used by Martin, Roth, and Stiehler [1] and
the observers whose results are given in figures 2
and 3.

In any case, unless ® and 6 show a sharp discon-
tinuity in slope exactly at L=1, a transition interval
must exist and must lie in the region of low elonga-
tions. Consequently linear extrapolation of tension
data to L=1 1s not justified in the region of low
elongations in plots similar to ficures 4 and 5. It
may be concluded that the Mooney equation is not
valid in the region of low elongations, since S, and
S, show no approach to constancy in this region.
Some of the implications of this conclusion in terms
of the strain energy function have been pointed
out in a recent review [2].

Thomas [17] has applied a correction term to the
stress predicted by the statistical theory. Although
this operation yields a graph of & qualitatively
similar to figure 4 the stress-strain relationship pre-
dicted by Thomas’s work departs so markedly from
the solid line shown in figure 1 that the correction
an not, be regarded as satisfactory.

7. Young's Modulus from Experimental
Observations

It is often a matter of considerable theoretical and
practical importance to obtain a value of Young’s
modulus M from experimental observations of stress
at one or more finite strains.

Since M is defined as the slope of the graph of F
against L at L=1, the simplest method of deter-
mining its value would be to draw a tangent to the
curve at this point and measure its slope.  For values
of L greater than 0.5 a plot of observed values of
stress F against L will have the shape given by the
solid curve of figure 1; the ordinates will simply be
those shown, multiplied by the constant factor M,
It can be seen from figure 1 that the curvature at
L=1 1is so great that the simplest method would not
be very satisfactory. The tangent would be deter-
mined mainly by a few observations near L=1 where
the experimental precision is not high.

Equations (1), (2a), (5), and (6) each represent
satisfactorily the observed values of /' in the region
very near L=1, but differ in their ranges of appli-
cability. Each equation can be put into such a form
as to suggest coordinates that will give a linear plot
near L=1, from which M may be obtamed. Since
eq (1) represents the data over a greater range than
any of the others, a plot based on it can include a
greater range of experimental observations than any
of the others. The most satisfactory coordinates
for a plot based on eq (1) are log F/(L'—L™?) and
(L—L™), as illustrated by figures 2 and 3, where
log M is obtained as the intercept. If only tension
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FI1GURE 6. Determination of constants in empirical eq (1) from

plot suggested by approzimation given as eq (2a).
@, Data of Treloar [4]. X, Data of Rivlin and Saunders [5].

data or only compression data are available this
represents an extrapolation, but if data in both
regions can be plotted, as in figures 2 and 3, the
advantages of interpolation can be realized. A plot
of this form shows by its linearity whether eq (1) is
valid for the particular observations concerned an(},
if it is linear, its slope gives the value of A. Even if
the plot should not be linear, the procedure of
obtaining log M by interpolation should be
satisfactory.

If the range of observations is not too great, a plot
based on the approximation given by eq (2a) can
be made. It can be seen that a plot of F/(L™'—L7?)
against (L—1) should yield a straight line with
intercept M and with slope 2AM. This is a
thoroughly satisfactory procedure for observations
between L=0.75 and L=2.0 since the approximation
represents eq (1) within 0.5 percent over this region.
Figure 6, showing this type of plot for the data of
Treloar [4] and Rivlin and Saunders [5] may be
compared with figure 3 showing the applicability of
eq (1) to the same data.

Under conditions where the validity of eq (1) with
A=0.38 may be reasonably presumed, M may be
calculated from the equation, using a single obser-
vation of stress and the corresponding strain. If a
repetition of the calculation with other observed
values gives a constant value for M within experi-
mental error, the validity of the equation is confirmed
and the average obtained by such calculations may
be taken as the desired Young’s modulus.

The equation predicted by the statistical theory of
rubber elasticity, eq (5), in spite of its disagreement
with observed values in the tension region, has
been frequently used to determine M. Since values
of F/M predicted by this equation in this region are
systematically too high as noted in figure 1, the
calculated values of M are systemically too small by
the amounts indicated in section 4, unless the results
are extrapolated in some manner to L=1. The
simplest graph based on eq (5) calls for a plot of ¥
against (L—L~?) for a determination of M from the
slope. This procedure has been followed in recent

work of Charlesby and von Arnim [18] on rubber
cross linked by radiation. Unlike the conventional
vulcanizates considered in the present paper, this
material appears to conform to eq (5) up to high
elongations. A similar method employed by Bueche
[19] requires a plot of FL? against L? for a determina-
tion of M by extrapolating the observed slope to
Jh=1l,

A more sensitive method than either of these is
to plot F/(L—17%) against L as in the work of Gee
[20] or against 7! as in other work [5, 11 to 15, 21].

These graphs should have the constant value M/3
where the statistical equation is applicable. This
has indeed been found true [4, 8] in the compression
region for L between 0.1 and 1. In the tension
region, however, the value is not constant, and a
linear extrapolation to L=1 is not justified, as
already mentioned. Figure 4, differing from the
latter plot only by two constant factors, shows the
curvature to be expected near L=1.

The following modifications of eq (6)

F=M1—L) (12)
FL=M(L—1) (13)

show that straight lines of constant slope M would
result from a plot of F' against (1—727') or of FL
against (L—1), if Hooke’s law based on actual sec-
tion were valid. It has been shown in section 5
that values of /M obtained on this assumption are
about 4 percent too high at L=1.18. If greater
accuracy than this is desired, the slope must be
obtained from lower values of L. The use of eqs
(12) and (13) for L between 1.0 and 1.1 is a reason-
ably satisfactory approximation since the value of
F/M obtained is less than 2.5 percent too great in
this region. Baldwin, Ivory, and Anthony [22] have
obtained linear plots of eq (13) for pure-gum vul-
canizates of nitrile rubber and GR-I in this region.

Considerations outlined more fully in the section
on the Mooney-Rivlin equation show that M can be
obtained by determining the value of F/2(L—L7?)
or the value of F/2(1—L7°%) at L=1 since these
quantities both are equal to M/6 at this point. If
these operations are done graphically, curves similar
to figures 4 and 5 are obtained, except that the ordi-
nates are multiplied by a constant factor. It is
clear that the curvature in the region of low elonga-
tions is so great as to make satisfactory extrapolation
quite difficult.

In summary, Young’s modulus M can best be de-
termined from the intercept of a plot like figure 2
or 3, based on eq (1). This will permit the utilization
of observations over the widest possible range of
values of L in compression and tension. A plot like
figure 6, based on the approximation given by eq
(2a) 1is thoroughly satisfactory between L=0.75
and L=2.0. It is considerably superior to any of
those based on eq (5), (6), or (7). The use of a plot
based on eq (6) will give apparent values of M less
than 2.5 percent too low if observations are confined
to elongations of less than 10 percent. The use of a
plot based on eq (5) will be satisfactory in the com-

and
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pression region and also will give apparent values
of M less than about 2.7 percent too low if observa-
tions are confined to elongations of less than 10
percent. The use of a plot based on eq (7), differing
only in scale from figure 4 or 5, is not satisfactory
for obtaining M by extrapolation because of its large
curvature in the region from L=1.0 to L=1.5.

8. Conclusions

The empirical function of Martin, Roth, and
Stiehler [1] represented by eq (1) where A has the
value of 0.38 may be regarded as an adequate repre-
sentation of the available experimental data covering
both the compression and tension of pure-gum
vulcanizates. The stress and strain are to be mea-
sured after a constant time of creep. The approxi-
mate validity extends over the range 0.5<L<3.5.
The success of the single empirical function in
representing data obtained in both compression and
tension over a range as great as this is regarded as
very significant.

Tn the range of values of L from 0.5 to 1.0 (com-
pression) the empirical function gives results in
agreement with the predictions of the statistical
theory of rubber elasticity. After representing the
stress and strain in a transition region extending
from L=1.0 to 1.5, the empirical function gives
approximately constant coefficients €, and O in the
Mooney equation over the range from 1.5 to about
3.5.

The behavior of the empirical function in the
transition region from L=1.0 to L=1.5 shows that
the statistical theory of elasticity fails to represent
the experimental data even at the lowest elongations
while proving satisfactory in the compression region.
The Mooney-Rivlin equation also fails to furnish
adequate representation of the experimental data at
low elongations.

The most satisfactory method of determining
Young’s modulus from experimental observations
of stress and strain in pure-gum vuleanizates involves

a plot of log F/(L7'—L7?) against (L—L7'). For
observations within the range of L=0.75 to 2.0 the

simpler plot of F/(L'—L7?) against (L—1) is
thoroughly satisfactory. In both cases M is ob-
tained from the intercept, and the constant A in
eq (1) is determined from the slope.

WasHINGTON, September 16, 1957.
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