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Joule-Thomson Process in the Liquefaction of Helium'
Edmund H. Brown and John W. Dean

A dimensionless, normalized, correlating function is introduced for the specific enthalpy

of helium.

Using this function, the consistency of various enthalpy data is determined.

These data are then used to obtain curves of helium liquefaction yield in the region of variable
specific heat in terms of heat-exchanger efficiency.

1. Introduction

Many different devices and cyecle arrangements
can be used in partially cooling gas for helium lique-
faction. With the exception of the Simon free-
expansion type liquefier, however—which is suitable
only for small-yield, batch production—all such
arrangements have a final stage at the lowest tem-
peratures, in which a so-called Joule-Thomson process
takes place. This process may be considered to in-
clude cooling of the high-pressure gas by the un-
liquefied return gas in a ‘“Joule-Thomson heat
exchanger”, as well as cooling of the high-pressure
gas by the Joule-Thomson effect, that is, isenthalpic
expansion through a “Joule-Thomson valve.” If
the initial state of the high-pressure gas at the top
of the J-T' heat exchanger (which is most con-
veniently defined by its pressure and temperature)
is fixed within a certain region, a definite mass frac-
tion « of the gas passing through the J-T valve will
be liquefied.

To determine the yield a of a liquefier, the specific
enthalpies at certain points in the J-T process must
be known as functions of P and 7. The most readily
available data on the specific enthalpy, £, of helium
is from the monograph of Keesom [1],> or the tem-
perature-entropy diagram of Keesom published by
the International Institute of Refrigeration [2].
The errors and inconsistencies of these sources below
about 20° K, however, have been pointed out in a
series of papers by Zelmanov [3, 4, 5, 6]. In addition,
Zelmanov [6] has recaleculated and redrawn both
T-s and h—P diagrams which, as indicated later,
appear to be of good accuracy and consistency.
The Zelmanov 7T-s diagram is reproduced by
Zemansky [7]; and the h—P diagram, by Collins [8];
who, however, also reproduces the Keesom 7-s
diagram. Because of the crowded nature of the iso-
bars in the region of interest for the J-T process on
a 7T-s diagram, the A—P diagram is more convenient
for liquefier calculations.

At the beginning of this study there was no easy
way to judge the relative value of various conflicting
sets of data. In order to determine, at least, the
consistency of such data, a new dimensionless,
normalized correlating function w(P, 7) was intro-
duced. With this function, the consistency of
Zelmanov’s work was evident, and both the lack of
self-consistency of the 7-s diagrams of Keesom, and
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the inconsistency of these diagrams in certain regions
with Keesom’s own density data was apparent.
In addition, it appears that there may be some value
in this new function w(P, 7T) in theoretical studies,
since it implies that, above certain pressures, the
enthalpy of a real gas may be approximately given
by the sum of two linearly independent functions,
one of the pressure alone, the other, of the temper-
ature alone. However, not enough time was avail-
able in this study for further investigations in this
direction.

A second factor which complicates the design of
helium liquefiers is the behavior of the specific heat
¢, of the real gas at low temperatures. At high
temperatures ¢, of a gas gradually increases with
increasing pressure; but, at a lower temperature,
dependent on the pressure, this trend is reversed.
Ignorance of this effect has occasionally led the
unwary to design liquefiers in which the temperature
difference A7 at the bottom of the J-T heat ex-
changer would have to be reversed. This phe-
nomenon, which has been hinted at by Keesom and
discussed qualitatively by Zelmanov, is investigated
further in this study. In order to determine per-
formance, a method of analyzing J-T heat exchangers
in terms of one parameter—the heat exchanger
efficiency n—is presented, and graphs of yield curves
for helium based on this method are included.

The purpose of this paper, then, consists of three
things: First, and most important, to affirm the work
of Zelmanov (an adaptation of Zelmanov’s h-P
diagram is included as figure 1); second, to present
the correlating function w(P, 7) and discuss some of
its properties; and third, to show quantitatively the
effect of the variation of ¢, in the J-T heat-exchanger
on the liquefied fraction «.

2. Correlating Function w(P,T)

The enthalpy of a gas can be expressed as
WP, T)=["e,(P, T)AT+6(P)

where (7 is a constant of integration. For an ideal
eas, ¢,(0,7)=¢c,; and, for helium, which is a mona-
tomic gas, ¢,=(5R/2)=5.193 j/g-° K. In defining
the enthalpy of the ideal gas, h°=h(0,7), the con-
stant of integration /(o) was equated with the latent
heat of evaporation at 0° K, L.°, which is equivalent
to fixing the enthalpy (which at this point is equal
to the internal energy) of the liquid at P=0, T=0
as zero. According to Swenson [9], the extrapolated
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value of L°is 14.95 j/g. Thus, the expression used
for helium in the ideal gas state is

he=c, T+1°=5.193T4-14.95 j/g.

Just as an enthalpy in an “ideal gas’ state can be
defined by extrapolating to zero pressure, so an
enthalpy in an “ideal condensed phase” state,
ho=h(P,0), can be defined by extrapolating to zero
temperature. If V(P,0) is the specific volume at
zero temperature, then

ohy

OP /) rg

An attempt was made to express the extrapolated
isothermal compressibility at 0° K, k(P,0)=— (1/V)-
[(0V)/(0P)]z, by an empirical equation which would
have led to an expression for hy as a function of ex-
ponential integrals, /i(k). However, since this
required some simplifying assumptions, was not par-
ticularly suited for engineering calculations, and
lacked theoretical justification, h, was finally de-
termined by extrapolating Keesom’s density data
[1] with the aid of expansivity and compressibility
data of Atkins and Edwards [10]. The resulting
curves for hy, V(P,0), and also £(P,0), are included
as figures 2, 3, and 4. It should be mentioned that
Swenson’s extrapolated value [9] of V7(0,0), for the
liquid seems to be in error.

Having, now, both A°=h(0,7) and hy="~(F,0), the
remaining ‘“‘anomalies” of both the real gas and the
condensed phases can all be contained in a function

w(P, T) defined by

—fpk(PO)dP
=V(P,0)=V (0,00 Jo .

h(P,T) —ho(P)
he(T)

which is not only dimensionless, as is evident from
the definition, but has a total range of zero to one;
zero, for the condensed phases as 7—0° K; one, for
the gas as T— ; one, for the gas as P—o; and zero,
for the condensed phase as P—w.

Here, we use the symbols 7—=w or P—« merely
for convenience to indicate relatively high and in-
creasing temperature and pressure, but not so high
that the character of the ‘“elementary’” particles
implied by the choice of L° and A°(7T) 1s destroyed.
Thus, we assume, for instance, that the pressure is
not so high as to force an electron from the atomic
shell, converting the solid into metallic helium (esti-
mated required pressure 1,000,000 atm), or that the
temperature is so high as to form a gas mixture of
ionized particles. This restriction would be of even
greater importance for diatomic gases, such as hydro-
gen, which begin to dissociate from molecular to
atomic particles at relatively low temperatures.
Presumably, all the properties of the w function
could be reobtained in such cases by a redefinition of
L° and R°(T). For example, A°(T) would, then,
have to be the enthalpy of the gas in the atomic ideal
gas state and L° the difference between the energy
of isolated atoms at 0° K and the energy of (for
hydrogen) the erystal at 0° K and 0 atm. Some of
these effects, such as dissociation, however, are so
large that the introduction of a more general w

function would result in characteristics in the regions
of interest for cryogenic processes too small to be
useful.

From the theoretical point of view this function
does have the disadvantage that a discontinuity in
[(Qw)/(QP)]—though mot in w—is introduced by
the liquid-solid transformation for he at 25 atm.
However, this change in slope of w is slight, being
given approximately by A[(0h)/(dP)],=0.0524]/g-
atm (from the data of Swenson [9]). It would prob-
ably be of considerable interest to compare curves
of w (P,, T,) as functions of reduced temperature 7’
and pressure P, for several gases.

Further insight into the characteristic behavior of
w(P,T) can be obtained by examination of the
graphs (at end of paper). From figure 6 which gives
w as a function of P with 7' as a parameter, it can be
seen that all isotherms start with the same value,
w=1, P=0; that outside of the liquid II region, all
isotherms are everywhere decreasing functions of P;
that the isotherms are continuous except on passing
through phase changes; that no two isotherms cross;
that the slopes of all isotherms approach zero with
increasing pressure; and that, although the total
percent change in w along an isotherm is greater the
smaller the temperature, the pressure at which the
slope of an isotherm becomes effectively zero in-
creases with increasing temperature (for the 0° K
isotherm the slope becomes zero at zero atmosphere,
the value of w changing discontinuously from one
to zero through the vapor dome, and then remaining
zero for all nonzero pressures).

From figure 7, giving w as a function of 7" with
P as a parameter a similar set of statements can be
made; all isobars start with the same value, w=0
T=0;all isobars are everywhere increasing functions
of 7; the isobars are continuous except on passing
through phase changes; outside of the liquid I1 region
no two isobars cross; the slopes of all isobars outside
the liquid IT region approach zero with increasing
temperature, and approach zero more rapidly the
lower the pressure (the slope of the zero atmosphere
isobar being zero for all nonzero temperatures); the
value of w for all isobars approaches one with in-
creasing temperature, and approaches more rapidly
the lower the pressure (the zero atmosphere isobar
changing discontinuously from zero to one at zero
atmosphere). The liquid IT region sketched on this
diagram is somewhat uncertain, due principally to
lack of time for more extended calculations in an
area of little interest for liquefier design.

The limiting behavior of w(p,T) can also be de-
termined by considering its definition. It is obvious
that for 7—0, p><0, w—0; for p—0, T#0, w—1;
while for 7—0, p=0, or p—0, 7=0, w becomes un-
defined, but lies within the range 0 to 1. This is the
region of liquid-vapor coexistence at 0° K and zero
atmospheres.

When 7 increases without limit at constant and
finite p,

lim A(p,T)
. _ To= o
R e Y
T
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The second equality of this equation may be
obtained on the assumption that no matter how high

the pressure the system will become a “gas” for a
sufficiently large increase in temperature, with

enthalpy % approaching the enthalpy of an ideal gas
h°. This may be seen  for a region in which a virial
equation of state applies, where the higher virial
type coefficients in the pressure series are sometimes
taken as decreasing approximately as increasing
power of 1/7.

For increasing pressure, however,

Lim w(p,T)= hml°f c,(p,T)dT

P po®

-
=L [ Mlim ¢,(p,T)dT=0,

ho 0 pow®

since lim ¢,(p,7")—0, as can be deduced from the
P

fact that the slopes of the isobars with fixed 7 on a
temperature entropy diagram, [(07)/(0S)],= (1/e,),
approach infinity with increasing pressure (recall,
however, our restriction on the meaning of P—w).

The above combination of well-defined behavior
and range of magnitude makes the checking and
cross checking of enthalpy data with w-P and w-T
diagrams relatively easy. In particular, it has
indicated many errors and inconsistencies in the
T-s diagrams of Keeson, and affirmed the consistency
of the 7-s and h- diagrams of Zelmanov.

Since the enthalpy of helium can be expressed as

h(P,T) =ho(P)+w(P, T)k(T),

the fact that the isotherms on the w-P diagram
shown in figure 6 become approximately horizontal
at pressures that are not extremely high is of some
theoretical interest; for this behavior of the iso-
therms is equivalent to stating that w(P,T) becomes
practically a function of temperature, alone, even for
large pressure ranges; thus, since £° is also a function
of the temperature, alone, the enthalpy can be
expressed approximately as the sum of a function
of the pressure %, (which might be considered
strain energy term), and a function of the temperature
w(T)h°(T) (which might be considered a thermal
enerqgy term).

3. Liquefier Performance and Heat-
Exchanger Efficiency

Before discussing the J-T' heat exchanger for
helium use, it is desirable to review a few general
relations. Heat exchanger efficiency is defined as the
ration of actual heat flow to the ideal heat flow,
1= Qo @i, Where the ideal is that which would
occur if the product of the total effective heat ex-
ch(m(rv area and the over-all coefficient of heat

msf('r AK, is made infinite. However, in obtain-
111;: 7, Qrent :md Q,de_1 must be evaluated for the
same conditions; that is, the flows, pressures, and
inlet temperatures of both streams must be held

constant. Thus, for an arbitrarily defined heat
exchanger, the efficienc v will be an explicit function
of the ﬂ(ms, and—if the fluid properties are not
constant—an implicit function of temperatures and
pressures as well.

The efficiency of a two-stream, counter-flow, heat
exchanger can be expressed analytically in three
different fm'ms, depending on the flow conditions.
If m;, m, are the mass flows, ¢,;, ¢,,, the specific
heats, W,=—m, ¢,;,, Wo=muc,», the heat capacity
flows in the two streams, and writing, for convenience,
(/W)=[(1/W))+ (1/W,)], the expressions for effi-

clency are

== _1 —_— . ;V17 :)I‘Y]:
(ll'-_»)( li') (li 1>< " >
i w) k) 1 \w)\ak
where bars above quantities indicate that some kind
of integrated average over the heat exchanger must
be taken. However, obtaining such averages re-
quires a knowledge of the temperature distributions
in the streams, and if these were known, there would
be no problem in the first place. Thus, for heat
exchangers with variable fluid properties, the above
formulas can only be used to obtamn approximations
for efficiencies.

[t is our purpose, however, to show lmw liquefier
performance depends on an arbitrarily assigned
efficiency, rather than analyzing how the efficiency
of a given ho at exchanger may be determined. Thus,
our results will be correct for any exchanger that has
the assigned efficiency under the assumed flow condi-
tions. Since the efficiency of a given exchanger
varies with the flow, an important question is, to
what extent may a curve of constant efficiency also
be considered a curve of performance with fixed
exchanger characteristics? To this we can only give
a qualitative answer; since the efficiencies of J-T
heat exchangers are ordinarily very high, even with
equal heat capacity flows in the streams, _the efficiency
will not be a very strong function of the flows. To
justify this statement, we use an example, based on
an approximation of constant and equal fluid proper-
ties in the streams of a typical counter-flow heat
exchanger.

Remembering that the film coefficients are given
by equations of the form Nu=C Re%® Pr® writing
K, for the over-all coefficient of transfer for the
particular case where equal flow exists and o=
[(AK,)/W5)] and introducing the liquefied fraction
a to specify the relation between the mass flows

— Wy, W
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Wi=—(0—a)W,, the efliciency is given by the
equation
1:1———7 < — 0L5a<1
n 1 Qp_szo—a
i—o(l—a)

or, in the limit as «—0, as evaluated by I"Hospital’s

Rule,
1=1—{——1'; =10},
n [0

From these it is easy to see that,
increases with increasing o,; and, for any oy, 7
increases with . However, in the limit, as ¢y—> o,
the limiting curve n(a) becomes merely the hori-
zontal line n=1. For large, but finite ¢y, n(a) will
remain nearly horizontal and nearly straight, so
that—as mentioned before—y is not a very strong
function of « for J-T heat exchangers.

To get an idea of the magnitude of the change we
assume some arbitrary values. Suppose Ky=50
w/it2-°K and A=25 ft2. Also, let m,=0.01 kg/sec,
¢2=5000 j/kg-°K, so that W,=50 w/°K, and ¢o=25.
Substitution of these values in the above equations
shows that the efficiency varies from 96 percent at
a=0, to 100 percent at a=1. In real liquefiers the
variation would be even less; since & would ordinarily
be in the range 0.2 to 0.5.

for any a, 7

4. Calculation of Performance From
Efficiency

The liquefaction rate « will now be determined
from the inlet, high-pressure stream pressure and
temperature and the heat exchanger efficiency using
only specific enthalpies from an A—P diagram. In
making an enthalpy balance, the specific enthalpy A,
at the inlet of the high-pressure stream is determined
by the assumed prossure and temperature, and the
specific enthalpy £, at the inlet of the low- -pressure
stream is assumed to be that of the saturated vapor
at 1 atm. Thus, only two quantities, the specific
enthalpy A, above the J-T valve, and the specific
enthalpy 4, of the return gas at the outlet of the low-
pressure stream, are available, and only one of these
1s independent since

hi—hy=(1—0a) (hy—hy).

Furthermore, if 2; and A; are the values of &, and &,
when =100 percent, the efficiency in any other case
18 given by

he—hy hi— h,
U U e
so that we can write
hi=h—n(h;—h})

and

]z,rzhg—f— ‘r](hr—h;l/)'

It should be reemphasized here that the efficiency is
defined in terms of two heat flows (or enthalpy
changes) under the same conditions of inlet pressures
and temperatures and the same mass flows.

Since enthalpies must balance for the whole J-T
process, as well as just the heat-exchanger, we can
also write

h,=ah,+ (1—a)h,

where /y, is the specific enthalpy of the saturated
liquid at one atmosphere. Thus a can be expressed by
either of the equations

h,—h, }L__}i

“—h,—h " he—hy,

Substituting for &, and A; their expressions in terms
of i, and A}, and writing L,=h,—h,, these equations
become

hy—h,

"Thi—hy b=l hi—h,

“— L "L T L
U‘*‘]*L;Thg

Now, a reasonable assumption is that, for =100
percent the temperature difference between streams
AT becomes zero at some point in the heat ex-
changer. We should not naively assume that, in the
most general case, this might not be in the middle of
the exchanger, since this is exactly what would hap-
pen if ¢, for the high-pressure stream were lower
than that for the low-pressure stream at the higher
temperatures, and conversely at lower temperatures.
For helium in the J-T process range, however, the
reverse is the case, and thus, A7 must diminish
towards the top of the exchanger, and—for suitable
initial pressure and temperature—diminish again
towards the bottom of the exchanger. Thus, the
ideal case will be characterized by having AT=0 at
either the ‘top or the bottom of the exchanger. If
we write ," for the value of h; when AT=0 at the
top, and h} for the value of h; when A7=0 at the
bottom, then—since both hy' and by can be deter-
mined immediately from an A-F diagram—there will
be two different possible equations for the lique-
faction rate « in which all the quantities are known:

i i};" flLL
(a) a—~—f”; AT—0 at the top;
G =y
hi—hy  hi—h

(b) £, AT—0 at the bottom.

«=1"7., L,

In case (a) we can determine A; by an enthalpy
balance and see whether A;>A); if not, the as-
sumption A7=0 at the top must be wrong, and we
would have to change to case (b). Similarly, in
case (b) we can determine 4, and check that &, (h"
Actually, however, such a check is unnecessary, since
the two assumpt-ions will result in two curves inter-
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secting where A7'=0 simultaneously at the top and
bottom of the exchanger, and it will be immediately
evident which branch should be used to form the
composite curve for the liquefaction rate.

Such composite curves of « as a function of P
with 5 as a parameter, for helium, are shown in
figures 9, 10, and 11. The discontinuities in the
slopes of these curves would be disturbing if one did
not recall that, even for the case of constant fluid
properties, the efficiency of an exchanger is expressed

by two different formulas, depending on whether W

is positive or negative. It is just the change of the
total average value of W from positive to negative
with the variation of specific heat of helium, which
produces two independent branches in the curves
shown.

The differing way « varies with 5 for these two
branches should be especially noted. For lower
pressures, relatively large changes in 5 have only a
small effect on «. If, however, a pressure is chosen
at or slightly above the “optimum’ pressure, « will
not only decrease rapidly with increasing pressure,
but at a given pressure, will drop drastically with
slight reductions in beat-exchanger efficiency. There-
fore, it is desirable to be somewhat conservative in

»
o

ENTHALPY , j /g
w
o

n
o

the design pressure for a liquefier in order to allow
for possibly too optimistic estimates of heat-ex-
changer performance.

5. References

[1] W. H. Keesom, Helium (Elsevier, Amsterdam, 1940).

[2] International Institute of Refrigeration, T—S diagram
for helium (Paris, 1941).

[3] J. L. Zelmanov, On some peculiarities observed in the
liquefaction of helium, Compt. rend. acad. sci. USSR
19, 469 (1938).

[4] J. L. Zelmanov, On the liquefaction of helium by means
of the Joule-Thomson effect, Compt. rend. acad. sci.
USSR 20, 537 (1938).

[56] J. L. Zelmanov, A new method of helium liquefaction
by means of the Joule-Thomson effect, Compt. rend.
acad. sci. USSR 22, 25 (1939).

[6] J. L. Zelmanov, The entropy diagram for helium at low
temperatures, J. Phys. USSR 8, 135 (1944).

[7] M. W. Zemansky, Heat and thermodynamiecs (McGraw-

Hill Book Co., Inc., New York, N. Y., 1951).
[8] 8. C. Collins, Helium liquefiers and carriers, Handbuch
der physik, 14, 112 (Springer, Berlin, 1956).
C. A. Swenson, The liquid-solid transformation in helium
near absolute zero, Phys. Rev. 79, 626 (1950).
K. R. Atkins and M. H. Edwards, Coefficient of expan-
sion of liquid helium IT, Phys. Rev. 97, 1429 (1955).

SPECIFIC ENTHALPY
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(Adapted from
[ Zelmanoff ) J
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Fiaure 1.  Specific enthalpy of heliwm.

Adapted from Zelmanov
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Ficure 12.
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Yield e for several heat exchanger efficiencies as a function of inlet
temperature and pressure.

Bourper, Coro., August 30, 1957.
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