Journal of Research of the National Bureau of Standards Vol. 60, No. 2, February 1958 Research Paper 2824

Energy Spectra of Cascade Electrons and Photons'’

Charles A. Olson ? and Lewis V. Spencer

The equations for the energy spectra of electrons and photons in a cascade shower are
written in a form suitable for numerical applications with accurate cross sections. Trial
calculations were carried out to check the feasibility of a step-by-step numerical integration
procedure similar to that used successfully at low energies in noncascade problems. Numerical
results were obtained for lead by using a monoenergetic source of electrons at 360 m¢? and
extreme relativistic cross-sectional forms, which assume complete screening. The method
was designed to permit the determination of cascade-shower spectra, spatial distributions,
and directional distributions that are exact in the sense that the main limiting factor is the
accuracy with which the cross sections are known. The numerical results of the trial calcula-
tions were found to agree with previously published results based on more restrictive methods
of analysis.

1. Introduction

High-energy electrons and photons dissipate their energy by generating secondary electrons
and photons. The complex radiation arising in this manner from a high-energy electron or
photon source is called a cascade shower. Most attempts to describe this phenomenon have
used approximations that are valid only at very high energies, i. e., in the extreme relativistic
range; and the results have only limited applicability in a broad range of lower energies where
the cascade phenomenon is still of importance. At these lower energies realistic calculations
must be largely numerical because the accurate cross-sectional forms are too complicated to
permit analytic transformations.

In this paper a calculational procedure which applies without restrictions on cross-sectional
forms, and which has been used in noncascade problems, is adapted to the cascade situation.
It should provide an adequate way of describing cascade-shower spectra in any energy range.
Because the equations are part of a linked set of moment equations, which describe also spatial
and directional distributions, and possibly fluctuations, the procedure in this paper may
eventually form the basis for a more complete description of many aspects of the cascade
problem.

The equations are applied, in a trial calculation, to the special case of a monoenergetic
electron source. Calculations for an electron source are more important than for a photon
source for the following reason: If a photon source is assumed, it is possible to calculate the
resulting photon spectrum at all energies. This type of calculation has been done many
times and offers no difficulty (for an example, see reference [1]).* One can then determine by
stmple quadrature the electron spectrum generated by this photon spectrum. The whole
cascade spectrum of electrons and photons, except for the initial photon component already
determined, can then be determined by appropriate superposition of solutions for mono-
energetic electron sources. Thus, calculations for a monoenergetic electron source demonstrate
that the main difficulty blocking a complete numerical analysis of the cascade problems is
removed.

For the initial calculation, extreme relativistic cross-sectional forms that assume complete
screening are used. They include the same types of singularity as the exact cross sections
and therefore provide a meaningful trial run. Also they are quite similar to the cross-sectional
forms used in earlier applications of conventional cascade theory; so they make possible a direct
check with previously published results.

1 This work was supported by the Office of Naval Research and the Atomic Energy Commission.
2 Submitted to the University of Maryland in partial fulfillment of the requirements for the M. S. degree.
3 Figures in brackets indicate theli* ~ture references at the end of this paper.
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2. Interactions Involved in Cascade Showers

The two types of interactions that predominate in the development of cascade showers
are bremsstrahlung and pair production. In a bremsstrahlung interaction a high-energy
electron or positron, under the influence of a nuclear or electronic field, generates a photon.
In pair production a high-energy photon in the electromagnetic field of a nucleus or electron
gives up all its energy to generate an electron and a positron. The combination of these two
processes results in the creation of photons, electrons, and positrons in increasing numbers at
lower energies.

At all energies below the extreme relativistic range, there are additional effects that influ-
ence the development of the showers. There are energy losses due to atomic interactions that
slow down the electrons more or less continuously along their path. Some of these interactions
result in secondary electrons with high energies, 1. e., knock-on electrons. Compton scattering
also contributes some high-energy electrons to the shower, but at low energies it is of primary
importance through its influence on the photon spectrum. The photoelectric effect and
photonuclear interactions have cross sections that are much smaller than the other interactions
at all cascade-shower energies, though the former is of importance below shower energies.

3. Discussion of Earlier Work

An excellent discussion of the lines along which the mathematical description of the cascade
phenomenon has been developed can be found in a book by B. Rossi [2]. Because the proce-
dural methods of this paper are directed mainly toward a solution of the cascade problem at low
energies where accurate cross-sectional forms are needed, comments here on earlier work will
be restricted to developments pertinent to these lower energies.

The first attempt to describe a low-energy cascade spectrum was made by Arley [3]. He
neglected interactions that slow down the electrons, i. e., ionization losses, above the critical
energy; * and he further neglected bremsstrahlung and the generation of secondary electrons
by all processes at energies below the critical energy. His results as compared with more
recent calculations are low by a factor of 3 or 4.

Tamm and Belenky [4] have obtained a much more accurate solution by an analytic
method, using asymptotic cross-sectional forms for bremsstrahlung and pair production, assum-
ing continuous ionization loss and neglecting the Compton effect and knock-on electrons.
Their solution has proved to be more accurate than was at first expected, considering the
approximations. Friedman [5] has discussed their solution at length and computed a first
correction term. This correction term never exceeded 4.5 percent of the original solution in
the case that Friedman considered.

Perhaps the most satisfactory treatment of the energy-spectra problem for low energies
has been given by Richards and Nordheim [6]. They have used reasonably accurate repre-
sentations for all important interactions, but they treat small radiation and ionization losses
as continuous, thus incurring an error of up to 8 percent, according to their own estimates.
They obtain results by numerical integration for energies from % to 10 times the critical energy.
Their results are not absolute and do not describe the spectra near the initial energy. To
obtain more complete spectra, it is necessary to normalize their equations to a solution valid
at high energies, and they have used the results of Rossi and Greisen [7] for this purpose.

All these calculations are difficult to generalize to a more accurate treatment of all the
different interactions, and hence there is a need for a new approach that will permit use of
arbitrarily accurate cross sections.

4. Analytic Treatment of the Problem

In this section equations will be derived for the energy spectra of electrons and photons.
No distinction is made between positrons and electrons, the two being considered as having

4 The critical energy in a given material is the energy at which the radiation losses of an electron equal the ionization losses.
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identical cross sections and combining te make up an “electron’ spectrum. The differentia]
energy spectrum for electrons will be represented by I(£)dF, which is the track length traveled
by all electrons in the energy range I to /4-dFE. H(a)de represents the photon spectrum simi-
larly.® In all cases energies are in units of me?, and the electron energies include the rest energy.

To set up equations in terms of /(#) and H(«), a time-independent source is assumed.
Physically, this means a continuous cascade in which the average number of electrons, positrons,
and photons at any given energy remains constant with time. The equations will be derived in
a general form, and considerations of the interactions and cross-sectional forms will be reserved
for a separate section.

Continuity equations for /(/) and H(«) can be written as follows:

| ke B 1) =) + [t B ) )
E E
f:da’kﬂs (o o) H(a) =5"(c) + f:dE’k“<E',a>1<E'>, @)

where

ke (L’ E) is the total probability per unit path length traveled for an electron of energy E’
to undergo an interaction that removes it from the energy range above £

k(o I) is the total probability per unit path length traveled for a photon of energy o
to generate an electron of energy greater than 77

s¢(F) is the total source strength for generating electrons with energies greater than £, and

k(o) kP5(E’ o), and s7%(«) are similar quantities with the photon and electron roles
reversed.

Note that the superscripts refer to “electron scattering,” “photon generating,” ete., al-
though strictly speaking the interactions include types other than scattering. Physically, eq
(1) states that for a time-dependent source the rate at which electrons are removed from the
energy range above /£is equal to the rate at which electrons come into the energy range above
FE. Equation (2) has the same meaning for photons.

Equations (1) and (2) completely define I(£) and H(«) for specified sources; however,
these equations as they stand are not very suitable for numerical work. It is advantageous to
make further transformations suggested by the nature of the variations of spectra and cross
sections. The particular choice given here is based largely on numerical and analytic ex-
ploratory calculations that are not sufficiently pertinent to the main discussion to warrant a
detailed description, but some general arguments to justify this choice are given below.

I(E) may vary rapidly if s**(F) is discontinuous (i. e., if the source is concentrated at some
energy), as for example, in the case of figure 1 in reference [8]. A more slowly varying function
on which to base a step-by-step numerical integration is

) (¢ ”»

F(E)— f:dE’I(E’),

which gives the track length traveled by all electrons while their energy is above . The func-
tion H(«a) may also be singular if the source function s7¢(«) is discontinuous, but photon cross
sections permit the removal of such singularities by iteration (see, for example, reference [9]).
It is therefore not necessary to utilize an integral form of the photon spectrum.

Equation (1) could be rewritten in terms of /() by partial integration, but this results in
the differentiation of k% (£’ E), which is already singular as /2" approaches . A further trans-
formation is needed to make the equation more tractable, namely integration of all terms of eq
(1). With regard to eq (2), k7*(a/,a) and k?*(L’,«) are integrals of nonsingular cross sections.
It is therefore possible, and in fact advantageous, to accompany the partial integration of the
last term in eq (2) with a differentiation of all terms in the equation.

6 (E) and H(a) arein the units g em~2(Mc?)-1sec~l. These are track-length units referring to a source of one electron, The dimensions of
I(E) and H(a) change to those of flux if the source is 1 electron per gram per second.
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Applying these transformations we obtain for the left side of eq (1)

© [<-] (e} El
f dE’ f AE" ke (B E") [(E"")— f A I(E") f dE k(B E")
E B4 E E
2 E’/F E/ a ik ”].es 4 ”n
:Ld. ( )a—E—,jEdEk(E,E).

E’ |

The other term in the integration by parts, —F (E£’) I:f dE"lc“(E’E”)]ﬁ » 18 zero at both
E \E

limits.

Equation (1) thus becomes

f dE'K"(E',E)F(E’)zS”(E)—{—j cc)doz'K“g(a’,E)H(o/), (3)
E E
where

E’
Kes (E,,E) :a%,fE dE”kes(E/,E”),
Ke(o!,E)— f “AE k(o ),
E

Seg(E)=f dE/Seg<E/).
E
Equation (2) becomes
p(a)H(a)——f do/ K7 (o’ @) H (o’ ) =S7*(ax) +f dE'F(E")K?*(E’ a), (4)
Note that the other term on the right side,
O ( F(E" k(B a) |3
'az{ (E")k7s( )a)|El_a}!

obtained after integration by parts, is zero at both limits.
The various quantities in (4) are defined as follows:

pl(e) =k (0y0) (4a)
is the total photon interaction probability per unit path length for photons at energy a.

K’”(a',a) :akm(a/,a)
O«

=NZo(d,a), (4b)

where o(a/,a) 1s the photon differential scattering cross section per electron, and N is the
number of atoms per gram.

% (E' ) O

KB ) =—"3r5e o’

No(E',a), (4¢)

where o(£’,a) is the cross section per atom for producing radiation.

__0s%(a)

Sz)g(a) — Sa

(4d)

s the photon source strength at «a.
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5. Interactions and Cross Sections

Equations (3) and (4) as derived in section 4 make no reference to specific interactions or
cross-sectional forms, and consequently this choice can be adapted to the specific nature of each
problem. In terms of the interactions discussed in section 2, the functions K may be written

K (E’ y E) :Kbrcmsstmhlung losscs+ Katomic interactions,
Keg(a/,E) == Kpair production‘+‘ KCcmpton electrons;
K (a,ya) :KCompton photons;

Kpg(El’a) :Kbremsstmhlung photons)

,U(a) =M (a)pair production + M (a) Compton photons + M (O() absorption«

At this point accurate cross-sectional forms could be introduced in the equations, but an
examination of their suitability can be made with simplified forms similar to whose used by
earlier investigators. Specifically, (a) extreme relativistic cross sections are used, (b) com-
plete screening is assumed, and (¢) the rest mass of the electron has been neglected insofar as
it influences the limits of the integrals. Detailed cross sections are given in appendix 1. The
K functions derived from these eross-sectional forms are

K“(E’,E):N‘i&{[—;—% In (1_”)+'§ (1—n‘>—ils- nz—-:l;' n:‘] In 1837 ~%

11 _ e 777 O 1 Ti2n—1
S g In(1 n+()(1 ) }+\/ Sl od ye=

where n=E/E’;

3

K¢(a’ E)=N8pa’ {I:]q ()n-i—‘)‘r) ()n—{—()n]ln]x;/ ,;_m 2 .4
; 1

+1()8}+ \/8% [(1—77) (lnl' +ln 2= +1n‘>—;>+0 P _3]

K" (e, )=NZ 5 pp = (n*+),
8 o’

= . . v/
where n=FE/a’;

- . — 4
where n=a/a’;

K™(E’,a)=N4g — [(-— n*-27% In 1837

14

pla)=N4g -9?111183Z'55*—5i4:|+7\7/ er — |:111~a+i]

QDH-—A

where n=a/E’; and

6. Numerical Treatment of the Problem

In determining a convenient system for the numerical integration, we note that the func-
tions A depend primarily on ratios between the two energies involved. We wish to take
advantage of this scaling property by choosing integration steps of equal length in the logarithm
of this energy ratio. This choice of integration mesh has the additional advantages that one
can integrate over an enormous energy range with comparatively few steps, and that a cross-
sectional tabulation can be made that is applicable to widely different energy ranges.

The numerical integration is performed by Simpson’s rule, using modifications of the
familiar (%, 4, 2, & 1) A set of weights to make the rule apply also to an odd number of intervals.
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The integrals were computed essentially as follows:
f JE K (B E)F(E') — f d(n B E'K*(E' E)F(E")
=§O o e K (B B, F(E)
=§0 0K (B, E)F(E).

Note that the integration weights w;, decrease in size as the energy decreases. More details
are given in appendix 2.

Despite the transformations discussed in section 4, the function K*(E’,E) in eq (3) 1s still
singular. However, this singularity causes no difficulty if one writes the integral in the fol-
lowing manner:

J AR K (B E)F(E")— f B K (B E)[F(E')— F(E)|+ F(E) f AE K (E | E).
E E E

Note that the first term on the right is no longer singular and can be integrated numerically.

The last term can be evaluated without difficulty by integrating the singular parts of K* (£’ )

analytically. Notice also that as £’-—>FE, the first integrand is finite, approaching the limit

A[oF(E)/oE], where A:E]in)r(E,_E)KM(E,’E)' This term is very small and needs to be evalu-
' > E

ated only approximately. A three-point numerical differentiation formula, described in appen-
dix 2, was adopted for this purpose, the corresponding weights being denoted by a;. By
utilizing these devices, we represent the first integral of eq (3) as the sum of terms

=1

=il
F(En) [_%/CS(E,J_% winKeS(Ei;En) +Aar1]+20[winKes(EiyEn) +Aa/1]F(E1)}

i=
where .//“(E):f dE'K*(E’F). Note that a; is zero except for 1=n, n—1, n—2.
E

If the functional form of K*(FE’,FE) is that given in section 5,

A5 (E)— N4 3F, r[—l—-‘%q—n)m(l ) +Ea—y +1n2+1n3:| In 183Z-13— L
. "i 3 3 T3 6 6 18

3
L 1 ) 3 1—n)E,
—5(1=n) In (1—n)+5(1—n) +f—8} R

where n=1I/L;, and [} is the highest energy of the source of electrons and photons. For a

discussion of the choice of the cutoff value @, see reference [8].  In this paper it hasbeen evaluated
as follows:

— 1/1,2\* e
Y el TR 1Y 1)) —-11
Q=3 mcz) yor | 4.9214%10°1,

where 1,=13.5 ev.

The function K7¢(£’ @) in eq (4) is not singular, but the exact expression varies rapidly as
I’—«. This can easily be taken into account by using addition-subtraction as before:

f CAE' KB’ o) F(E')— f T A K (B o) [F(E")—F(E) 5]+ F(E) 0 f B K (Y o).
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Written as a sum, this term becomes

) n—1 n—1 . L .
[‘(Ell> [%/ pg(“ul _‘ZowinKpg(Ehan)] —f_z)winlX pg(Evhan) [{ (1411') ]
i= i=
where .7 ”g(a)zj Al K7 (' ). If the functional form of K7#(F’,«) is that given in section 5,

/4 7"'((1)—]\74<p~[< n+n2)lll 1837~ 1/3—i— :I

where n=a/ L.
Equations (3) and (4) can now be written in their final form for numerical evaluation:

P =g gy | S War )+ EWisH ) +5(E | 3)
n—1
Hlo) =g [F(Ia‘,,m’*(a,,)+ZWI:5F(AL>+2u "2 (o) + 57, )], (6)
\Xnp 1=0 i=()
where
I'I'yf;\;:wians (EiyEu) +‘/1(Li, A

Teg

11 ifl“me (al)] n)y
l{/ 7:5: W; ”Kpg(Ei ,(1,,) ’
II'I:; —w; ]‘I{ps (ai van) y

=l
(ve (]fn> :-%/”(En)—z w’:”K'es (Eiv Jn) +41(1m
i=0

@2 (an,) :M<an) ‘(JJ,,,,K"’(C!,,,Q,,) )

n—1

[’)mz(a)ﬂ_//pg ) Z[ m

i=0 7

These seven functions depend only on cross-sectional forms, and they are evaluated separately
prior to the main calculation. Note that eq (5) depends on F(F;) and I («;) but not on H(«,),
while eq (6) depends on F(/,) and on F(F;) and H(e,). Therefore, eq (6) must be determined
after eq (5) at each step in the integration. The problem of how to start the calculation is
taken up in the next section.

7. Special Solution Near E,

F(I) and H(a) must vanish at the highest energy, F£. It would be possible to use eqs
(5) and (6), with the cross-sectional forms that have been listed, to solve for the spectra near
I, But it was found more convenient and accurate to do a separate calculation because the
solution near Fy has certain special features. In particular, we note that (1) for small energy
losses it is always possible to use extremely simple cross-sectional forms, (2) the linkage be-
tween the electron and photon equations can be simplified because the higher cascades have
negligible influence in this energy region, and (3) it is possible, though not necessarily desirable,
to seek analytic solutions.

Because even an analytic development leads to a numerical integration, it appeared most
expeditious to employ eq (3), with the simplifications just mentioned and a finer integration
spacing, to develop a solution in this region. In particular, for an electron-generated cascade,
the term for generating electrons from photons and the term A[QF(F)/0F] are very small and
can be neglected. The remaining functions K can be written in the approximate form:
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es / == A — E,_E
K (E’E>_E’—E Bln E, +C,
o =AnEE_ g pn B o),
2]

where A, B, and (' are constants (see appendix 1).
.. 111
The quantities (7) were tabulated at F, }<27"/5 where m=gry
a special set of weights; but otherwise the evaluation in this special case is carried out by
using the appropriate form of eq (5) in a manner similar to the main calculation. Results
of this special solution not only give the solution near £, but also permit a more accurate
evaluation of the integrals in eq (3) for o K’ >FE,<27"% In this energy region the use of
Simpson’s rule with 2716 spacing is not really a good enough approximation because F(E)
has large nonquadratic variations.

1. This spacing required

8. Calculations

The calculations in this paper are based on a monoenergetic source of 1 electron per second
at 360 me? in lead. Results were first obtained for the special solution near £;. The main
calculation, extending down te 5.6 me?, was carried out in two parts, using the mesh £, 27"/
to the energy £, and the mesh ££,<27"/% from that energy to £=5.6 mc.

F(Ej)
F(E;)

H(aj)
H(aj)

Ficure 1. Arrangement of tabulated functions.

The calculation was facilitated by arranging a triangular tabulation of the four W’s
and a linear tabulation of the (s and D in a form shown in figure 1. Most of the work went
into tabulating K functions and W’s, the final computation being carried out in a few hours.
The results are given in table 1.

Any error had the effect of introducing an oscillation in the final computation, with alternate
points being too high and too low. The integration procedure appeared stable in that such
oscillations tended to damp out slowly rather than to magnify. By plotting the results it was
possible to use these oscillations to find errors. The final sequence of numbers is smooth,
1. e., nonoscillatory, to better than 1 percent, which may indicate that the integration procedure
introduced errors no larger than this, although the possibility that errors may have piled up

at low energy is not excluded.
TaBLE 1. Results

[ T n 7
| | | i
[ E I F(E) ’ Hi(a) | E F(E) | H(a) (| E ‘ F(E) } H(a)
‘ ‘ . i w
| | | |
360.0 0 |0 160. 4 5.26 0. 0409 \‘ 284 | 224 1 1. 44 |
354. 8 0.751 | . 142.9 5.92 .0537 | 2.5 | 268 P22
| 349.8 IS0 | S S, 127.3 6. 52 . 0693 \‘ 179 | 314 [ 32
| 339.8 1.35 0.00488 113.4 7.31 L0901 | 14.2 36.5 | 480 |
| 320.7 176 . 00652 0.0 | 7.97 .115 [ 11.3 41.6 | 6.8
| |
285.7 | 2.47 . 00985 90.0 8.91 . 148 [ 893 | 47.9 | 101
254.6 | 3.05 .6135 714 10.5 . 235 ‘ 7.09 | 538 ‘ 13.8
2.8 | 361 | .0180 56.7 13.0 . 384 ‘ 5.63 60.3 19.2
2020 | 414 | -0238 45.0 15.6 o1 || \
180.0 4.7 L0314 35.7 18.9 . 044 \ J i
|
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9. Discussion of Results

The results in table 1 are plotted in figures 2 and 3, where they are compared with the
results of Richards and Nordheim [6] and calculations based on the analytic solution given
by Rossi and Greisen [7].  (See appendix 3 for a discussion of the normalization.) For the
comparatively low initial energy considered here, the equations of Rossi and Greisen are only
accurate in a very limited energy region around 130 me?. At lower energies, as pointed out
by Richards and Nordheim [6], a more accurate representation of the interaction probabilities
is necessary. The Richards and Nordheim numerical calculation was based on more accurate
cross-sectional forms, but their results are normalized to those of Rossi and Greisen at 131 m¢”.
Thus, near that energy, the significant comparison is with Rossi and Greisen. At lower
energies, due to differences in the cross-sectional functions involved, the three curves go apart.
At energies near [, no comparable calculations have been found. Thus the only energy
region where close agreement between the spectra calculated in this paper and those given by
the other authors could be expected is from & to 1/,. In this region the agreement is shown
in figures 2 and 3 to be quite good.

Through a consideration of the specific cross-sectional forms used in the three calcula-
tions, some further comparisons are possible at lower energies. IFor example, the spectra of
Rossi and Greisen indicate a larger number of electrons and a smaller number of photons than
reported in this paper. This is caused mainly by the cross section for pair production, which
is significantly lower under the complete screening approximation than the asymptotic form
used by Rossi and Greisen. Thus, in the calculations in this paper, low-energy photons do
not generate as many electrons, and there results a decrease in F(£) and an increase in //(e)
relative to Rossi-Greisen. The spectra of Richards and Nordheim indicate a much larger
number of electrons and photons at low energies. Although this must be traceable similarly
to a difference in cross sections, the reasoning is not as straightforward in this case.

\‘ N
RIGHARDS & NORDHEIM ——-——
501 ROSS| &8 GREISEN —————— RICHARDS & NORDHEIM ———-—
’ THIS PAPER———MM——— ROSS| & GREISEN ——————————
10— \ THIS PAPER e
20}
1.01—
10— H(a)
F(E)
oi—
sl
.01
2
I ! l L 1 I | |
5.6 i 22,45 90 180 360 56 " 22 35 90 180 360
E, m& UNITS a, mc? UNITS
Frcure 2. Comparison of F(E) with previous results. Fiaure 3. Comparison of H (a) with previous resulis.
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10. Final Comments

The agreement as to general trends and as to absolute imagnitude near 1, demonstrates
the feasibility of the calculational procedure developed in this paper. Logically, the next
step is to introduce accurate cross-sectional forms into the equations to obtain more accurate
spectra. Alternatively, one could move immediately toward a solution of the spatial and
directional distributions. This would involve computing the higher moments in the linked
set of equations of which these spectra form the zeroth moment (for an example of this, see
reference [10]).

11. Appendixes

Appendix 1. Cross-Sectional Forms

The following detailed cross-sectional forms were used to derive the functions K discussed
in section 5
Bremsstrahlung losses [11]:

oo(E' E) 4¢F”< )[(1+” 2)1 ]83Z““+—J
where n=FE/E’.

Electron atomic interactions [8]:

ow(E' E)=3 or | st |
where 7=E/E’.

Pair production (either electron or positron) [11]:

- PR
opy(a, )=8p $ I:(% "12"‘% n+1>1n 183Z"/3——§ 1)(1—71)];

where n=FE/a’.
Compton electrons:

, 3 1 Z =]
Ucc(“ zE) =§ er 075 [‘%Mﬁ‘”—z*:l’

@
2 1
el 0) =5 o7 j ]

Compton photons:

where n=a/a’.
Bremsstrahlung photons [11]:

l — i A=
ooy (B ) =4p = (— =+ >ln 18374*/"4——?77— l,
where n=a/L’.

The cross-sectional constants were evaluated as follows:

2 Z41 ) ey
=1a7 7 =3.9435 barns, =

and
8
pr=3m r3=0.6652 barn.
The constants A, B, and C'in the special solution near %, (section 7) are obtained from the

expressien for K“(L’ E); they are coefficients of the terms proportional to F=*(1—y)~1
—In(1—n), and 1, respectively, in the limit £ E'—E,:
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I N N
B=N4p [} In 1837 53-{-6]:0.2.53‘.)

B T & I B
( :J\r4<p ["6 In 1832} '—‘6]‘—'1 J\/Z(prp E(‘)—_‘OI-LSI

Appendix 2. Integration and Differentiation Weights

To obtain the integration weights w;, used in connection with eqs (5) and (6), the following
formulas were used :

zy+A A

f . dxf(x) zs [f (o4 A) +4f (xo) +f (2—A)]
*zytA A

J ([lf(’) e 12 [Qf(-"n‘l’ A) 'i’Sf(-"n) _f(-"n_ A)],

tZo 24 3A .
[ (["f(’) = 4 [f(.l‘(,—{—QA) ’ll‘:;f(-rn)]:

zry—A
where f(z) is a function that varies slowly for z in the region of integration.

For differentiation the weights @, were determined by using the following formula:

1) I (B,—E))
OF() i 1 o [EEED
oE, — VD 2 g [F 2l EY 11 (E,— E)

i#=n i#=n i
J#1

Appendix 3. Normalization of Previous Results

The following results were obtained by using a table of calculations given by Richards
and Nordheim [6].

!
E F(E)=69.86Fxx(E) | H(e)=5.3299(K) }
131 ‘ 6. 43 \ 0. 0639 |
91. 8 9. 08 “ 171 |
65. G 12. 6 | . 384
39. 3 21. 0 1. 12
26. 2 30. 0 ‘ 2. 61
19. 7 37.7 4. 74
‘ 13. 1 49. 6 ‘ 10. 7
; 6. 56 7il. 3 ‘ 34. 1
|

The normalization factors arise in the following manner:
o 184 . . o .
69.86=| 0.437 ><~6774 K density of lead (11.005) Xradiation length (0.529)

- YNy ; 1
5.329=69.86 < energy conversion factor 1311
For a discussion of the factor in square brackets, see reference [6].

95



The following results were obtained by using the equations of Rossi and Greisen [7] under
“approximation B”’:

E F(E)=5.822Z(Ey, E) H(a) =2.9752,(Ey, W)
180 4.77 0. 0348
90 9. 02 . 132
15 16, 4 ‘ . 482
22. 5 28. 5 , 1. 70
|

The normalization factors arise in the following manner:
5.822=density of lead (11.005) X radiation length (0.529),
2.975="5.822 X me? (0.511).
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