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Energy Spectra of Cascade Electrons and Photons 1 

Charles A . Olson 2 and Lewis V. Spencer 

The equations fo r the ene rgy spectra of electrons and photons in a cascade shower are 
written in a form suitable for numerical appli cations with accurate cross sections. Trial 
calculations were carried out to check the feasibility of a step-by-step nu merical in tegration 
procedure similar to t hat used successfully at low energies in noncascade problems. Numerical 
results were obtained for lead by using a monoenergetic so urce of electrons at 360 mc2 and 
extreme relati vis tic cross-sectional form s, which assume complete screening. The m.ethod 
was designed to permit the determination of cascade-shower spectra, spat ial di stribution s, 
and directional distributions t hat are exact in the se nse t hat t he main limi t ing factor is t he 
accuracy with which t he cross sections are known . The numerical resul ts of the trial calcula­
t ions were found to agree with previously published results based on more restrictive methods 
of analysis. 

1. Introduction 

High-energy electrons and photons dissipate thei.r energy by generating sccondary electron 
a nd photons. The complex radiation arising in this manner from a high-energy electro n or' 
photon source is called a cascade shower. 1I108t attempts to describe this phenomenon have 
used approximations t hat are valid only at very high energies, i. e., in the extreme relativistic 
range ; and th e results have only limited applicability in a broad range of lower energies where 
the cascade phenomenon is still of importance. At these lower energies realistic calculaLions 
must be largely numerical because t he accurate cross-sectional forms are too compli cated to 
permi t analytic transformations. 

In this paper a calculational procedure which applies without restrictions on cross-sectional 
forms , and which has been used in noncascade problems, is adapted Lo the cascade si t,uaLion . 
It should provide an adequate way of describ i ng cascade-showel' spectra in any energy range. 
Because the equa tions are part of a linked set of momen t equations, which describe also spaLial 
and directional distributions, and possibly fluctuations, thc procedure in this paper may 
even tually form th e basis for a more complete description of many aspects of the ca cade 
problem. 

Th e equations are appl ied, in a tl' ial calcula tion, to the special ca e of a monoenergetic 
electron source. Calculations for an electron source are 1110re imporLan t than for a photon 
source for the followin g reason: If a photon source is assumed, i t is possible to calculate the 
resulting photon spectrum at all energies. This type of calculation has been done many 
t imes and offers no difficulty (for an example, see reference [1]).3 One can t hen determine by 
simple quadrature the electron spectrum generated by this photon spectl'um. The whole 
cascade sp ectrum of electrons and pho tons, except for the ini tial photon compon en t already 
determined, can then be determin ed by appropriate superposi tion of solu tions for mono­
energetic electron sources. Thus, calculations for a monoenergetic electron source demonstrate 
that the main difficulty blocking a complete numerical analysis of the cascade problems is 
removed . 

For the initial calculation, extreme relativistic Cl'03s-sectional forms that assume complete 
sCl'eening are used. They include the same types of singulari ty as the exact cross sectio ns 
and therefore provide a meaningful trial run. Also they are quite similar to the cross-sectional 
forms used in earlier applications of conven tional cascade theory; so they make possible a direct 
check with previously published results. 

1 rrhis work was supported by the Office of 1\Taval Research and the A tomic Energy Commission. 
2 Submitted to the University of Maryland in partial fulfillment of the reQuirement.s for the M . . degree. 
3 Fi~ul'es in hmckets indicate theil ' · tufe references at the end of this paper. 
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2. Interactions Involved in Cascade Showers 

The two types of interactions that predominate in the development of cascade showers 
are bremsstrahlung and pair production. In a bremsstrahlung interaction a high-energy 
electron or positron, under the influence of a nuclear or electronic field , generates a pho ton. 
In pair production a high-energy photon in the electromagnetic field of a nucleus or electron 
gives up all its energy to generate an electron and a positron. The combination of these two 
processes results in the creation of photons, electrons, and positrons in increasing numbers at 
lower energies. 

At all energies below the extreme relativistic range, there are additional effects that influ­
ence the development of the showers. There are energy losses due to atomic interactions that 
slow down the electrons more or less continuously along their path. Some of these interactions 
result in secondary electrons with high energies, i. e., knock-on electrons. Compton scattering 
also contributes some high-energy electrons to the shower, but at low energies it is of primary 
importance through its influence on the photon spectrum. The photoelectric effect and 
photonuclear interactions have cross sections that are much smaller than the other interactions 
at all cascade-shower energies, though the former is of importance below shower energies. 

3 . Discussion of Earlier Work 

An excellent discussion of the lines along which the mathematical description of the cascade 
phenomenon has been developed can be found in a book by B. Rossi [2]. Because the proce­
dmal methods of this paper are directed mainly toward a solution of the cascade problem at low 
energies where accmate cross-sectional forms are needed, comments here on earlier work will 
be restricted to developments pertinent to these lower energies. 

The first attempt to describe a low-energy cascade spectrum was made by Arley [3]. He 
neglected interactions that slow down the electrons, i. e., ionization losses, above the critical 
energy; 4 and he fmther neglected bremsstrahlung and the generation of secondary electrons 
by all processes at energies below the critical energy. His results as compared with more 
recent calculations are low by a factor of 3 or 4. 

Tamm and Belenky [4] have obtained a much more accmate solution by an analytic 
method, using asymptotic cross-sectional forms for bremsstrahlung and pair production, assum­
ing continuous ionization loss and neglecting the Compton effect and knock-on electrons. 
Their solution has proved to be more accmate than was at first e}.'-pected, considering the 
approximations. Friedman [5] has discussed their solution at length and computed a first 
correction term. This correction term never exceeded 4.5 percent of the original solution in 
the case that Friedman considered. 

Perhaps the most satisfactory treatment of the energy-spectra problem for low energies 
has been given by Richards and Nordheim [6]. They have used reasonably accmate repre­
sentations for all important interactions, but they treat small radiation and ionization losses 
as continuous, thus incmring an error of up to 8 percent, according to their own estimates. 
They obtain results by numerical integration for energies from }f to 10 times the critical energy. 
Their results are not absolute and do not describe the spectra near the initial energy. To 
obtain more complete spectra, it is necessary to normalize their equations to a solution valid 
at high energies, and they have used the results of Rossi and Greisen [7] for this purpose. 

All these calculations are difficult to generalize to a more acc:urate treatment of all the 
different interactions, and hence there is a need for a new approach th at will permit usc of 
arbitrarily accurate cross sections. 

4. Analytic Treatment of the Problem 

In this section equations will be derived for the energy spectra of electrons and photons. 
o distinction is made between positrons and electrons, the two being considered as h aving 

• The critical energy in a given mat~rial is the energy at which the radiation losses of an electron equal the ionization losses. 
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identical cross sections and combining to make lip an " electron" sp('ctrull1. The differential 
energy spectrum for elec trons will b e represented by I (E)dE, which i the track length traveled 
by all electrons in the energy r ange E to E + dE. H (a)da represents the photon spectrum simi­
larly .5 In all cases energies are in units of mc2, and the electron energies include the rest en ergy. 

To set up equations in terms of I (E) find J-J(a) , a time-independent source is assumed. 
Physically, this means a continuous cascade in which th e average number of electrons, positrons, 
and photons at any given energy remains constant with time. The equations will be derived in 
a gcneral form, and considerations of the interactions and cross-sectional forms will bc r eserved 
for a separate sec tion. 

Continuity equations for I (E) and J-J(a) can be written as follows : 

IE'" dE'lces(E',E)I (E') = seg(E) + IE'" da'lceg(a',E)J-J(a' ) (1) 

(2) 

wh ere 
lc es(E',E) is the to tal probability per unit pfith length trfivcled for an electron of en ergy E' 

to undergo fin interaction th fit r emoves it from the energy range above E , 
lceK(a',E) is the total probability per uni t path leng th traveled for a photon of energy a' 

to gener ate an electron of energy greater than E, 
stK(E) i the total source str ength for generating electron with energies greater than E, and 
lcPS( a',a) , lc PK(E' ,a) , find spg(a) arc similar quantities with the photon and electron roles 

reversed . 
Note that the superscripts refer to "electron sCfi ttering," "photon generfiting," etc., al­

though strictly speaking the interactions include type other th fin sCfittering. Physically, eq 
(1) states that for a time-dependent source the rate at which elec trons arc r emoved from th e 
energy range above E is equal to the r ate at which electrons come into the energy range above 
E. Equfition (2) has the same m eaning for photons. 

Equations (1) and (2) completely define I (E) and J-J(a) for specified sources; however, 
th ese equa,tions as they tand are not very suitable for numerical work. It is advfin tfigeous to 
make further transformations s ugges ted by the nature of th e variations of spectra, and cross 
sections. The particular choice give n h ere is based lRrgcly on numerical and analytic ex­
plorfitOl'y calcula tions that are not sufficiently per tinen t to th e mfiin discuss ion Lo warran t a 
detai led description, but some general argumen ts to jus tify this choice arc given below. 

I (E) may vary rapidly if seg(E) is discontinuous (i. c., if th e source is con centrated fit some 
energy), as for eXfimple, in the case of figure 1 in referen ce [8]. A more slowly varyi ng funct.ion 
on which to base a s tep-by-s tep numerical integl'fition is 

F (E ) = IE'" dE' I (E' ), 

wbicb gives the track length traveled by all elec trons while th eir energy is above E. The func­
tion J-J(a) mfiy also be singular if the som ce function sPK(a) is discontinuou s, but photon CTOSS 

sec tions permit the r emoval of such singulari ties by iterfition (see, for example, reference [9]). 
It is therefore not necessary to utilize an integral form of the photon spectrum . 

Equation (1) could be rewritten in terms of F(E) by partial integration , but this resliits in 
th e differentiation of lc es(E' ,E), which is already s ingulfil' as E ' approaches E. A further Lrans­
formfition is needed to m ake the equation more tractable, namely integration of all terms of eq 
(1). With regard to eq (2), lc PS(a' ,a) and lc PK(E' ,a) are integrals of nonsingul ar cross sec tions. 
IL is ther efore possible, and in fact advantageous, to accompany th e partial integration of the 
las t term in eq (2) wi th a d~fferentiation of fill terms in th e equation . 

• (E) and Jf(a) !Ire in the units g cm-'(Mc')-I sec-I. The.c are track.length units referring to a SOtHe(! of one electron. 'fhe dimensions of 
I CE) and IJ(a) change to those of flux if the sourcr. is 1 electron per gram per second . 
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Applying-these transformations we obtain for the left side of eq (1) 

( '" dE'f '" dE"k"(EII,E' )I (EII)= f '" dE' I (E') ( E'dE"kes(E',E") J E E' E J E 

The other term in the integration by parts, - F (E') [JEE'dE"k<8(E' E") ] I:' is zero at both 

limits. 

Equation (1) thus becomes 

where 

K es(E' E)=~fE'dE"kes(E' E" ) J, oE' E " 

Equation (2) becomes 

J.I (a)H(a) - J.,'" da'KpS(a',a)H(a' )=SPK(a) + J.,'" dE'F(E')KpK(E' ,a) , 

Note that the otber term on the right side, 

oOa {F(E')kpg(E' ,a) I;,.,,}, 

obtained after integration by parts, is zero at both limits. 
The various quantities in (4) are defined as follows: 

is the total photon interaction probability per unit path length for photons at energy a. 

okpS(a',a) 
Oa 

NZu(a',a) , 

(3) 

(4) 

(4 a) 

(4b) 

where u( a' ,a) is the photon differential scattering cross section per electron, and N is the 
number of atoms per gram. 

o2kpg (E',a) 
oE'oa 

o 
oE' Nu(E',a), 

where u(E' ,a) is the cross section per atom for producing radiation. 

s the photon source strength at a. 
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5 . Interactions and Cross Sections 

Equations (3) and (4) as derived in section 4 make no reference to specific interactions or 
cross-sectional forms, and consequently this choice can be adapted to th e sp ecific nature of each 
problem . In terms of the interactions discussed in section 2, the f un ctions K may b e written 

K e. (E' ,E) = K brernsstJahlung losses + K atomic interactions, 

K eg (a' ,E) = K pair production + K Compton electrons, 

K p'(a' ,a)=K Compton photons, 

K pg (E' ,a) = K bremsstrahlung photons, 

p.( a) = p. ( a) pair proctuction+ P. (a) Compton photons+ P. (a) absorption' 

At this point accurate cross-sectional forms could be introduced in th e equations, but an 
examination of their suitability can be Du\,de with simplified forms simila,r to whose used by 
earlier investigators. Specifically, (a) extreme relativistic cross ection are u cd, (b) com­
plete screening is assumed, and (c) the rest mass of the elec tron h as been neglected insofar as 
it influences the limi ts of the integral . D etailed cross sect ions arc given in appendix 1. The 
K funct,ions derived from th ese cross-sect ional forms arc 

wh ere 1/ = E /a' ; 

where 1/ = a/a' ; 

where 1/ = a/E' ; and 

K pg(E' ,a) =N4~ ~2 [ ( -~ 1/2+ 21/3) In 183Z-~"-~ 1/2} 

J.L (a)=N4~ [ 7... 111 183Z- ~J _J..J+NZ ~ ~T! [In 2a+!J . 
9 54 8 a 2 

6. Numerical Treatment of the Problem 

In determining a convenient system for the numerical integration , we note that the func­
tions K depend primarily on ratios between the two energies involved . W e wish to take 
advantage of this scaling property by choosing integration steps of equal length in the logarithm 
of this energy ratio . This choice of integration mesh has the additional advantages that one 
can integrate over a n enormous energy range with comparatively few steps, and that a cross­
sectional tabulation can be made that is applicable to widely different energy ranges. 

The numerical integration is performed by Simpson's rule, using modifications of the 
familiar (!, t, ~,t, t) .il set of weights to make the rule apply also to an odd number of intervals. 
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The integrals were eompu ted essentially as follows: 

f dE' f{ es(E',E)F(E') = f d (ln E' )E'f{es(E',E)F(E' ) 

'II 

= L2 w'ln E lf{ 'S(E I,E,,)F (E;) 
i=O 

'II 

= "" w· f{'s (EI E ) F (E ,). £.......; l.n ,11, . 
i=O 

Note th at the integration weigh ts Wi n decrease in size as the en ergy decreases. More details 
are given in appendix 2. 

D espite the transformations discussed in section 4, th e function f{'S(E',E) in eq (3) is still 
singular. However, this singularity causes no difficulty if one writes th e integral in the fol­
lowing m.anner: 

r '" dE'f{es(E',E)F (E' )= r "'dE'f{es(E' ,E)[F(E') - F(E)l + F(E) J '" dE' f{ es (E',E). JE JE E 
Note tha t the first term on the right is no longer singular and call be integrated numerically. 
The last term can be evaluated without difficulty by integrating th e singular pflrts off{'S(E' ,E) 
anfllytically. Notice fi lso that as E' ---7E, the first integrand is finite, approaching the limit 
A[oF(E) /oE], where A = lim (E' - E )f{es (E' ,E). This term is very small and needs to be evalu-

E'--1E 

ated only approximately. A three-poin t numerical differentiation formula, described in appen­
dix 2, was adopted for this purpose, the corrcsponding weights being denoted by ai. By 
utiliz ing th ese devices , we reprcsen t the first in tegra.l of eq (3) as the sum of terms 

where f es (E) = f: dE'f{es(E',E). Note that at is zero except for i=n, n - l, n-2. 

If the functional form of f{es (E', E ) is tha t given in section 5, 

Yles(E ) = N4 ~Eo {[ -~-~(1-1)11l(1 - 1) +~(1- 1) ) +~1)2+~1)3J In 183Z- 1/3_ 1~ 

-1:(1- 1) In (1- 1) +1:(1- 1)) +2C} +NZ~'PT In 1) (l - 1)Eo, 
9 9 18 4 Q 

where 1) = E jE o, and Eo is the highest energy of the source of electrons and photons. For a 
discussion of the choice of tllC cu toff value Q, see reference [8]. In this paper it has b een eva.luated 
as follows: 

where 10= 13.5 ev. 
The functionf{pg(E' ,a) in eq (4) is not singular, but th e exact expression varies rapidly as 

E'---7 a. This can easily be taken into account by using addition-subtraction as before: 

Sa'" dE'f{pg(E',a)F(E') = Sa'" dE'f{pg(E',a) [F(E')-F (Eh=al + F(Eh=,"Sa'" dE'f{pg(E' ,a). 
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Written as a sum, this term becomes 

where ,XPK(a) = J:<» dE' J(l}g(E' ,a). If the functional form of J(PK(E' ,a) is that give n in section 5, 

where 'f/ =a/E o. 
Equations (3) and (4) can now be wr itten in their fin al form for numerical evalu ation : 

where 

n-1 
D pg(an) =.J(PK(a ll ) - ~ W~f.' 

i=O 

(5) 

(6) 

(7) 

These seven functions depend only on cross-sectional forms, and they are evalua ted sep ara tely 
prior to the main calculation. Note th a t eq (5) dep ends on F (Et) and H (at) bu t not on Il(a n) , 
while eq (6) depends on F (En) and on F (E i) and Il(ai)' Therefore, eq (6) must be determined 
after eq (5) at each tep in the in tegr a tion. T he problem of how to s ta,r t the calculaLion is 
taken up in the next section . 

7. Specia l Solution Near Eo 

F (E ) and H (a) must vanish at the highest energy, E o. It would be possible Lo use eqs 
(5) and (6), with the cross-sectional forms that have been listed, to solve for th e specLra n car 
Eo. But it was found more convenient and accurate to do a separate calcula t ion because the 
solution near E o has certain special fen, tures. In particular , we no te that (1) for small energy 
losses it is always possible to usc ex tremely simple cross-sec tional forms, (2) th e linkage be­
tween th e elec tron and photon equations can be simplified because the high er cascades h ave 
negligible influence in tbis energy region, and (3) it is possible, though not necessarily dcsirable, 
Lo seek analy tic solutions. 

Because even an analy tic development leads to a numerical in Legration, it appeared most 
expeditious to employ oq (3), with the simplifica tions just men tioned and a finel' integration 
spacing, to develop a solution in tbis region. In p articular , for an electron-gener aLed cascade, 
Lhe term for generating electrons from photons and th e term A[oF(E )/oE] arc very small and 
can be neglected . The rcmaining functions J( can be written in the approxima te form : 
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K es (E' ,E) = E~ E - B In E'i E + C, 

Xes (E) = A In EC(2E - B(Eo-E) In E~i;oE +C(Eo-E) , 

wh ere A, B , and C are constants (see appendix 1) . 

The quantities (7) were tabulated at Eo X 2- m /6, where m=~, i'~' 1. This spacing required 

a special set of weights; but otherwise the evaluation in this special case is carried out by 
using the appropriate form of eq (5) in a manner similar to the main calculation. Results 
of this special solution not only give the solution near Eo but also permit a more accurate 
evaluation of the integrals in eq (3) for a' ,E' ?Eo X 2- 1/ 6• In this energy region the use of 
Simpson's rule with 2- 1/6 spacing IS not really a good enough approximation because F(E) 
has large nonquadratic variations. 

8 . Calculations 
The calculations in this paper are based on a monoenergetic source of 1 electron per second 

at 360 mc2 in lead. Results were first obtained for the special solution near Eo. The main 
calculation, extending down to 5.6 mc2, was carried out in two parts, using the mesh EoX 2- m/6 

to the energy tEo and the mesh EoX 2- m/3 from that energy to E = 5.6 mc2 • 

es 
Win 
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FIGU RE 1. Arrangement of tabulated functions . 

The calculation was facilitated by arranging a triangular tabulation of the four W's 
and a linear tabulation of the C's and D in a form shown in figure 1. Most of the work went 
into tabulating K functions and W's , the final computation being carried out in a few hours. 
The results are given in table 1. 

Any error had the effect of introducing an oscillation in the final computation, with alternate 
points being too high and too low. The integration procedure appeared stable in that such 
oscillations tended to damp out slowly rather than to magnify. By plotting the results it was 
possible to use th ese oscillations to find errors. The final sequence of numbers is smooth , 
i. e., nonoscillatory, to better than 1 percent, which may indicate that the integration procedure 
introduced errors no larger than this, although the possibility that errors may h ave piled up 
at low energy is not excluded. 

TABLE 1. R esults 

E F(E) H Ca ) E F ( E) HCa) E F (E) H(a) 

360.0 0 0 160.4 5.26 0.0409 28.4 22.4 1. 44 
354.8 0.751 ---- -------- 142.9 5.92 .0537 22 . • 1 26.8 2.20 
349.8 . 980 ----- - - -- - -- 127.3 6.52 . C693 17.9 31. 4 3.27 
339.8 1. 35 0.00488 1I~. 4 7.31 .0901 14.2 36.5 4. SO 
320.7 1. 76 .00652 101.0 7.97 .115 11. 3 41. 6 6.85 

285.7 2.47 .00985 90.0 8.91 . 148 8.93 47. 9 10.1 
254.6 3.0.1 . Gl35 71.4 10.5 .235 7.09 53.8 13.8 
226.8 3.61 . elSO 56.7 13.0 .384 5.63 60. 3 19.2 
202.0 4.14 . 0238 45.0 15.6 .601 
ISO. 0 4.71 . 0314 35.7 18.9 .944 
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9 . Discussion of Results 

The Tesults in table 1 are plotted in figlU'es 2 and 3, where they are compared with til e 
results of Richards and Nordheim [6] and calculations based on th e an al ~- t i c solutioll given 
by Rossi and Greisen [7]. (Sec appendix 3 for a discussion of the normalization. ) For Lil e 
comparatively low initial energy considered here, the equations of Ro i and Greise n are 0111.\­

aCClU'ate in a very limited energy region around 130 mc2• At lower energies, as poinled O1Jt 
by Richards and Nordheim [6], a more accurate r epresentation of the in teraction probabilities 
IS necessary. The Richards and Nordheim numerical calculation was based on more 1l,ccliraLe 
cross-sectional forms, but their r esults are normalized to those of Rossi and Greisen at 1:11 mc2. 

Thus, ncar that energy, the sign ifi cant comparison is wi th l~ossi and Greisell . A l lower 
energies, due to differences in the cross-sectional functions involved, the three ClU'ves go apart. 
At energies ncar E o no comparable calculations have been found. Thus the onl~' Cll crK\­
region where close agreement between the spectra ca.lculated in this paper and those givell b~­

the otber authors could b e expected is from t to -lEo. In tllis region the agreement is shown 
in figures 2 and 3 to be quite good. 

Through a consideration of Lhe spec ifi c cross-sectional forms used in the three cfllnda­
tions, some further compari ons are possible at lower energies. For example, t he spect ra of 
Rossi and Greisen indi cate a larger number of electro ns and a s:m aller number of pholons lhfln 
reported in thi paper. This is caused mainl~T by the cross sec tion for pair prociuctioll , whi ch 
is sign ificantl. lower uncier the complete screening approximation than the asymptoli c form 
used by Rossi and Greisen. Thus, in the caleula tions in th is paper, low-energy photons do 
not generate as many electrons, and there results a decr ease in F (E) and an increase in flea) 
relative to Rossi-Greisen . The spectra of Richards and Nordheim indicate a much larger 
number of electrons and photons at low energies. lUthough this must be traceable sim ilarly 
to a difference in cross secLions, the reasoning is not as straightforward in this case. 

~~'~ RICHARDS 8 NORDHEIM _ . -

50 "~''', ROSSI 8 GREI SEN ------
" THIS PAPER------

RICHARDS 8 NOROHEIM - - -

RO SS I 8 GREISEN ----------

10 THI S PAPER --- - - -

'~ 
" ' 
~~ 

"\ 
20 

10 H(a) 

1.0 

F(E) 

0.1 

_01 

I I 

22 2 45 90 
E, me UNITS 

18 0 5.6 II 
180 360 

FIGURE 2. ComlJarison of F ( E ) with previous res1llts. FIGURE 3. Comparison of H (O!) with previolls rrS lIlt s. 
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10. Final Comments 

The agreement as to general trends and as to absolute magnitude neal' tEo demonstrates . 
the feasibility of the calculational procedme developed in this paper. Logically, the next 
step is to introduce accmate cross-sectional forms into the equations to obtain more accmate 
spectra. Alternatively, one could move immediately toward a solution of the spatial and 
directional distributions. This would involve computing the higher moments in the linked 
set of equations of which these spectra form the zeroth moment (for an example of this, see 
reference [10]). 

11. Appendixes 

Appendix 1. Cross-Sectional Forms 

The follow-ing detailed cross-sectional forms were used to derive the fUl1ctions J{ discussed 
in section 5. 

Bremsstrahlung losses [11 ]: 

CTb(E',E) = 4-q; 1, ( _ TJ_ ) [(1+ TJ2_~) In 183Z-li+~J' 
E 1- TJ TJ 3 9 

where TJ = E jE'. 
Electron atomic interactions [8]: 

1 / _~ _1 [_1_ l..J 
CTM(E ,E) - 4 CPT E'2 (l - TJ)2+ TJ 2 ' 

where TJ = E jE'. 
Pair production (either electron or posi tron) [11]: 

where TJ = E ja'. 
Compton electrons: 

Compton photons : 

where TJ = aja/. 
Bremsstrahlung photons [11]: 

where TJ = ajE'. 
The cross-sectional constants were evaluated as follows: 

Z2ra Z + 1 
cP= 137 Z-= 3.9435 barns, Z= 82; 

and 

8 
CPT= 3 7Tr6= O.6652 barn. 

The constants A, B, and Gin the special solution near Eo (section 7) are obtained from the 
expression for J{es (E',E); they are coefficients of the terms proportional to E-l(l-TJ)-l, 
-- In (1- TJ ) , and] , respectively, in the limit E,E' -->.>Eo: 

94 



3 
A = NZ 4 'PT= 0.1189 

B = N4'ijJ [~ In 183Z-H+~J=0.23;39 

C= N4'ijJ [-~ In 1 83Z-~i_~J-~ N Z'PT 2 =-0.1487. 
6 9 4 Eo 

Appendix 2 . Integration and Differentiation Weights 

To obtain th e integration weigh ts Win used in connection with eqs (5) and (6), the following 
formulas were used: 

where f(x) is a fun ction that varies slowly for x in the region of inLegration. 
For diO'erenLifltion Lhe weigh Ls a i were determined by using Lhe followin g formula: 

Appendix 3 . Normalization of Previous Results 

Tile following res ults were obtai ned by using a table of calculations given by Richards 
and Nordbeim [6]. 

131 
9 1. 8 
65.6 
30. ~ 
26.2 
19. 7 
13. 1 
6.56 

F (E ) = 69.86FRN (R ) Jl (a) = 5.:320g ( f{ ) 

6. 43 
9. 08 

12. (\ 
21. 0 
30. 0 
37. 7 
49.6 
71.3 

0. 06:1!) 
. 171 
. :38·\ 

1. 12 
2. 6 1 
4. 74 

10.7 
34. 1 

The normalization factors arise in Lhe follO\yin g m:Hmer : 

69.86 = [ 0.437 X ~~iJ X densi Ly of lead (11 .005) X l'acliaLion lellgth (0.529) 

5.329 = 69.86 X energy eonvel'sion factor 1 3~1l' 

For a discussion of the facto)' in squflre bl'ackcls, sec refercncc [6]. 
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The following results were obtained by using the equations of Rossi and Greisen [7] under 
"approximation B": 

E F (E ) = 5.822Zr (Eo,E) H (a) =2.975 z~(Eo, TV) 

180 4. 77 O. 0348 
90 9. 02 .132 
45 16.4 . 482 
22. 5 28. 5 1. 70 

The normalization factors arise in the following manner : 

5.822= density of lead (11.005) X radiation leng th (0.529), 

2.975 = 5.822 X mc2 (0.511). 
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