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Sample Calculations of Gamma-Ray Penetration
Into Shelters:

Contributions of Sky Shine and Roof Contamination

Martin J. Berger and James C. Lamkin

An approximate method is presented for calculating the penetration of gamma radia-

tion in shelters.

Sample calculations, for an assumed source energy of 1 million electron

volts, are given for the following problems: (1) Dose rate inside houses and underground
shelters whose roofs are covered with radioactive fallout, and (2) dose rate in open holes
due to reflected radiation (sky shine) from fallout contamination on the surrounding ground.
A detailed examination is made of the dependence of the dose rate in a shelter on the shape

of the shelter, and on the position of the detector within the shelter.

of the calculations is + 30 percent.

1. Introduction

The shielding against gamma radiation provided
by shelters, houses, and similar structures is of con-
siderable practical interest. The experimental data
on this problem are usually obtained under complex
circumstances, so that they are difficult to interpret.
It is desirable, therefore, to obtain some theoretical
understanding of the shielding problem. Calcula-
tions with the required accuracy (say 30 to 509,)
appear feasible, and are perhaps easier than experi-
mental determinations.

The well-developed semianalytic theory of the
penetration and diffusion of gamma radiation
[1,3]% treats only infinite homogeneous media, and
is thus not directly applicable to the problem under
consideration which involves more complicated
boundary conditions. Yet the theory provides the
foundations on which the calculations can be carried
out. It would be possible, but rather laborious,
to take the boundary conditions into account by
means of random sampling (Monte Carlo). An-
other approach appears more promising—the adapta-
tion of infinite-medium results to realistic conditions
through a suitable schematization.

It 1s the purpose of this paper to explore one such
schematization that can be applied to calculations
of shielding against fallout radiation. In this schemat-
ization, the radiation dose inside a shelter is com-
puted as a suitable weighted integral over the angular
distribution of the radiation dose in an infinite
medium. The present paper contains only pilot
calculations. More extensive and systematic cal-
culations are now in progress as part of a National
Bureau of Standards program of shelter evaluation,
carried out under the auspices of the Federal Civil
Defense Administration.

I Work supported by the Federal Civil Defense Administration.
2 Figures in brackets indicate the literature references at the end of this paper.

The estimated accuracy

2. Schematization

The nature of the schematization can be most
easily explained by applications to specific problems.
Generalization to other situations 1s then straight-
forward. Figure 1 illustrates the schematization
to be employed for three typical situations that will
form the basis for our discussion.

2.1. Underground Shelter With Roof Covered by
Fallout

The shelter roof and the surrounding ground are
assumed to be covered with radioactive material
that constitutes a plane isotropic source of gamma
radiation of constant strength per unit area, which
emits gamma rays uniformily in all directions.

Simplification 1. Different materials of low aver-
age atomic number, such as air, concrete, earth, or
water, have nearly the same gamma-ray mass
attenuation coefficients. Provided that all distances
from the source are expressed in units of mass per
unit area, it is therefore a good approximation to
replace the combination air-concrete (or earth) by a
concrete medium that is infinite and homogeneous,
except that it contains an air cavity (the inside of
the shelter).

Simplification 2. In order to reach a detector
somewhere inside the shelter, radiation must pene-
trate varying amounts of concrete or earth, depend-
ing on its path. Radiation coming through the
ceiling has the least amount of material to traverse
and is therefore least attenuated. There are two
types of paths on which photons could reach the
detector through the floor. They can detour the
shelter to come up from below, but in this case the
attenuation is so strong that the contribution of the
detoured photons is negligible. There is also the more
important possibility for photons to enter the shel-
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Fraure 1.

ter through the ceiling, to penetrate into the
floor (or side walls) and then to be backscattered.
Some radiation will also penetrate to the detector
through the side walls of the shelter. But because
of the small size of a mean free path in concrete or
earth (a few inches) only a small side-wall region
near the ceiling can make a nonnegligible contribu-
tion, resulting in an effective ceiling area somewhat
larger than the true ceiling area. Both the back-
scattering correction and the side-wall penetration
correction are small. They are briefly discussed in
sections 6.1 and 6.2 but are omitted from the
initial schematization. Tt will be a good first ap-
proximation to consider only radiation entenng
through the ceiling. The mean free path in air is
of the order of several hundred feet, and is very

Schematization.

large compared to the shelter dimensions. The
radiation thus travels in a straight line inside the
shelter and can reach a detector only if its direction
of motion lies within the solid angle subtended by
the ceiling with respect to the detector. This solid
angle is indicated in figure 1 by the label “allowed
directions.” The notion of “allowed directions” will
be formalized later through the introduction of an
“angular response function.”

Summary of the Caleulation. The calculation con-
sists of the following steps: (1) Replacement of the
air-shelter complex by an infinite concrete medium;
(2) computation of the amount and angular distribu-
tion of the radiation in such a medium, at a distance
from an infinite plane isotropic source equal to the
thickness of the shelter roof; (3) computation of the

110



angular response function for a specific shelter-
detector configuration; (4) computation of the total
amount of radiation received by the detector, by an
integral over the angular distribution weighted by
the angular response function; and (5) corrections to
account for additional radiation reaching the de-
tector through the side walls, and by the reflection
from interior surfaces of the shelter.

2.2. House With Roof Covered by Fallout

As indicated in figure 1, the schematization for
this problem is essentially the same as for the
previous problem. A number of points require com-
ment, however.

(1) The contamination now is confined to the roof
so that the plane-isotropic source is finite. Yet the
situation is practically equivalent to that of an
underground shelter underneath an infinite con-
taminated plane. Note that in the underground
shelter, fallout from regions other than that dir ectly
above the roof does not contribute appreciably to
the dose, because of the large amount of intervening
earth.

The equivalence is, of course, only approximate.
To illustrate the order of magnitude of the error in-
volved, one may consider the following point. In
the schematization, approximately 10 to 15 percent
of the energy emitted by the source is reflected back
toward the roof. In the actual situation, with air
above the roof, this reflected radiation would spread
laterally, and most of it would come down on the
ground surrounding the roof. The reflected radiation
assumed incorrectly to be incident on the roof is low
in energy and diffuse in direction, so that its pene-
trating power is much less than that of the source
radiation. Hence, the resulting dose-overestimate
will only be a few percent.

(2) There is a somewhat better chance than in the
case ¢f an underground shelter, that radiation origi-
nating on the roof will reach the detector through the
side walls. But this radiation consists mainly of
photons which after repeated air scattering are inci-
dent on the side walls with low energies and therefore
are not very penetrating.

(3) If the ground surrounding the house is also
covered with fallout, the penetration of radiation
through the side walls becomes very important. The
numerical details of this case are not worked out in
the present paper, but the same schematization could
be applied as in the case of a roof contamination,
through the introduction of appropriate allowed
directions and angular response functions defined
with respect to the side walls, or perhaps the windows.

2.3. Open Hole Surrounded by Fallout

Again, the schematization is essentially the same
asin 2.1. The detector is now in a position where it
cannot “‘see” the source, 1. e., only scattered radiation
can reach it. This scattered radiation will consist
mainly of photons that have gone up into the air and
are reflected into the hole by scattering. This radia-
tion component is customarily called sky shine. The

radiation distributions that must now be used in steps
(2) and (4) of the schematized calculation are those
pertaining to the scattered flux at the source plane.

3. Mathematical Formulation

An isotropic source of gramma radiation is as-
sumed to be located in the plane z=0. Let /5(z, 6)
sin 6df denote the dose delivered to a detector in an
infinite homogeneous medium at a distance z from
the source plane, by photons incident on the detector
at angles between 6 and 6+df (with respect to the
z-axis). Dose means the quantity technically called
“absorbed air dose”, i. e., energy dissipated in air,
measured in rads (100 ergs/g) [2] It will be con-
venient to express the dose distribution in the form

where ¢(z,0) is an angular distribution normalized to
unity :

jw g(z,0) sin 0d6=1. (2)
0

The factor f(z) will represent the attenuation of
radiation by the roof of thickness z in the problems
of the house or underground shelter. For the open
hole, one must replace f(z) and ¢(z,0) by quantities

fs(2) and ¢,(z,0) pertaining to scattered radiation.

Let the shelter-detector configuration be such that
only a fraction ¥ (8) of the photons with direction 6
can reach the detector. This function is called the
angular response function and is further discussed
in section 5. The dose D(z) received by the partially
shielded detector in the shelter is expressible as the
product of three factors:

D(z)=Cf(2) G(2), 3)

G(S):f; g (2,0) (

and (C'is a correction factor taking into account the
contribution of radiation penetrating through the
side walls or reflected from the interior surfaces.
The determination of the geometrical protection
factor G is the main objective of this paper.

4. Calculation of the Radiation Field

The standard solution for an infinite homogeneous
medium is provided by the moment method [1].
Tabulations based on this method are available
from which one can extract information about the
dose f(z) from a plane isotropic source [3].* The
calculation of the angular distribution ¢(z,0) has been
described in [4].

The numerical computations of this paper all per-
tain to a source emitting 1-Mev photons. This
source energy is a little higher than the average
energy of fallout radiation, but close to the energy

3 As part of the work sponsored by FCDA, further tabulations, with applica-
tions to shelter evaluation, are now being prepared at NBS.

where

) sin 6do, (4)
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Freure 2. Angular distribution of absorbed air dose from a

1-Mev plane isotropic source in an infinite medium.

The calculation is for a water medium, but is in very good approximation also
applicable to concrete.

a) g(z,0), at a distance woz=4 from the source plane.

(¢) gs(z,0), at the source plane wz=0 (This distribution represents only the
contribution of scaftered photons.)

The curve (b) represents an isotropic distribution.

of Co%-radiation, which is most suitable for con-
trolled experimentation. The choice was moti-
vated by the ready availability of results for ¢(z,).
In any case, calculations with a 1-Mev source will
be sufficient for the illustrative purposes of this
paper.

Let f(z) be the dose in an infinite conerete medium
at a distance z from a plane isotropic source. The
results of a calculation by the moment method can
be summarized by the approximate formula

J(@)=f(2)+£:(2)

fo (2) =kE\ (o) ;

(5)
with
(5a)

representing the contribution of unscattered radia-
tion, and with
Js(2) =1.04ke 0915w (5b)

representing the contribution of scattered radiation.
The range of validity of (5b) is 0 <pz<8, E; is the

exponential integral [5], and w=0.0635 cm?/g is the
mass attenuation coefficient for gamma radiation in
concrete at the source energy (1 Mev). The constant
ke determines the source normalization. If the source
plane is covered with 1 curie of gamma emitter per
square foot, and the dose rate is expressed in rads
per hour, the normalization constant has the value

(=802, (5¢)
If the fallout is spread over a rough surface, the
schematization of the source as a perfect geometric
plane is not altogether suitable. A possible alterna-
tive schematization consists in assuming that the
radioactive material is mixed homogeneously with a
thin top layer of the ground of thickness ¢. In this
case, the dose function f(z) must be replaced by

*z+t

fren=:| " s ©)

z

Three angular distributions are shown in figure 2:
(a) g(z, 6) at a distance wuz=4 (0.897 Ib of concrete
per square inch); (b) a completely isotropic distri-
bution; and (¢) the distribution ¢,(z,6) for scattered
radiation only, at the source plane w,z=0. The
distribution (a) peaks at 6=0° and is for use in the
problems treated in sections 2.1 and 2.2. The dis-
tribution (¢) peaks at §=90° and is for use in the
problem in section 2.3. Both of these distributions
pertain to an infinite plane-isotropic source and
were calculated according to the method of reference
[4]. The distribution (b) is flat (when plotted against
cos ) and has been included as an intermediate case.
Together, the three cases span a wide range of
possible distributions.

5. Calculation of the Response Function

To each angle 6 there corresponds a family of unit
vectors (sinfcose, sinfsing, cosf), indicating possible
photon directions. If these unit vectors are required
by the schematization to lie within a specified solid
angle, then not all values of the azimuth ¢ are
permitted, but only azimuths in a region 4y <27. The
response function is defined as the fraction ¢(6) = Ag/2.

5.1. Cylindrical Geometry

As a simple first example, we consider a shelter in
the form of an upright cylinder of height A and
radius R, with the detector located at the center of
the bottom of the shelter (see fig. 3). The response

SIDE VIEW

Ficure 3. Calculation of the response function for a cylindrical

shelter.
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function is in this case particularly simple:

e ey

<0< =cos=’
VH*+R?

(7)

0,<0<x , A;=0, ¥(8)=0.

5.2. Parallelepiped Geometry

We consider a box-shaped shelter of length L,
width W, and height /7. It can be assumed without
loss of generality that L>W. The response func-
tion depends on solid angles, and is thus a function
of the shape but not of the absolute size of the
shelter. Therefore, we eliminate one parameter by
dividing all dimensions of the shelter by L, so that
the scaled length is unity, the scaled width 1s

W/|L=e¢<1, (8)

and the scaled height is
5L =]p, (9)
The construction of the response function is

illustrated in figure 4 for a detector in a bottom corner
of the shelter.
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Ficure 4.

Response function, ¢(0,€,h)

0<o<0,=cos™! -;il,i, 1
VR €2
! 1 €
- —cos—! - — gin-1 (10)
b0<6<6:=cos VR +1 27 o (h tan 0
h 1 € 1 1
p=008"1 — — sin~! S 51
61§ <6,=cos V2 Fert1 2 o0 (h tan 0> 2r °°® (h tan 0)
; 02<(9_<_1r 0
|
| . |
The response function (10), evaluated with the ]
P ’ >
parameters e=0.5 and h=0.5, is shown in figure 5. 25—

5.3. Combination Rule

Expression (10) can readily be generalized so as
to provide the response function for an arbitrary
detector location. In the first place, it is to be noted
that—within our schematization—the vertical dis-
tance of the detector from the shelter ceiling (or top
of the open hole) must be assumed as the effective
height /7. Now consider a detector located at the
bottom of the shelter, in a horizontal position 7 with
coordinates (o,B¢), as illustrated in figure 6. We
now imagine that the shelter is partitioned by two
vertical walls (perpendicular to each other), which
pass through the point £, and are very thin, but
perfect, radiation shields. The detector can then

e = B

05 / ‘
|
0

4 5 6 f .8 9 1.0
cos 8

Freure 5.  Response function for a detector at a bottom corner
of a box-shaped shelter with scaled width (horizontal eccen-
tricity) e=0.5 and height h=0.5.
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Fiaure 6. Diagram illustrating the application of the com-
bination rule by which response functions for off-corner
positions are calculated.

be thought of as being located at the corner of each
of four adjoining box-shaped shelters with the
dimensions listed below.

J € hj
1 min (a, Be) h
""""""" max (e, Be) max (e, Be)
9 min (1—e«, Be) h
RN max (1—a, Be) max (1—ea, Be)
3 min (a, e— Be) h
““““““““ max (a, e— fe) max («, e— Be)
4 min (1—e, e—Be) h
"""""""" max (1— e, e—fBe) max (1—a, e—Be)
0<a<1, 0<B<L
min (z, y) =smaller of  and y.
max (z, y) =larger of z and y.
The response function ¢, at point P is
4
Yr(0) :Z; ¥(0,€5,h;). (11)
=

5.4. Legendre Polynomial Expansion

In order to obtain the geometric protection factor
G(z), 1t is necessary to evaluate the integral in (4) for
each distribution ¢g(z,0) of interest. When many dis-
tributions must be included, this procedure tends to
become laborious. It is then convenient to perform
a set of standard integrations based on an expansion
of the response function into a series of Legendre
polynomials:

© 20+1
®=>] +

1=0

a,P,(cos ). (12)

The theory of radiation diffusion provides as the
most direct result, a similar Legendre polynomial
expansion for the angular distribution:

(2,0) = ZL“ G:(2)Py(cos ). (13)

As a rule, only the first few harmonies (/=0, 1, . . .,
L <7) are at one’s disposal, but they suffice to specify
g(2,0). When (12) and (13) are substituted into (4),
it follows from the orthogonality of the Legendre
polynomials that

» L9 1
6= a2 g, )

J "Pyicos 8)P,(cos f)sin 6d6  (14)
0

2/1

ag,(2)-

Thus, one can limit oneself to the calculation of the
first few response function expansion coefficients

a,::J ”glz(e)Pl(cos 6)sin 6df, =0, 1, N EN(115)
0

With these coefficients, one is in a position to evaluate
G(z) for any angular distribution g(z,6) through
simple superposition according to (14).

Numerical evaluations of G have been carried out
for detectors in various positions in box-shaped
shelters, on the basis of the angular distribution
functions shown in figure 2. These results apply as

follows:
‘ Angular | Infinite medium
Problem | distribu-| ~ dose-rate
tion rads/hour
! curies/foot?
Underground shelter or (a) f(z2)=0.983
house with roof covered
by fallout, roof thick- |
ness uez=4(0.896 1b of
concrete per square |
inch). i
|
Isotropic comparison dis- | (b) | _—___________
tribution.
Sky shine (scattered radia- | (c) iR (2)=835
tion) into open hole. \
| |

The results are presented as functions of the
following dimensionless parameters:

. g ridth
Horizontal eccentricity= i = (16)
©  length
—
Vertical eccentricit 7~3—100f ?H(‘ﬂ_'\ 7. (A7)
M h

height

The range of parameters considered includes 0 <e<1
and 0.2<7<20. This appears sufficient for all
practical applications.
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Frcure 7. Geomelric prolection factor versus vertical eccen-
tricity, for fixed horizontal eccentricity e=1.

The curves labeled (a), (b), and (¢) are based on the use of the corresponding
angular distributions in figure 2. The triangles, solid circles, and hollow circles
represent results obtained with the response funetion (7) for a cylindrical
shelter.

Figure 7 contains plots of & versus 7, for a shelter
with a square cross section (e=1). Figure 8 con-
tains plots of @ versus e, for different fixed values of
7. Results are shown for the detector in a corner,
and in a center position (e=g=1%). The figures
confirm quantitatively what one would expect on
the basis of a commonsense estimate. The pro-
tection provided by the shelter increases rapidly as
7 1s increased, but is generally a very slowly varying
function of e for fixed 7. excent when e has a very
small value. Dose rates in the corner are on the
order of four times smaller than dose rates in the
center. The angular distribution (a) with its strong
forward peak gives rise to G-values 2 to 3 times
larger than those obtained with the diffuse sky-
shine distribution (¢), whereas there is little difference
between cases (¢) and (b).

The question may be asked to what extent the
results for the geometrical protection factor are
affected by the choice of a rectangular shelter cross
section. To obtain a partial answer, calculations
were carried out for a detector at the center of a
cylindrical shelter, with the use of the response
function (7). As can be seen from these values
plotted in figure 7, the results thus obtained are, for
the same value of 7, practically identical with the
results for a detector at the center of a box-shaped
shelter with e=1. This means that the geometric
protection factor depends very little on the shape
of the cross section. Combined with the previously
demonstrated insensitivity of G with respect to the
horizontal eccentricity e, this has the following

) " g : r .
(a) (b) (c) | |

Ficure 8. Geomelric protection factor versus horizontal eccen~
tricity, for various constant values of the vertical eccentricity.

The curves labeled (a), (b), and (¢) pertain to the corresponding angular dis-
tributions of figure 2. (A) Detector in center; (B), detector in corner.

immplications: (1) The geometric protection factor
at the center of a shelter of any shape is, in good
approximation, only a function of the vertical
eccentricity 7; (2) under these circumstances, a
calculation using the very simple response function
(7) will be adequate.

Center and corner values provide upper and lower
limits of G. To indicate the transition between the
two extremes, a systematic mapping of G is presented
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in table 1 for numerous detector positions in the
horizontal plane, the shelter being box-shaped with
e=1 and r=2.

TaBLe 1. Geometric protection factor G as a function of the
position in the horizontal plane, for a detector in a shelter
with horizontal eccentricity €=1 and wvertical eccentricity
=2, calculated for the angular distribution (a) of figure 2

The position indicators « and g are those defined in figure 6. Note that the
ransformations a—1—c, —1—8, or (a—8, B—a) leave G unchanged.

| | [
\ I | ‘
\ | 00 | 0125 | 0.25 | 0.375 | 0.5
B \i ' | ‘
00 | 017 | 022 | 026 0. 27 ‘ 0.29 |
.125 | .22 .31 .34 .37 | .38
.25 | 26 23440 .43 | .44
.375 | 27 .37 .43 . 47 .48
5 29 .38 | 44 48 49

6. Corrections, Accuracy

6.1. Penetration Through the Side Walls

This effect has, so far, been investigated only in a
limited manner to obtain the order of magnitude of
the necessary correction. To simplify the calcula-
tions, they were done for a detector at the center of
the bottom of a cylindrical cavity. For the case of
an underground shelter (the problem in section 2.1),
the response function (7) could be amended as follows:

e(2+2") gz+2',0)
o(2) 9(z,0)

<6< t//(ﬁ) =

i ()
S0, W(6)=0

where 7
2=l 5= 11 s i)

The meaning of (77) is that the surface elements of
the side wall contribute to the dose in proportion to
the intensity and angular distribution of the radi-
ation at the distance z=z’ of the surface elements
from the source plane.

Sample calculations have been carried out for a
shelter with roof thickness u,z=4, horizontal eccen-
tricity e=1, and a depth of 8 ft. (The side-wall cor-
rection differs from the uncorrected response func-
tion in that it depends on the absolute size of the

shelter.) It was found that for vertical eccentricities
=1, 2, and 4,

the increase of the doseis 7, 3, and 1 percent, respec-
tively.

6.2. Backscattering

Some radiation will be scattered toward the detec-
tor by reflection from the side walls, floor, and ceiling
of the shelter. The order of magnltude of this effect
can be estimated roughly on the basis of available
Monte Carlo calculations of backscattering. The
results of reference [6] suggest a dose increase by
approximately 15 percent.

6.3. Over-all Correction and Error Estimate

In the final equation for the dose received by the
partially shielded detector,

Cf(2)G(2), ()

the factor C, incorporating side-wall and backscat-
tering effects, is estimated to be 1.2. 1t is further
estimated that the factors in (3) have the relative

10(7)=

errors (8fG)/fGd~40.2 and (6C)/C= 40.2, which
leads to the following error estimate for D:
N 2
5D \/(MG 5( ~10.3. (18)

The authors are indebted to I. V. Spencer for
valuable discussions, and to J. Hubbell for help with
the calculations.

7. References

[1] L. V. Spencer and U. Fano, J. Research NBS 46, 44¢
(1951) RP2213.

[2] Report of the International Commission on Radiological
Units and Measurements, NBS Handbook 62 (1956).

[3] H. Goldstein and J. E. Wilkins, Jr., AEC Report NYO-
3075 (1954).

[4] M. J. Berger, J. Appl. Phys. 26, 1504 (1955).

[5] Table of sine, cosine and L\pOIantl&l integrals, Federal
Works Agency (1940).

[6] M. J. Berger and J. A. Doggett, J. Research NBS 56, 89
(1956) RP2653.

WasuingToN, May 16, 1957.

116



	jresv60n2p_109
	jresv60n2p_110
	jresv60n2p_111
	jresv60n2p_112
	jresv60n2p_113
	jresv60n2p_114
	jresv60n2p_115
	jresv60n2p_116

