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The Condition of Certain Matrices, III"
John Todd*

The condition-numbers of certain matrices associated with various discretizations of the

two-dimensional Laplacian opzrator are estimated. The condition-number gives an estimate

of the error obtained by solving the corresponding systems of simultaneous linear equations.
1. Introduction. 1In a previous paper [Todd, 8a] ? the condition of a matrix associated with
a particular method of solving a simple partial differential equation was discussed. Certain
experimental computations of D. M. Young and his collaborators [Young, 13] suggested the
discussion of other methods of handling the same equation. The /-condition number of a
matrix M is defined as /g where X 1s the maximum and g is the minimum of the absolute values
of the eigenvalues of M; it gives a measure of the difficulty in the numerical inversion of M, or,
more precisely, of an error in the inverse computed by an elimination method [von Neumann

and Goldstine, 11; Todd, Sa, 9].

In [8a] we considered the solution of the Laplace equation in a unit square, with given
boundary values.  We then used the following five-point approximation to the Laplace operator:
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where z(r,s)=z(rh,sh) and h=1/(n+41), n a positive integer. Following Milne [4, p. 131] we
indicate this approximation by the “stencil”
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(This has been called a “computational molecule” by Bickley [2]). The n*>Xn? matrix which
corresponds to the equations for the z(r,s) can be indicated as

b7 | IS/ A\ 6 /. where X=(...,1,—4,1,

is an nXXn matrix and [ is the n><n unit matrix. Here, and elsewhere, for brevity, we have
indicated only the general row in the triple diagonal matrices. For clarity we describe 7, and
Xin words. The matrix 7, 1s an n°>Xn* matrix partitioned into n><Xn blocks; of these the diag-
onal blocks are all X and the blocks adjacent to the diagonal are unit matrices. The matrix X
is an n)Xn matrix with diagonal elements all —4 and the elements adjacent to the diagonal
all 1: In symbols X=(z,;) where z,;,=—4, 1=1,2, . . . n, and for i), ¢,;=0 unless [i—j|=1,
when z;,=1.
The equations corresponding to the problem

222+ 2,,=0 in interior, z=1f on boundary

can be written as
it

1 The problems considered here were suggested by lectures of D. M. Young, Jr., in the National Bureau of Standards-National Science Founda-
tion Training Program in Numerical Analysis held in 1957.
‘Present address, California Institute ¢f Technology, Pasadena 4, Calif.
Figures in brackets indicate the literature references at the end of this paper.



where the variables z(r,s) are combined as the n’-dimensional vector:

A=EL), Al o -

and where

—f=(f(0O,n)+f(1,n+1), f2n+1), . .
FOn—1),0, . .., fn+1n—1); . . . fO,1)+F(1,0), [(2,0), . . .

., 2nm); 2An—1), 22n—1), . . .

Aingn=1)2 . .

The essential result established in [8] was that

P(Z,)=4r"n’

S fmn4-1)+f(n+1,n);

o (1D SR (D5

., 2(n,1))

 f0,0)+f(n+1,1)).

We shall now obtain the corresponding results for other discretizations of the Laplacian [Panow

5, Bickley 2].

2. Awuxiliary results.

(2.1)

are

where

We require the following results:
The characteristic values of the triple diagonal matriz of order n:

Ne=a—2y (be) cos ke,

O=

e oa,h,

0=x/(n+1).

M=l 2

n

This is well known; it is easily proved by solving the difference equation

An()\) - ((I’- )\)An—l (x)_b(‘An—i()\)

for the characteristic polvnomial A, (\)=|C—N\/|.
We shall use the notation 6==/(n-1) throughout this paper.

(2.2)

A=

are
)\k =

-

z2—B, 2a, B

Qx, 2o, B

B, 2a, z, 2a
B, 2« =z,

.

B
20, B
67 za, :?
B) 2a!
8,

z—2B—B{a?— (a—28 cos k6)?*},

The characteristic roots of the quintuple diagonal matrixz of order n:

SN
20, B
2 2a
20, z—3

o
Th=11. 9. n
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This result has been given by Rutherford [6, 7]. It can be verified as follows: If in the
matrix (7 we put e=0b and square we obtain essentially the matrix A. In fact if we choose

b= \ /3' = a’/\ E’ th(‘ll
A=C (= —29)]

= (2.3)  Let F be a matric of order n*, partitioned into an array of n* submatrices [;;, each of
order n, such that each [, is a rational function f,; (@) of a fired matriz a, of order n. If the char-
acteristic values of a are ay, as, . . ., «, then those of I are given by the characteristic values of the
n matrices
(fi;(ar)), =12 o o ofil

cach of order n.

This has been established by Williamson [12]; for extensions see Afriat [1].

3. We begin by discussing another five-point approximation which is represented by the

steneil
1 0 1
|
530 —4 0
1 0 1

Omitting the factor , we see that the corresponding n*>n* matrix is

e B S

where

18 an 7 Xn matrix and / the n><n unit matrix. The characteristic values of .\ are, from (2.1),
—2 cos k6, =il 2 o o o i

[t follows that those of Z, are those of the n triple diagonal matrices

> Zy®=. .., —2cos ko, —4, —2 cos ko, . . .|, k=120 .0,

which are, from (2.1),
v =—4[1+cos kb cos (6], - k=12 ... n, =12 o o o b
- We have
N (Z3)=4[1-cos?)]
w(Z,) =4 sin’l
so that

IR 75 =—=2 a1}



4. We next discuss the nine-point approximation represented by the stencil

1 4 1)
ﬁ4 —20 4
L1 41

Omitting the factor g We see that the corresponding n*>Xn* matrix 1s

Z=l.. ¥ X T.

where

X=f. .., 4, —20,4,. .. and  Y={. . ., 1,4, 1,.

We note that (2.3) will apply since
Y—=; X+9I.

The characteristic values of X are
—20—8 cos kb, k=12, .. . n

[t follows that the characteristic values of Z; are those of the n matrices

Z,o=f ... 4—2 cos k9, —20—8 cos k6, 4—2 cos ko, . . .

which are

e, =—20—8 cos k6—8 cos l§+4 cos ko cos 18, k=12, .. ., n, =12, . o o

Hence
N(Zy) =vy,1==32

W(Za) = =120
which gives
1)(23)—1.—?3 nt.

5. We conclude by discussing the nine-point approximation represented by the stencil
(0 0 —1 0 0)
0 0 16 0 0

127 —1 16 —60 16 —1 p-

0 0 16 0 0




This stencil must be modified for points near the boundary.

’

L

0 0
0 0
0 14
0 0
0 0

Thus, at the corner (1,7), we use

this means that we have estimated the outside value by linear interpolation on the two nearest

values on the same line.

For points (r,s) at the edge, i. e., r=1 or r=n or s=1, s=n which

are not corners, e. g., =1, s=n—1, we have to use a stencil of the form:

0 0
0 0

16
0 0
0 0

0

14

Omitting the factor s we see that the corresponding 7°>n* matrix is

167,

=

~

where Z is the nXn matrix:

Z,

r—59, 16,

(Z+1, 161, —1

164,

1, 161, Z, 161,

=]

16, —60, 16, —1

=l

=/l

—1, 161, Z, 161, —1I

—1, 16, —60, 16, —1

—1, 16, —60, 16, —1

—1, 16, —60,

—1, 161, Z, 161
—1, 161, Z+1)

=1l

~

16

, 16, —59)



From (2.2) the characteristic values of Z are
M= —60+424 {64— (8-+2 cos k6)}, =il 2 o o oy it
and by (2.3) the characteristic roots of Z; are those of the n matrices
(N1, 16, —1 A
1@, 2y UGS, =11

—1,16, N, 16, —1

N

-
Il

>~

Il
[y

N
<

=11, W, Ny 1@, =1

= ISLGISNE L6

L — 1,16, A1
which are, again using (2.2),
w=M+2+{64— (842 cos 16)?}, k=12,...,mn, I=12,...,n,
=N\ =00

[t follows that
)\(Z4):V1,1 =128
W) =V 247202
so that
P(7)="0
3
6. An evaluation of the various methods could now be made. In addition to the in-
version error, which is given in terms of the /’-condition number by von Neumann and Gold-
stine, the truncation error must be considered. The local truncation errors for the various
stencils have been given by Bickley [2]; however, it seems that the global truncation errors
have been studied only in the case of the approximation (1.1) by S. A. Gerschgorin, P. C. Rosen-
bloom, J. L. Walsh, W. Wasow, and others. We shall not, however, carry out an evaluation,
for it seems clear that the elimination method is not the most suitable one for problems involv-
ing sparse matrices; numerical experience, nevertheless, does show that the P-condition number
of a matrix is a good indication of the intrinsic difficulty of the inversion problem.
7. Remarks.
(1) Dr. Young pointed out that our results could be obtained by solving the difference
equations by separating the variables (ef., e. g., B. Friedman [3]).
(2) As in [8] the estimates of the N-condition of Turing [10] can be obtained, since we
know all the eigenvalues of the matrices in question.
(3) Similar results can be obtained for the biharmonic equation (ef. [9]).
(4) I take this opportunity to correct slips in two papers in this series.
In p. 117 of [8] the expression for v,; for j<k<n should read (n+41)y,,=—k(n—7+1)+
(n+1) (k—7). 'This was pointed out by D. E. Rutherford [7].
In p. 471 of [8a], line 3, the adjective “symmetric” (or “normal”) should be inserted to
qualify “matrix””.  This was pointed out in conversation by Martin Pearl.
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