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THE EFFECT OF SMALL VARIATIONS IN PITCH UPON
THE INDUCTANCE OF A STANDARD SOLENOID

By Chester Snow

ABSTRACT

A method is described by which the variations in pitch of a single-layer solenoid
may be compared with those of the precision lathe screw used to wind it. Assum-
ing that the pitch of the latter is constant, but not known with precision, it is

shown how the precision measurements of the length of the windings may be
combined with the former measurements to obtain the variation in pitch of the
windings relative to an ideal helix whose beginning and end points coincide with
the actual one. A mathematical formula for computing the correction 8L to the
inductance due to this variation in pitch is then developed. This formula
requires the graphical integration of a certain function times the deformation
and practical methods of evaluating it are described. Application is made to
observations on two standard solenoids and shows that the correction 8L to the
inductance L may amount to 4 or 5 parts in 100,000 even on the most carefully
constructed solenoids. In absolute measurements the correction is, therefore, by
no means to be neglected, although it seems hitherto not to have been taken
into account in determinations of the ohm.
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I. INTRODUCTION

In computing the inductance of a single-layer solenoid, it is at first

assumed that the turns of wire are uniformly spaced. Measurements,
however, show that this is never the case, no matter how carefully

they are constructed. It has been possible by several different

methods to measure the very small distance 5(y), by which a turn at

mean distance y from one end is displaced from its ideal position.

The ideal position of the nth turn is the position of the nth turn of a
uniform solenoid of the same total number of turns, N, whose initial

and final turns are at the mean position of the initial and final turns
of the actual solenoid. The constant pitch of the windings which is

used in the formula is defined as the quotient of the measured length
of the solenoid by the total number of turns. To the value L of the
inductance, computed by any formula which assumes a uniform pitch,

we must add a small correction dL, which represents the increase that
would be made in the inductance of the ideal solenoid when its turns
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are displaced by the amounts 8(y) which deform it into the actual

solenoid. These displacements 8{y) of each circular turn of wire are

only in the direction of the axis of the solenoid so far as concerns the

present problems. Variations of diameter of the solenoid, as meas-

ured over the windings or between turns, which would be due to the

elastic deformation of the wires or of the cylindrical form, or of both,

have been measured and their influence gives rise to other corrections

which do not concern us here. However, for the sake of other possible

applications, we formulate the first order correction 8L caused by
any infinitesmal deformation of a circuit.

II. FORMULA FOR 8L

Let L be the inductance of any sort of winding and let L +8L
be the inductance when each element of the wire is given a small dis-

placement which is represented by the vector 8, and which varies

from point to point on the wire. Let T and T + 8T be the electro-

kinetic energy in the two cases, the current be*ing one electromagnetic

unit in each case. Let q t be the geometric coordinates which determine
the configuration of the wire. They are infinite in number and the

wire will be treated as a linear circuit. The electromagnetic force

(in the generalized Lagrangian sense) tending to increase any such

geometric coordinate is >— and the work 8W, which is done by

all electromagnetic forces during the displacement 8, is therefore

/ f

^- 8q t
= 8T where 8q t is the i

th component of the displacement 5 in

the Lagrangian sense, and where the current is constant during the
displacement. Therefore 8T=8W (with constant current unity).

The electrokinetic energy is always given by T=^LP=„L (since

the current 1= 1) so that 8T=\ 8L= 8W, or

8L = 28W (1)

That is, the increase, 5L, in the self-inductance of any circuit which is

produced by giving it any infinitesimal deformation is equal to twice
the work 8W, which is done by its own electromagnetic forces during
the deformation with constant current unity. If the vector H is the
magnetic field at a point where the element of wire is the vector ds
(treating the wire as a linear element), which field is produced by
""it current in the wire in its original configuration (omitting the
contribution of the element itself), then the electromagnetic force
upon ds is the vector product [dsXH] and the scalar product of this
by I be vector displacement ([ds xH]-8) = ([Hx 8} • ds) is the work done
upou the element so that the total work done is

8W=f({dsXlI].8) = f([HX8].ds) (2)

integrated with respect to ds, along the length of the wire in its initial
or unvaried configuration. Combining (1) and (2) gives

8L = 2f([HX8}-ds)=-2f([Hxds]-8) (3).
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The integral last written represents the total lines of force cut by the
displacement. The penalty for idealizing the wire as a linear circuit

(with zero cross section) is the same as that incurred in the use of

point charges. Since the element's own field does not move it, this

singular part of the field must be omitted from H. This may be
done when the wire is a closely wound coil by talong H as that due
to the equivalent uniform distribution of current, such as the equiva-
lent current sheet in the case of a single layer solenoid or helix. In
extreme cases, such as that of a very thick wire, the formulation (3)

as a line integral would be inadmissible and must be replaced by an
analogous volume integral over the volume of the wire.

For the case in hand we replace the single-layer helix by N equal
and parallel circular (linear) turns whose centers are on the ?/-axis

with the origin y = at one end. In the initial configuration the circles

are equally spaced and the inductance is L . It is then deformed by
displacing each turn (center at y) a distance S(y) in the positive

^/-direction where 8(y) is derived from the observations. It may be
positive or negative, and is not only small compared to the distance

> between two adjacent turns, but also varies slightly from turn to

turn. Instead of integrating along the wire, we may then safely take
N N
~j- dy (where I = length of windings so that y= number of turns per

centimeter) as the number of turns in the interval dy. Each of these

turns is acted upon by a force —Hr (a, y) 2-wa in the +y direction,

where a is the radius of the circular turn and Hr (a, y) is the component
1 of magnetic field perpendicular to the axis, which would be produced
by the equivalent current sheet around which a current of strength

-j per centimeter along y is circulating right-handedly (each circular

turn carries imit current). The equation (3) then gives

27V C L

5Z= - -y- Hr (a, y) 2*a 8(y)dy (4)

If r, 0, and y are cylindrical coordinates, the r-component of H is a
function of r and y only; that is, Hr (r, y) and Hr (a, y) denotes its value
on the sheet where r = a. It is continuous at r = a. We maj compute
HT (r, y) by recalling that H is the curl of a vector potential A, whose
cylindrical components Ar and A y are zero, while the component A$

\ is a function of r and y only. HT is given by

HAr,y)=-*^ (5)

where

aN C l C 2ir cos 6 dMr > y) = -Tjo
dy

Jo ^-2arcosd+ a*+(y-7? (6)

so that by (5)

afr,„,-fj>y
,

aNC 1
, ,_&_ f

I Jo
V

cty'Jo -Jr
2 -2ar cos 6 + a2 +(y-y'y

49527°—31 2

Vr2 - 2ar cos d+ a2 + (y -y r

"2tt cos Odd
o -\A

'2 -2ar cos + a2 + (y--y'Y

/»2tt cos Odd
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Integrating with respect to y' gives

aN C2t
j fHr(r,y)=-rJo

cos d «|^_ 2ar cos e+ a* + (l
_
yy

1

ylr
2 — 2ar cos + a2 + y-

Placing r = a gives

(7)

Hr(a,3/)=?7^t^W-w(M')] (8)

where

f*-'2 cos 20a
7

2[~ r . / N „, ,1 r>r/ s

J v1~m sm ^L J

(9)

and

where 1£ and E are the complete elliptic integrals of the first and
second kind of modulus /x. The formula (4), therefore, becomes by
the use of (8)

5Z =
57raiV_j^ ^yM-^'Xdy (11)

where ju and // are functions of y given by (9), and of course 8(y) is

the observed function of y. We may replace the latter by a function

fi(y) defined by

My) = *(y)-*(!-y) (12)

The equation (11) then transforms into

5L=
s*Wj^.

(2/MW/ (13)

It is next convenient to introduce a new variable of integration by
the transformation

— V.

~2a
(14)

II" we define /(X) as .A (2a X) and f(\) by

^(X)=7T0,(iu) where n
2 -= y+Y2 ^^

then (13) finally becomes

5L = 47r(y
2

Ju

X

7(X)^(X)o
,

X (16)

where

X,
tt
— - = the maximum value of X (17)

.
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The deformation of the helix is represented in (16) by the small

observed function /(X) which may be plotted as a function of X from
X-0 to X=Xm . The function JKX) defined by (10) and (15) has
been computed by the use of tables of the elliptic integrals and
plotted in Figure 1 from X = 0.07 to X = 5.0. Since it becomes
logarithmically infinite at X = 0, the equation (16) needs some re-

shaping in order to become practicable for the evaluation of bL by
graphical integration.
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Figure 1, The junction rp(\)

III. PRACTICAL METHOD OF EVALUATING THE INTEGRAL
FOR hL

1. FIRST METHOD

Evidently a positive value e may always be so chosen that the
curve of observation /(X) may be represented by

JM =j{o)+j''(o). X in the range o<X<€

so that (16) may be written

(18)

«i=4x(£)
1

' [/(o) fV(XMX +f(o)J\+(X)d\)+ C^JOWMd x} (19)

For the last integral the integrand is easily plotted and is finite, and
may be evaluated by graphical integration. The first two integrals

are finite although the integrand becomes infinite in the first, but both
may be evaluated analytically by means of two integral formulas
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which are given in Bureau of Standards Scientific Paper No. 537 on

page 449, which are

J<£i(m
"7S

(20)

#^P^[i^)-£(M)]-£(M)j (2D

Since tt(})i(jjl) = \P(X), and since the dependence of /* upon X becomes

^TTT* <22 >

~S= *d\ and
a

,
*it is evident that — ^f= Xc^X and

2
,

2

==^- The left sides of (20)

and (21) become J*yl/(\)d\ and J*\\p(\)d\, respectively. Taking
the definite integrals from \ = to X = e (noting that for the partic-

ular function considered /(o) =0), we find from (19) after placing

(23)

the final formula for computing the increase 8L in inductance due to

the deformation.

+ J/(X)/(XM(X)J (24)

Assuming that the straight line representation (18) of J(\) will

generally be possible for the range 0<X<€ = 0.1, this becomes

5Z = 4ir(^Y{o.011/'(o) + f
X

xf(\)f(\)d\\ (24a)

To compute 8L by this formula, it will be recalled that N is the total

number of turns each of radius a and that X is ~- and \m is 5- where the

length of the solenoid is I cm and y is the distance in cm from one end
fed a variable point and the method of constructing and plotting the
small function ^(X) is as follows: The observed displacement in cm
relative to the ideal helix of a turn at distance y from one end being
the small function of y, 8(y), (which is reckoned as positive when
the displacement is in the direction of increasing y), we define/^)

'

1W = 8 (y) —8(l — y) and then make the transformation y = 2a\
representing the function fi(y)=ji (2a X) by the new symbol /(X).
This may be plotted as a function of X and the ordinates when multi-
plied by the ordinates of the curve Figure 1 for \f/(\) give the inte-
grand of the integral in (24) or (24a). If this integrand, tA(X)/(X), be
plotted as a function of X, the area under the curve can be found by
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graphical integration and represents the integral desired in (24).

Since Xis dimensionless and 8 (y) and/(X) and/'(X) are given in cen-

timeters, the change of inductance 8L given by formulas (16), (24)

or (24a) will be measured in absolute c. g. s. electromagnetic units

or centimeters. (1 cm = 10~9 henries.)

2. SECOND METHOD

The procedure outlined above is applicable when/(X) is any func-

tion which is finite and has a finite slope at X= 0. If/(o) is not zero,

an improper integral is involved and this method of evaluating the

integral analytically over a small initial range must be used as graph-
ical integration could give no certainty in the case of a curve going

to infinity at X = 0. Since, however, the function /(X) always vanishes

at X = and has a finite initial slope, the integrand ^(X)/(X) is always
finite (in fact zero) at X = 0, and there is no practical difficulty in

evaluating it graphically over the entire range. The practical diffi-

culty is in plotting it right down to the point X = 0. This may be
overcome by obtaining an asymptotic expansion for ^(X) in the
neighborhood of X = 0. Such an expansion is given in Bureau of

Standards Scientific Paper No. 537 on page 449, formula (56) by which

^^^[l+ld-M2

)]^
3

in which additive terms of the order of (1 — ju
2
) log .. _ 2 have been

X2

neglected. Since 1 — m
2=

1
, -v 2

this becomes

WX)=(l+|x2)z7^-2-ix2
(25)

which may be used for values of X less than 0.1 with an absolute error

which is then always less than O.lHn 10 = 0.00023.
If we use (25) for computing the integrand ^(X)/(X) of equation

(16) in the small range, say, 0<X<0.1 then formula (16) may be
readily evaluated graphically.

In the first example below, the curve for/(X) is practically a straight

line through the origin for 0<X<0.1 and the formula (24a) has been
found most convenient. In the second example, the second method
is used.

Before taking up these numerical examples, the method should be
described by which the value of 8(y) was inferred from the observa-
tions. As this method was somewhat indirect, new measurements
are being considered by which 8(y) may be measured directly with
reference to a standard of length by means of a cathetometer.
We define the ideal solenoid of constant pitch as one of the same

number N of turns whose beginning and end coincide with the actual
one. Taking the y-axis as the axis of the cylinder with the origin

at one end, let 8(y) be the small displacement in the ^/-direction which
deforms the element of the ideal winding, which is distant y from the
end of the coil into its actual position. Evidently 8(y) is zero at both
ends; that is

5(o) = 5(Z)=0 (26)
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Since the cylindrical form is of quartz, it may be assumed to have
the same length I when mounted on the lathe for winding and com-
parison with the screw as it was when finally set up for measure-

ment of its length and diameter.

The nearest substitute for the ideal coil in terms of which the actual

one may be calibrated is the screw. The displacement A (y) which
would deform an element of the screw thread into the position of the

corresponding element of the actual winding was determined as a

function of y by means of an optical lever on the carriage which made
contact with the side of the wire. As the coil was slowly rotated and
the lever carried forward on the screw, four observations were taken
for each turn—4,000 readings in the case of the quartz cylinder with
1,000 turns. The scale deflections, multiplied by the calibration

constant of the lever, gave A(y). These measurements were taken
immediately after winding, with the cylinder geared to the screw
exactly as in the windings, so that the element of winding was com-
pared with practically the same part of the screw that was used in

winding it. Hence, if the wire had not rolled in going on to the
cylinder its pitch should have possessed practically the same variations
as the screw and no deflection of the optical lever should have been
observed in moving from one end to the other, even though the screw
were variable in pitch. Deflections A(y) were observed, however,
and these were reasonably concordant with a similar set of observa-
tions (which weie taken on one coil) in which the optical lever was
replaced by a micrometer microscope The value of A(y) was some-
times positive and sometimes negative, but never more than 2 per
cent of the pitch or distance between two turns, which was 0.1 cm
in the case of the quartz cylinder of 1,000 turns, whose length was
very approximately 100 cm. The displacements 8(y) and A(y) are
reckoned as positive when they are in the direction of increasing y.

If we let Aay denote the displacement (in the +y direction) which
would deform the ideal helix into the screw, then

8(y) = A(y) + As (y) (27)

Now if the screw is assumed to have a constant but unknown pitch
at the time of comparison, then

As (y)=A + By where A and B are constants (28)

the latter depending upon the temperature. A change in the value
oi A merely shifts the screw as a rigid body and is irrelevant. Com-
bining (27) and (28) gives

5(y) = A(y)+A+By (29)

The constants A and B are determined by the two conditions (26)
that 5(o) = 5(Z) = 0. They are

A=-A(o)

B = \[A(o)-A(l)]

so that (29) becomes

>(y)-A(y)-[
Aq)

"]
A(o)

y+A(o)] (30)
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The observations are given in the form of a curve in which is

plotted as a function of y from y = to y = l, the small observed func-
tion A(y), which is the displacement of the winding relative to the
screw. The equation (30) then gives the desired function 5(y)
representing the displacement which deforms the ideal solenoid into

the actual one. The curve for 8(y) may be plotted without computa-
tion by drawing a straight line through the end points of the curve
for 8(y). This is the straight line whose ordinates are represented
by the bracket which is subtracted from A(y) in equation (30).

Hence, the vertical distance of the curve for A(y) above this straight

line represents 5(y). (See fig. 2.)
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The observed variations in pitch of coil No. 1

IV. NUMERICAL EXAMPLES
1. FIRST EXAMPLE

This is the case of a single layer helix of 1,000 turns of length
Z=100 cm wound upon a quartz cylinder whose radius a is 14 cm, so

that N= 1,000 and Xm = ~2£- = 3.57 and formula (24a) becomes

6Z= ^|^^J0.011/(o) +Ji

3 ' 57

4(X)/(X)r/xj

The observed variation in pitch is shown in Figure 2 by the curve
which gives A(y) the displacement which transforms the screw thread
into the actual winding. The curve in this figure for 8 (y) was obtained
graphically as explained since 8(y) is the height of the A(y) curve
above the straight line connecting the ends of the latter. The 8(y)
curve represents the displacement which would deform the ideal

helix into the actual windings. From d(y) the function ji{y) =
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6(y) — 8(l — y) was constructed and plotted in Figure 3 as/(X) where

X =— • In Figure 3 is also shown the integrand ^(X)/(X), the factor
28

\f/
being taken from the curve of Figure 1 . The area under the latter

curve of Figure 3 was found by use of the integraph to be

(*3.57

^(X)/(X)dX = -4.7(10)~4 with error < 1 per cent of itself.

Jo.i

The unit is here the centimeter of inductance (10~9
), not area on the

paper. The initial slope of the curve /(X) in Figure 3 is

/
/ (O)=-105(10~4
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Eence formula (24) becomes

4007T

(:^.57)
2

5Z = 1.15 + 4.7} = -580 cm

wind) rrnisl be subtracted from the value L which is computed on the
assumption of constant pitch. Since L is approximately 68X 106 cm,
this correction is about 8 parts in 1,000,000.

2. SECOND EXAMPLE
This is the case of a single-layer helix of 270 turns with the same

nominal pitch (0.1 cm ) as in the preceding case, but wound upon a
cylinder of pyrex glass, the mean diameter of the coil being 2a = 44.56

97
cm,sothat since Z= 27 cm, K-TTTk= 0.605. In this case there were

44.oo
two types of observations whose discrepancy served to indicate the

I
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probable total error of the method. The first was by means of the
optical lever; the second was by means of readings taken with a
micrometer microscope. The two sets of data are shown in Figure 4,
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Observed variations in pitch of coil No. 2
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The functions 5(X) and /(X) for coil No. 2

which gives Ay in the two cases. The corresponding 8(y)'s were
constructed graphically and shown in the upper curves of Figure 5
and the/(X)'s in the lower curves. In Figure 6 are shown the two
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curves for ^(X)/(X), these being constructed by the use of formula

(25) for values of X less than 0.1. The area under these two curves

was found by the use of an integraph and gave

X
0.605 . . . . .

xf,(\)j(\)d\= +4.65 (10)
-4 cm for optical lever data

= +4.47 (10)~4 cm for microscope data

Hence
/ 270 \ 2 r0,605

8L = 4irl „ '
) ypjd\= 1,160 cm for optical lever data

\0.605/ Jo
= 1,120 cm for microscope data

(The units here are in centimeters of inductance.) Since L is approxi-

mately 26 (10)
6 cm, the difference between these two corrections is
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Figure 6.— The function ^(X)/(X) for coil No. 2

about 2 parts in 1,000,000, which gives an idea of the probable error

in the correction. Giving the optical lever data the weight 2 and the
microscope data the weight 1, the best value of the correction due to

variation in pitch seems to be 8L= +1,150 cm (to be added to L ).

This correction amounts to about 4.4 parts in 100,000.

V. SUMMARY
A general formula (16) is derived for computing the increase in self-

inductance of the helix when its variation in pitch is observed. The
practical form of evaluating it graphically is explained under (24) and
(24a), and also in connection with equation (25). The directions for
constructing the observational function are summarized after formula
(24a). The application shows that this correction may amount to
4 or 5 parts in 100,000, which shows that it must be taken account of
in absolute measurements which use the coils as standards whose induc-
tance may be computed from their geometric dimensions,



VI. APPENDIX
1. AN INDEPENDENT METHOD OF DERIVING THE EFFECT OF SMALL
VARIATIONS IN PITCH ON THE INDUCTANCE OF A STANDARD
SOLENOID
(The following method was derived by F. W. Grover during the editorial reading of the

preceding paper)

The inductance of a coil may be obtained by summing the self-inductances of

the turns and the mutual inductances of all the pairs of turns of which the coil is

composed. We will assume, as has been done in the preceding paper, that the
coil is made up of parallel, coaxial, circular turns of wire; that is, the helicity will

be neglected. Thus the effect of irregularities in the winding pitch will be taken
into account by supposing each turn to be displaced in the axial direction by an
amount equal to the average of the displacements of all the elements of the turn
from their ideal positions.

It is evident that the self-inductance of an individual turn will not be altered
by such a displacement. The mutual inductances of the various pairs of turns
are, on the contrary, changed by the displacements of the wires from their ideal

positions, and the algebraic sum of the changes of mutual inductance of all the
pairs of turns of the coil will give the change of inductance of the coil, due to the
assumed irregularities of winding.

If two turns, whose axial coordinates are y and (y-\-Ay) in the ideal coil are given
displacements 5j and 52 , respectively, their mutual inductance suffers a change
equal to

SM= _
(5l _52)^ (1)

Furthermore, -,— will be the same for all pairs of turns which are equally spaced

in their ideal positions. Applying these considerations to the observed displace-

ments 5i, S2 , S3- . • 5» of all the turns of a coil of N turns, wound with an average
pitch g, the inductance of the coil is changed by an amount

5£=2*^=-2[(^) 1
{(V-*2)+ fc- *)+ ••• + (*„-!-«„)}

+(^) 2
{(5 1

-5
3) + (52 -54) + --- + (5n-2

-5 n)} (2)
2

+-+(«L*-«]
or, rearranging

*~m-a.){(f) t+(f) 2+
...+(f)j

H*-«{(S).-Kf).+-+(S)J+-

in which ( -y-
J

is the rate of change of the mutual inductance with respect to

of two turns separatee

n
— o»h)( -£7 )n, if N is even

(«£_!— *»&,\-4j:Jn=l >
if N is odd -

their axial distance, apart, of two turns separated by a distance pg. The final

} term in (3) is

(*.

and
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The calculation of 8L is thus seen to depend upon the calculation of (
—

-
)

for pairs of coaxial circular filaments, with axial separations g, 2g, 3g, etc. Since"

the force between two filaments carrying unit current is ~~(~T~)} tne terms of

equations (2) and (3) are seen to represent work done by the electromagnetic

forces during the deformation from the ideal winding, a result agreeing with
equation (1) of the text.

Except for turns very close together, the values of the ( —r- ) can not be ex-

pressed by a single series expression. However, the well-known elliptic integral

formula of Maxwell, Elect, and Mag. volume 2, page 339, is universally appli-

cable, or more conveniently, numerical values may be interpolated from the tables

of Nagaoka and Sakurai, Institute of Physical and Chemical Research, Table 2,

Tokyo, 1927.
The calculation of 8L for

t
short coils, or coils of only a few turns may readily

be carried out by the use of formula (3) and such tables. For a coil of many
turns, however, this process would become very laborious. In such cases the

winding pitch is small compared with the dimensions of the coil, and ( -r—
J
changes

slowly with the spacing of the turns. Thus it is possible to transform the sum-
mation of equation (3) into an integration over the length of the coil, and it will

be shown that this leads to Doctor Snow's equation (13).

To prove this, we note that the displacements of the turns enter in (3) in the
form 8(y) — 8(l— y) =fo (y) , so that on summing along the coil, under the assumption

that Ay=g is very small, each term of (3) takes the form - [8(y) — 8(l— y)](My
—

Ml— V), where My and Mi— y are the mutual inductances of equal coaxial circles,
* separated by axial distances y and (l— y), respectively.

N
Thus, if we remember that the winding density is ~j turns per cm. of axial

length, equation (3) becomes

8L-
2 f m N
-J

jfi(y)(My-Mr-y)dy (4)

It is, however, to be noted that the function tt<pi(h), of equation (15), is a factor
in Maxwell's elliptic integral formula for the mutual inductance of equal coaxial
circles (loc. cit.), so that we may write

and, therefore,

&-*>) (6)

8L
S*Nar " 2

r

-^S
l,2

fMiHV-mm-my (7)

The second integral in this equation may be transformed by changing the variable

to y'=l—y
}
so that it takes the form f\fi(y)ip(\)dy. Thus (7) becomes finally

8L=^¥f
o

l

MyM\)dy (8)

which is exactly the equation (13) of the paper, since vr^Cu) =^(X).
1 ll( ' alternative method is thus seen to lead to exactly the same correction for-

mu
Jj

'or "" inductance change due to variations in winding pitch as was found
by Snow s more general solution of the problem in the preceding paper.

Washington, September 15, 1930.


