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NOTE ON CONTRACTION COEFFICIENTS OF JETS OF
GAS

By Edgar Buckingham

ABSTRACT

1. A jet of liquid from a sharp-edged orifice contracts more than a jet of gas
because the gas expands after leaving the orifice; and theoretical expressions for
the ratio of the two contraction coefficients have hitherto been deduced from the
assumption that the expansion is the same in all directions. In the present
paper this is replaced by the assumption that the force exerted on the upstream
face of an orifice plate on the end of a pipe depends only on the static pressure
and the momentum of the approaching stream.

2. The resulting expression is compared with the experiments of Witte on
water, of Bachmann on air, and recent unpublished experiments on natural gas.
The conditions presupposed by the theory are strictly satisfied in Bachmann's
experiments but in the others they are satisfied only when the ratio, /3, of orifice

to pipe diameter is small.

3. The conclusions areas follows:
(a) Bachmann's experiments on air at low differentials agree with Witte's on

water within 0.5 per cent.

(6) The measurements on natural gas agree with Bachmann's on air within
0.5 per cent.

(c) As far as the critical pressure ratio, the new formula represents the results

on natural gas within 0.5 per cent for /3— 0.27; within 0.3 per cent for/3= 0.38; and
within 0.8 per cent for /3— 0.5. For /3=0.7 the departure increases to nearly 4
per cent.
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I. INTRODUCTION

The pressure in a jet of fluid issuing from a square-edged orifice in

a thin plate does not fall to equality with the outside pressure until

the filaments have become parallel. Between the plane of the orifice

and the vena contracta there is a radial pressure gradient outward,

and if the fluid is a gas it expands transversely as well as longi-

tudinally, whereas in the case of a liquid there is no expansion. The
cross section of the vena contracta is therefore larger with a gas

than with a liquid.

The ratio of the two sectional areas would be given by a complete

solution of the equations of motion, but until the mathematical
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difficulties of the problem have been overcome, any attempt to com-
pute the ratio a priori must rest on simplifying, approximate assump-

tions. Two such computations have recently been made, 1

2

both

based on the assumption that the gas in the jet expands uniformly in

all directions; but while the formulas obtained agree well with the

experimental data with which they have been compared, the funda-

mental assumption has been criticized 3 as very improbable under the

conditions of acceleration and distortion prevailing in the jet. I

have therefore thought it worth while to start from a different initial

hypothesis and to compare the result obtained with certain additional

experimental data which have not yet been published and so have
not been available to previous writers.

II. DEVELOPMENT OF A NEW FORMULA
1. CONDITIONS

The orifice is to be a cylindrical hole in the center of a thin, flat

diaphragm across the end of a straight pipe. The outside space into

which the discharge takes place is to be so large that the static pres-

sure in it is sensibly uniform everywhere outside the jet from the
orifice; and the jet will be regarded as having a definite boundary, as

far as the vena contracta, the frictional drag at the boundary being
negligible. We consider only steady states of flow.

The fluid shall be some gas, such as air, which may be treated as

subject to the ordinary ideal gas equations over the short range of
pressure and density involved in flow through an orifice at jet speeds
below the speed of sound in the jet.

The Reynolds number shall be high enough that the motion is no
longer appreciably affected by viscosity, and that the velocity and
static pressure are sensibly uniform all over the section at the vena
contracta, the pressure there being the same in the jet as in the
surrounding space.

2. NOTATION

The following notation will be adopted, all values being expressed in
tenns of a set of normal units, such as the cgs or the "British absolute"
system.
A = the area of cross section of the pipe;

inA= the area of the orifice, m being the area ratio and -ylm = & the
diameter ratio

;

p, = the static pressure in the pipe ahead of the orifice;

Pi = the density of the gas at that place;
&i = the linear speed of flow along the pipe;

the pressure in the outside space;
p.- the density of the gas after isentropic expansion from (pi,pi)

,, u
to »i

&2-tho speed at the vena contracta;
Pa the contraction coefficient, so that the area of the vena contracta

is /*„///, 1;M = the mass (low; evidently

M=namAP2S2 (1)

! r,!::*:;,'

1

',',!
".V-

M
:;

h
,

u
- Tbwmodyn., 1, p. 118; March, 1930.

1 Mdch. ii. 'i hermodyn., 1. n 151- Adi-H iy?o
• -• rechn. m,,i, u. ThermS^t^lfsSptember, 1930.
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p3 = the outside pressure that would be required to produce this same
mass flow, from the same initial pressure ami density, if the
density were kept constant at the value Pl , which could, in
principle, be accomplished by withdrawing heat at a suitable
rate instead of allowing the flow to be adiabatic;

£3 = the speed at the vena contracta in this case; and
M = the contraction coefficient. By the definition of S3 and by (1)

we have

fj.7nAPlS3 =M= n am.Ap2S2 (2)

y = CJCv = ihe specific heat ratio of the gas;
FQ = the force exerted by the gas inside the pipe tending to push the

orifice plate downstream off the end of the pipe. To simplify
the appearance of the equations the following abbreviations
will also be employed

Pi
y

Pi

7 jyy(l-y y ) = <]>

3. REMARKS

(3)

If the density does not change during a fall of pressure, compress-
ibility does not come into play, so that its value is immaterial and the
shape of the jet depends only on the value of the Reynolds number

R= >in which D is the diameter of the orifice and 77 the viscosity of

the fluid.

Since R depends on p as well as 77, if its values are all so high that
changing from one to another does not affect the shape of the jet, it

follows that the shape is unaffected, not only by a change of viscosity

caused by substituting one fluid for another, but also by a simultaneous
change from one constant density to another. Hence at high values
of R the contraction coefficient will be the same in the supposed case
of discharge of a gas at the constant density pi as it would be in the
discharge of a liquid of that or of any other constant density; and the

value of jjl may therefore be determined by experiments on water at

high values of R,

4. BASIS FOR A NEW TREATMENT OF THE PROBLEM

We assume that with given initial conditions (pu pO, and with a

given mass flow M—which implies a particular linear speed Si along

the pipe—the force F exerted by the gas on the upstream face of the

orifice plate is the same when the subsequent discharge through the

orifice takes place isentropic ally, as if it went on with artificial cooling

at constant density. This enables us to dispense with the assumption

of uniform expansion beyond the plane of the orifice, and with several

auxiliary approximations of which the importance is difficult to

estimate.

The approximation to reality will be closer for small than for lai

values of (pi-p2 )/Pi and, probably, for small than for large values of

m; and it is hardly to be expected that the results obtained from the
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assumption will agree well with experiment for large values of m or

for pressure ratios near the critical.

In so far as the assumption is valid, it permits of applying the

momentum principle, and we proceed as follows:

5. ISOTROPIC FLOW FROM (p,, Pl) TO p2

The equations of energy and continuity are

and

whence

and

PiV

1

M=ApiSi = p amAp2S2 = {jL amApiyyS2

S2 =

\ Piyy\l-fJLa
2m2y^

I / 2Pl+M^^mAp.yy/
y ,
^ ^ (7)

lm2yt

The time rate of increase of momentum is

M(St-Sl)-
2ll'mApi

f (8)

l + p-awy V

and (ho force acting is

F=A(p l -mp2)-F (9)

i-if-^—^2^ do)

whence, equating (8) with (9) and dividing by Ap lf we have

F _ 2p. am<t>

1 + p amy^Y

6. FLOW AT CONSTANT DENSITY FROM (p, f Pl) TO pa

The equations of energy and continuity are

V-«,-2ft(l-«) (11)

and

M=APlSl
= pmAp 1S3 (12)

whence

*-VaO-jW) (13)

und

M-^JMg (14 )
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The rate of increase of momentum is

and the force acting is

whence by (15)

l —mw

l + /*ra

F=A{p l -mp3)-F

F = 2nm(l-w)
Api 1 + nm

7. APPLICATION OF THE FUNDAMENTAL ASSUMPTION

769

(15)

(16)

(17)

The assumption is that if equations (7) and (14) give the same
value of M, the value of F will be the same in (10) as in(17).
Accordingly, we may eliminate the unknown force F by subtracting

(17) from (10) and after dividing by m we have

w-y= 2fi a <t> 2m(1-w)
1 1 4-ura

fiamyy
(18)

Upon equating (7) and (14), removing the common factors, and
squaring, we have

1 — fjL

2m2

t*a
2
y V

<t>

1 - na
2m2

y y

(19)

and after eliminating w between (18) and (19) we have a quadratic

equation of which the solution may be expressed in the form

M(-V'-f) (20)

where

(21)

A = y^[(2» + »
2m2

-l)<f>- ffmhjy- (l-y)]

y=^2

The result embodied in equations (20) and (21) is to be compared
with experiment and we have next to examine the available data.

III. EXAMINATION OF THE EXPERIMENTAL DATA

In the absence of accurate measurements of the diameter of the

vena contracta, we have recourse to the values of discharge coefficients

obtained from measurements of mass flow.

The "adiabatic" discharge coefficient Ca for a gas is defined by

M=CaMt .
l

(22)
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where M is the observed mass flow and Mt . a is the "theoretical"

mass flow found from equation (7) by ignoring the phenomena of con-

traction and setting /xc =l. Since Ca is not constant, we may write

Ca = CYa (23)

where C is the limiting value which Ca approaches as p2— Pi, and the

"expansion factor" Ya is a function of p2/pi which reduces to unity

when fa—Pi'
The discharge coefflcient Cx

for a liquid is defined by

M=ClMt . l (24)

in which Mt .i is the " theoretical" mass flow found by setting m= 1 in

equation (14). But if we set ,ua = fjL=l and Pz
=1

P2, equation (7)

approaches (14) as a limiting form when p2 =Pi. Hence Cz and C
are identical, and instead of attempting to find the value of C by
extrapolating to very small pressure differences from measurements
of Ca , we may equally well find it from experiments on a liquid.

The stipulation that the Reynolds number shall be so high that its

precise value is no longer important, implies that the dissipative

resistances due to viscosity have become insignificant. The contrac-
tion coefficients i± a and /* may therefore be regarded as sensibly iden-
tical with the discharge coefficients Ca and C, and for the purpose of

comparison with equation (20) we may set

^f-F, (25)

The experimental data suitable for a direct test of the formula are
very few; for it was postulated that the discharge should take place
into a space that was large enough for the static pressure in it to be
uniform, and the only satisfactory experiments of this sort that have
coino to my attention are those of Bachmann 4 on the discharge of
air into the atmosphere through an orifice on the end of a pipe.
The internal diameter of the pipe was 8.25 cm and the diameter of

the orifice was 2.003 cm, so that the diameter ratio was = 0.2428 and
the area ratio was /3

2 =m = 0.0590. Of the 18 values of Ca obtained
at speeds below the critical, the one that was measured at the lowest
rate of discharge and is therefore the least reliable is far out of line
with th The remaining 17 are represented without system-

-inures by the equation

Ca = 0.5989 (l +0.2431 &—P*\ (26,

,

1

,u '

departure being less than 0.5 per cent and the mean
departure less thaD 0.2 per cent.

important thing for our present purposes is the expansion

ra = l +0.2431 ^-^-2
(27)

?2

*• Bac1 ' ung von LuftineiiKcn, " Dissertation, Darmstadt;



Buckingham] Contraction Coefficients of Jeis of Gas 771

but it is interesting to compare the value of C with values obtained
from orifices installed in pipes, with p2 taken as the mi/iimum pressure
observed on the downstream side of the orifice.

Witte's 5 experiments on water flowing through perfectly square-
edged orifices installed in smooth pipes, with the pressures taken at
the face of the plate, gave values of G which, for diameter ratios
between /3 = 0.2 and = 0.75, or 0.04<m<'0.56, are represented with-
out systematic error by the equation

C K= 0.5983 + 0.395m2
(28)

-yjl —m

The maximum departure is about 0.25 per cent and the mean depar-
ture for the 17 orifices tested is less than 0.1 per cent, so that the repre-
sentation by equation (28) is very good.
For Bachmann's area ratio, (28) gives 0=0.5986, but this must be

corrected to obtain the corresponding value which would have been
found if the pressure difference had been measured between the
upstream and downstream minima instead of between the two faces

of the plate. Experiments on air which will be published in the near
future show that this correction factor is about 0.9983, so that we have
from Witte's experiments on water (7=0.5976 as compared with the

value 0.5989 from Bachmann's work—an excellent agreement.
The equation adopted for representing the results of the experi-

ments on compressed air, described in Bureau of Standards Research
Paper No. 49,

6 namely

C= 0.5970 + 0.09 m2
(29)

gives (7=0.5973 for Bachmann's value of m.
Next to Bachmann's data, the best at my disposal were obtained

from experiments on natural gas, performed at Los Angeles in 1929

under the direction of H. S. Bean of the Bureau of Standards, as part

of an investigation being carried on by the Natural Gas Division of

the American Gas Association, in cooperation with the Bureau of

Standards. The circumstances were more favorable as regards steadi-

ness of flow than in the experiments on compressed air just referred

to, so that the precision was higher and the results are preferable.

The orifices were installed in straight pipes, as in Witte's experi-

ments on water, so that the discharge space was restricted and the

static pressure in it not entirely uniform. It is to be presumed,

however, that if the area ratio m is small, and if the minimum pressure,

observed at the wall of the pipe on the discharge side is taken as the

value of p2 , the arrangement will correspond fairly closely with that

presupposed in developing equation (20); and the agreement noted

above between Witte's and Bachmann's results lends support to this

presumption.
.

New commercial steel pipes of 4, 8, and 16 mches nominal diameter

were employed, and a honeycomb of smaller pipes was placed in each,

from 10 to 15 pipe diameters ahead of the orifice. The orifices (23 in

number) had diameter ratios ranging from 0.124 to 0.869, but the

s See footnote 1, p. 766.
6 B. S. Jour. Research, 2, p. 561; March, 1929.
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data to be considered here are only those obtained with the 14 orifices

for which the diameter ratios were between 0.3 and 0.75, or 0.09

<ra<0.56. For, as is the case with Witte's values of C for water,

the variations of C can be more accurately represented by simple

empirical equations within these limits than for 0<O.2 or >0.75.
The results are expressed in the form

<WC*) (30)

where x= fa —

p

2)/pi and d is defined by the equation

M=amAV
2^^ <31 >

M being the actual mass flow. The coefficient d is connected with
Ca by the relation

(71 = (7aZ1Z2 (32)

where

%-y
and

2 a

1

yy 1\i-y r)

(t--i) (i--y)

' l -m2

m2
y y

(33)

Since 2! = z2=l when p2~Pi or y=l, C\ and Ca have the same
limiting value C and we may write

C1
= CYl (34)

in which Yu like Ya , is a function of x which reduces to unity when
*=0. By equations (32) and (34) we have

Ca = CYa= ^- = C^~ (35)
ZlZ2 Z\Z2

whence

T*
=
Ft (36)
ZiZ2

and if 7, is known, the value of Ya for use in equation (25) may be
iouiul from it.

W hen the values of Cx for each of the 14 orifices are plotted against
the values of x at which they were measured, the points lie along a
Btraignt une, within the experimental errors. The slope of the line

[
anea with m, and the average result for all the orifices is represented

by the equation

F1 = l-(0.32 + 0.3m2
)x (37)

In order to use this result in connection with Bachmann's values of
J

* i'»r air, an allowance must be made for the difference between



Buckingham] Contraction Coefficients of Jets of Gas 773

7 = 1.40 for air and 7=1.284, computed from the composition of the
Los Angeles gas. For this purpose I have assumed the relation

a >(;)

proposed by L. S. Smith,7 which appears to he accurately true for low
values of x, and to be a good approximation even as far as the critical
pressure ratio.

On the basis of Smith's relation, equation (37) is to be regarded as
a special form of the more general equation

Fi = l- (0.41+ 0.39m2)- (38)

and for the case of air, with 7= 1.40, this reduces to

Yi = 1 - (0.293 + 0.28m2
) x (39)

For the purpose of comparison with Bachmann's data on air and
with equation (20), equation (39) will be assumed to represent the
results that would have been obtained at Los Angeles if the experi-
ments had been made with air instead of natural gas.

IV. COMPARISON WITH THE NEW FORMULA

Since the computations required are tedious, they have been carried
out only for a few simple values of m2 and of p2/pi, and the experi-
mental values of Ya have not been treated individually but taken
from the empirical equations which represent them.
Bachmann's results have been taken from equation (27) or

Ya = 1 + 0.2431£^ (40)

which represents them within the experimental errors. In accordance
with (36) and (39), the equation

v 1 -(0.293 + 0.28m2
) s

a
~

Zx*2
(41)

has been taken to represent the results of the experiments at Los
Angeles.
The values of fx = C required for substitution in equations (20, 21)

were computed from equation (28), which represents Witte's experi-

mental results, and then corrected to what they would have been if

the pressures had been observed at the upstream and downstream
minima, by means of factors determined from the experiments on air

already referred to.

7 The proposal was made in a paper presented to the World Engineering Congress, Tokio, 1929, and
subsequently to the Annual Meeting of the American Society of Mechanical Engineers, New York, De-
cember, 1929. The introduction of the "expansion factor" Y is also due to Mr. Smith.
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In addition to computing values of na/n from (20), I have also made
corresponding computations by means of the equation

r(l-M2

)f-M
2 (l-m2

)"l
Ma £|

M L 1-mV J
(42)

deduced by Witte 8 from the assumption of uniform expansion.

The results are summarized in the following table.

m- Vw=/3 M E2

Pi

Baehmann
equation

(40)

Y a

Los Angeles
equation

(41)

Ma

M
equation

(20)

Ma

M
equation

(42)

1 2 3 i 5 6 7 8

0. 005

(. 00348)

.02

.06

.24

0. 266

(• 243)

.376

.495

.700

0. 5970

f
0.9
.8

1 -
7

.6

I .53

:l
{ .53

f -9
.8

1 -
7

.6

I .53

f -
9

.8

'.6

{ .53

1.027
1.061
1.104
1.162
1.216

1.028
1.062
1.107
1.167
1.222

1.028
1.064
1.109
1.170
1.225

1.030
1.067
1.115
1.177
1.233

1.042
1.091
1.149
1.220
1.282

1.030
1.086
1.112
1.170
1.221

1.030
1.067
1.112
1.170
1.222

1.030
1.067
1.113
1.172
1.223

1.033
1.072
1.121
1.182
1.235

1.032
1.068
1.108
1.155
1.190

1.032
1.068
1.109
1.155
1.191

1.033
1.069
1.110
1.155
1.192

.5975

.6003

.C038

Columns 1 and 2 give the values of m2 for which the computations
were carried out, and the corresponding values of the diameter
ratio 0. The figures in parentheses refer to Bachmann's orifice;
they do not differ enough from the figures above them to affect the
Millies in columns 6 to 8.

Column 3 gives the values assumed for jjl in equation (20) and col-
umn

1 shows the values used for the pressure ratio p2/Pi. The
remaining columns of the table are sufficiently explained by their
headings.

V. CONCLUSIONS
L. Comparison of columns 5 and 6 of the table shows that the

empirical equation adopted for representing the average results of the
Angeles experiments on natural gas, when reduced by means of

bmitha assumption that d=f(x/y), agrees with the results of Bach-
mann s measurements on air within 0.5 per cent, the systematic
difference hem.: w it hin the precision of the Los Angeles experiments.

•Sec: -760.
',
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The assumption proposed by Hodgson,9 namely

<w[©!

]

while not so simple as Smith's relation seems better justified. If the
reduction of the Los Angeles results from 7 = 1.284 to 7=1.400 is

made in accordance with this equation, the greatest difference be-
tween columns 5 and 6 is decreased from 0.006 to 0.002.

2. Comparison of columns 6 and 7 shows that the new formula
agrees with the Los Angeles results to within 0.5 per cent up to
= 0.376, and to within 0.8 per cent at = 0.495. For = 0.7 the

agreement is poor throughout, as might be expected; for with so
large a diameter ratio the condition of discharge into a pipe is extremely
different from the free discharge postulated in deducing the formula.

3. Comparison of columns 6 and 8 shows that Witte's formula
(42) represents the facts, as far as they are known, nearly as well as

the new formula, for pressure ratios down to about 0.7, but that it is

inferior for still lower values of ^lyi-

Washington, February 16, 1931.

» Discussion of papers on Fluid Flow presented at the annual meeting of the A. S. M. E., New York,
December, 1929.


