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ON THE VIBRATION OF U BARS

By G. H. Keulegan

ABSTRACT

A theoretical study has been made of elongated and short U bars with special

reference to their use as vibrators in investigations on elastic hysteresis.

First, an expression for the frequency of the fundamental mode of vibration of

the elongated U bar is derived by solving the differential equations of motion of

the yoke and of the prongs through the use of an approximation. The physical
basis of the approximation is the fact that the bar vibrates with a pitch differing

slightly from that of the clamped-free bar of half the length.
Secondly, Ritz's method of approximation is developed for initially curved

bars, the development being based on the principle of least action. In this

connection a new proof is given of Rayleigh's method for determining the funda-
mental mode of vibration. As an illustration of Ritz's method, the example of

the free-free bar is treated, and the results of the calculation are compared with
the known solution of this problem. Next, the method is used to determine the
fundamental mode of vibration of the short U bar, a short U bar being defined as
one wherein the length of the curved portion, or the yoke, is equal to the sum of

the lengths of the two parallel prongs.
Finally, Rayleigh's method is used to determine the static deformation of the

short U bar, produced by the application of a single load so applied that the
deformation is most nearly that present in the fundamental mode of vibration.

CONTENTS
Page

I . Introduction 553
II. Formation of the equation of motion of a U bar 554

1. Displacements and stress components in curved bars 554
2. Equation of motion of a U bar 559
3. End conditions and conditions of continuity 561
4. Condition for the invariancy of the center of gravity 561

III. The frequency of vibration of an elongated U bar 562
1. Approximate values of the quantities ma 562
2. Frequency of vibration in elongated U bars 565
3. The deformation of the circular yoke 569

IV. Ritz's method of approximation 57

1

1. Application of Ritz's method to curved bars 571
2. An illustration from a classical problem 575

V. Ravleigh's method for determining the fundamental mode of vibra-
tion 578

VI. Vibration of a short U bar 580
VII. Effect of the yoke on vibration . 585
VI T I. Reproduction by a single load of deformations due to vibration 586
IX. Acknowledgment 595

I. INTRODUCTION

Although hysteresis in elastic materials has engaged in recent times
the attention of engineers and physicists alike, the information which
is available on the subject is very fragmentary. Progress in this field

is hindered by the lack of a proper technique for obtaining results

quickly. For example, one of the more obvious methods of securing
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data is that of making statical measurements. If, however, this

method is used to determine the constants relating to hysteresis which

are typical of a given material, it is necessary to test a multitude of

samples of the material and to average the results, similarly as in

determining the fatigue of materials. Accordingly, the method of

statical measurements, being thus of a time-consuming nature, is

not ideal.

In looking for a more rapid method, the damping of free oscillations

readily suggests itself. Here, however, the choice of the vibrator

must be made judiciously since two conditions must be fulfilled.

First, the damping of the free oscillations must be due mainly to

hysteresis, or internal friction. Second, the shape of the vibrator

must be such that it can be used in securing statical measurements,
with a view to effecting a comparison between statical and dynamical
results.

To satisfy the first condition, the method of support must in no
way contribute to the damping. When the nodal points of a vibrator

executing vibrations of the fundamental type are in close proximity

to each other, and the vibrator is suspended at these points, the

damping may be assumed to be due principally to internal friction,

(t suffices, to see the truth of this statement, to point to the fact that
during the motion, the distance between the nodal points varies

iocficaUy, and the smaller this distance, the less the effect of the
supports on the vibration. In making statical measurements, it is

advisable always to deal with deformations brought about by the

application of a single load. A statical deformation so produced
and duplicating as nearly as possible the dynamical deformation is

chosen for direct comparison of the hysteresis during dynamical
and statical tests. Only for the fundamental mode of vibration
can this equivalence be accomplished by properly choosing the
point of application of a single load.
The use of bars which are of U shape as possible vibrators for

securing data on elastic hysteresis has many advantages. In this

paper it is proposed to study the fundamental mode of vibration
of two typos of U bar, namely, one which is elongated, and one
whore the curve and the sum of the straight portions are of equal
length. In all cases the yoke will be assumed to be of semicircular
shape, and the prongs straight and parallel.

II. FORMATION OF THE EQUATION OF MOTION OF A
U BAR

1. DISPLACEMENTS AND STRESS COMPONENTS IN CURVED BARS

Lei / OEj represent the median line of a symmetrically curved
fi.ur . 1.) The position of a point P on the median line is

determined by the distance 8 of the point from the mid-point of the
curved bar, measured on the median line, s is positive when on the

live when on the branch 0E2 . Choose rectangular
v having the mid-point as origin and the ^-direction

midway between the prongs. The normal PC to the median line at
the point P is drawn, making the angle a with the x-axis. The
radius ol curvature will be denoted by p. Draw the tangent PA
making with the /-axis the angle i. The angle i will be spoken of as
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the inclination of the bar at P. Expressing x, y as functions of s we
have

. dx
cos ^=

ds

and

sin %

1

P

:

_dy
ds

di

ds

a)

Figure 1.

—

Median line of a symmetrically curved bar

Let U and V be the normal and tangential displacements of the
point P as it moves to the position P r

. (See fig. 2.) U is measured
along the normal and is regarded as positive when the displacement

Figure 2.

—

Displacements of a point on the median line

is toward the center of curvature (when the normal is behind the
tangent) . V is measured on the tangent, and is regarded as positive

when in the direction of increasing s. It will be assumed temporarily
that these displacements are due to body forces and distributed
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couples acting on the bar. Denoting by 8x and 8y the increments in

e point P as it moves to the position P', we have

5a;
:^ U sin i + V cos i

(2)

oy= — U cos i+V sin i

Differentiating with respect to 5

(3)

d

ds

During flexure the median line remains practically unextended.
iblishes a relation between U and V. Consider the points P

.aul Pu As a]) art. After flexure they occupy the positions P' and

]\', As apart. Let Ax and Ax' be the projections on the z-axis of

this elementary arc As, before and after the flexure. The difference

A/ — Ax amounts to the difference in the increments of the z-co-

ordinates of the points P and Pi as they move to the new positions

P' and Pi'. As these increments are 5x and 5x + -r-5x As, respec-

tively, we have

—

,

d
Ax — Ax= , 8x As

as

or

Similiarly

Since before the flexure

and after the flexure

Ax' = Ax+ -j- 5x As
ds

Aij' Ay h^fyAs

A*2 = Ax2 Jr Ay2

r-dx As
J
+ fAy+ f 8y Asf

obtains by comparison, after neglecting the squares of small
quantities, (he relation

d Ax
,
d . A?/ _

/v As cfe
,y A 6'

which id vie* of equations (1) and (3) reduces to

dV^U
ds '

p

1,M '

fl condition for ^extensibility of the median line.
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If i and /' are the inclinations at the point P before and after the
flexure, the change of inclination, 11, is defined to be

It also follows, since the change of inclination is small,

tf= sin (i-V)
Expanding

since

and

it follows that

77= sin i cos %' — cos i sin %'

cos % = -j- yx + ox) = cos t+ j- 5x

sin i'-^g (2/+ Sy) -sin i+^j 5y

rT . . d . . d .

ij — sm ?,t 5a;— cos i -r- 5]/

This, in veiw of equations (3), reduces to

ff-7T+- (5)

which is the expression for the change of inclination in terms of the
displacements U and V.

If p and p' are the curvatures at the point P before and after the
flexure, the change of curvature K is defined to be

K=±-\ (6)
p P

As a consequence of the definition of curvature, there is also obtained

or , (7)

as

Therefore, the change of curvature in terms of the displacements is

Imagine the bar broken at the point P. (Fig. 1.) In order that
the deformation of the remaining portion of the bar in the direction

of decreasing length s may be unaffected, it will be necessary to apply
to the end section at P a bending moment G, a tension T, and a
shear N. These are the stress components with which the portion
of the bar in the direction of increasing s acts on the normal section

at P. Using the Euler-Bernouli assumption; that is, neglecting
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antielastic curvature and the effect of the curvature of the bar 1 on

the stress distribution in the cross section, one writes

G=BK=B dH
ds

(9)

whore B is the flexural rigidity, defined as the product of Young's
modulus, E, and the moment of inertia of the section, I. The two
remaining stress components T and N are secured as usual in the

following manner from the relations of equilibrium obtained for an
elementary portion of the bar under body forces.

Let Fn and F t
be the normal and tangential components of the

body forces calculated per unit length of the bar. Let M be the
distributed couple, applied externally, calculated likewise per unit
length of the bar. The condition for equilibrium gives

dG
ds

+N+M=0

(10)

ds^fdcc

1 icure 3.

—

Stress components and body forces acting on
an elementary portion of a curved bar

'' equations resull readily from the normal and tangential
resolution oi the forces and eouplcs, as shown in Figure 3.
For bars in vibration the body forces are taken to be the reverse

"' ,ht> BffeCtN 6 forces. Accordingly

F
t
=

d2U

(ID
— ory

at-

distribution in curved bars, will be found in Applied Elasticity,
'

ise Technical Night School Press, East Pittsburgh,
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where co is the area of normal section and 7 the density of the bar
material. It is customary in problems of vibration to discard the

rotational inertia. This is equivalent to supposing that M is negli-

gible in comparison with A7
. Thus, from the third equation in (11),

assuming that the bar is uniform in flexural rigidity, the value of the
shear is

'*--*& (12)

And from the first equation in (10), the expression for the tension is

T=BP^3
-FnP (13)

2. EQUATION OF MOTION OF A U BAR

The equation of motion of a bar of variable curvature in terms of

the displacement follows directly from the second equation in (10),
using equations (11), (12), and (13), and is, in fact,

Bd( <PH\
,
B d2H d2V

,

d/d2 U\ n
d^VWj +J^~^W + ^ds\

P
~a¥)

= ° <14 >

Set

and

H=rj cos kt

U=u cos kt

V=v cos kt

in equation (14), and there is obtained

d( d?v\ ,

1 dS
,
/ d

r
A

SV^J +P^ +^V"^ [pWV
=

(i6 )

with the auxiliary relations

dv u du
,
v _,_

k
Equation (15) defines the frequency of vibration,-^-* in terms of p.

and the constants of the bar B, the flexural rigidity, 7, the density,
and co the cross-sectional area. When fi is multiplied by a linear

dimension, the product gives a dimensional number. We take s x the
half length of the bar for this linear dimension for bars curved sym-
metrically in a plane. For bars with one end clamped and the other
end free, this dimension is Si the total length of the bar. In subse-
quent pages n&i will be occurring constantly, and will be referred to

as the frequency characteristic.

When the bar is of uniform curvature, there is but one fundamental
equation of the type of (16) to consider. Where there are different

curvatures, as in a U bar, the differential equation (16) assumes
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different forms for different portions of the bar. In the present case,

it is assumed that the yoke is a semicircle of radius a and of length

The ])mnjrs are straight and parallel to each other. The total

length of the U bar is 2sx . (See fig. 4.) Accordingly, the distribution

of curvature is

- = -i when 0^zS<sQ
p a

- = 0, when .s'^sr^i

Figure 4.

—

Median line of an. elongated U bar

Denoting the longitudinal and the normal displacements in the

yoke by p, and ?/i, equation (1G) yields, b}r putting p = a

a" ij + 2a* ij + (1 -AV ~jzi + fa% =
rf«« ' ™

rf.s
l

'

VL **" ;u
ds

(18)

Hence, if ± ini, ± ?n-», and ± m3 are the roots of the equation
a«x6 + 2a4

x* + (1 - aV ) g'x2 4- a.y = (19)

the displacements r, and u,} are given by

3

Pi - Ai eos UtS + X B
t sin ^s

dr
}

(20)

.: the longitudinal and the normal displacements in the
' ga by /_• and ".• there results from equation (16), by putting

p 00

$ **.-Q (2i)

ndingly
' ','/ constant

and (22)
D COS pfl I cosh ju»)H /<;(eos //.s'-eosh //*)

/ Bin Mv I sinh ns) + G(sm /««.— sin h ps)

It isof interest to note that eolation (21) also follows directly from
3
':. ?mce ; u ;1 finite quantity, the multiplier of p must approach

we limit zero as p becomes infinite.
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3. END CONDITIONS AND CONDITIONS OF CONTINUITY

The application of equation (20) to the vibration of a circular arc

and of equations (22) to the vibrations of a straight bar are well

known. Here the two sets are to be taken together, as the U bar
considered here is partly circular and partly straight. This means
merely that the constants of integration in (20) and (22) bear definite

relations to one another. There are altogether 11 constants to be
considered. All the A's drop out when the modes of vibration are

symmetrical with respect to the axis of the U bar. The fundamental
mode of vibration, which is of practical interest, is of this type. The
U bar having free ends,

d2U2 A ,

rr-g- = 0, when s = s x

d?u2 n ,

3- = 0, when s = 8i

(23)

ds'

Since the displacements, the change of inclination, the bending
moment, and the shear are continuous

Ui=U2

and

dui ,&l_ du2

ds a ~ ds

ds\ds ' a
)~~

ds2

(24)

ds2

fdui Vi\_ dhi2

\ds a J ds3

all when s = s .

4. CONDITION FOR THE INVARIANCY OF THE CENTER OF GRAVITY

One more condition is needed. It is obtained under the supposition
that the center of gravity of the whole U bar experiences no displace-

ment during the vibration. This is necessarily true, as no external
forces are acting. Since the mode of vibration to be considered (the

fundamental) is one of symmetry with respect to the axis of the U
bar (that is, the z-axis), the y coordinate of the center of gravity is

always zero. The x coordinate, however, since the bar is of uniform
cross section and of uniform density, is given by

1 ft
j=— X08

Sijo

when there is no flexure. On the other hand, when flexure exists,

as during vibration,

x=
i r* 1

(x + bx)ds
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Thus the condition for the invariancy of the center of gravity resolves

f
Sl

tac& = (25)

into

From equation (2)

8x = ih sin i+Vi cos i when o<s^s

dx = v2 when Sq^s^Si

Substituting these values of the increment ax in equation (25), there

results

J{ui sin % + Vi cos i) ds + I v2ds =
t/so

Since in the curved portion we have

di__l
ds a

dvi

and

^-
di

v2 = Vi (s )

the above equation may be written also as

a ( — sin i-r^ + Vi cos i) di + i\ (s ) I ds =

or

r° d r° . fsi

a -p (i\ sin i) di + 2a i\ cos i di + 1\ (s ) I ds =
2 2

The Bret integral vanishes; for » is equal zero when i=-x' Thus the

condition for the invariancy of the center of gravity becomes, replac-

ing i by g

Vi (s )=--^- f ^ sin &Z0 (26)

mere •/<&.

III. THE FREQUENCY OF VIBRATION OF AN ELONGATED
U BAR

1. APPROXIMATE VALUES OF THE QUANTITIES ma

1 llr
' of the tangential and radial displacements, as given

"i equations (20) involve the quantities n fa when s is replaced by m, a
being the radius of the circular yoke. The quantities nta, however,
depend on the frequency characteristic ns^ It, therefore, becomes
aeoee aiy to express them as explicit functions of i*a.



2/1
= — 7i!

2a2

2/2
= — n2

2a2

2/3
= -nz

2a2
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Setting
a2
n
2 =

<t>

2

and
a2x2 = y (27)

in equation (19), the resultant cubic is

y* + 2y
2 + y + <j>*(l-y)=Q (28)

with the roots yu y2) yz , say. The roots of equation (19) being

±init ±iri2, and ±m3 , it follows that

(29)

If the bar is sufficiently long the quantities nta can be developed
into series of ascending powers of fi

2a2
, or

2
, since n

2a2
is a small quan-

tity. The smallness of fi
2a2 follows from the fact that the frequencies

of vibration of an elongated U-bar of length 2«i and of a clamped-free
bar of length Si are nearly equal. Now, the frequency characteristic

of a clamped-free bar satisfies the equation 2

COsh (JLSi COS fJLSi= — 1

To obtain the frequency characteristic for the fundamental we take
the smallest root; that is, juSi = 1.8751. Hence, for the elongated
U bar, we put, since its fundamental frequency is nearly the same,
Ats 1

= 1.8751+x, where x is a small quantity. Hence

va = (1.8751 + x)~
Si

and, therefore, can be made as small as it is desired by taking a small
enough while s x is kept constant.
The series for n^a will now be derived. The reduced cubic

2
3 +^?2 + g = (30)

2
follows, when y = z— « is set in equation (28). The explicit expres-

sions for p and g are
p=- 1/3(1 +304

)

2 + 4504
, j

«
=_ ~27 (31)

The reduced cubic will have three distinct roots, all real, when the
discriminant is negative. The discriminant is negative as long as the
quantity £

2
, defined as the ratio

1 ^ 2 + 450')'
5

4 (1 + 304
)
3 K6Z)

2 Rayleigh. The Theory of Sound, 1, 2d ed., p. 278.
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Is smaller than unity. Accordingly, when 304 <O.34 we may adopt

trigonometric form of solution, and pass over the roots zu s2f zZi

to the roots yu //.., y3 ,
writing

2 2
yi-- g-gV1+3^ cos

3

2/2
=
"I" |Vl+5? (J

cos
I
- V| sin

I) (33)

VrwQcos|-V| sin
|)

2 2
2/3_

3 3

where cos ^=£.
The trigonometric expressions in equation (33) require that 3<f>*

shsJl be smaller than unity if the quantities yu y2 , 2/3 are to be devel-
oped into series of ascending powers of cf>

2 or ju
2a2

. With the crite-

rion of convergence thus established [3<£
4 <0.34] we shall proceed as

explained below, instead of working with the above trigonometric
expressions, to obtain the desired series. Setting separately in the
original cubic equation (28)

«= 00

y = 1 + ZJ an <f>

2

and then equating to zero in the separate series thus obtained the
coefficients of like powers of <£, we have

-n
{
-(r= -(/>4 -3</>8 - . . .

y^ _ nftf = _ , _ A
/"2 ^3+^4_^2 ^6+| ^8_ _ , . (34)

,
/:i - - m2a2 = - 1 + v 2 2

-i- g
4 +^V2 <£

6 + § <£
8 + . . .

[I isnoM apparent that the treatment of the vibration of the U bar by
the method ol differential equations is exceedingly complicated. Unless
the treatment deals with long bars, the method must be discarded.
With a view to introducing an approximation, it will be required
that - >' be negligible in comparison with unity. Mathematically,

(35)

• be corresponding approximations for nia, therefore, follow:

w i-^^-A .

"'"
2 * 2* (36)
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2. THE FREQUENCY OF VIBRATION OF AN ELONGATED U BAR

As stated before, i\, uu and r2 , u2 are the tangential and normal
displacements in the yoke and in the prong, respectively. For the
fundamental mode of vibration

where

On forming the approximations

C <t>

2 =(u2 )s

(37)

V\ = Bi sin This +B2 sin n2s + Bz sin n^s

u l =niaBi cos niS+ rivaBi cos n2s-\-nzaBz cos nzs

The conditions of continuity, equations (24) require that

3

S^itt BiCos niSQ = Co<l>
2

i=l

3

S (1 - nt

2a2
) Bi sin nts = Oi02

(38)
i= l

3

S^tft (I - ?V«
2
) -B< COS TljSo = (72 </>

2

j=l

•3

Sw*2»2 (l^tV) #i sin 7^s = -ft<P
2

cos Ais = 1 - 1~ ^
2

si*1 Vso=2$

9

cos huso = 1 + -g- 4*
2sin /i^o= ? <t>

on the basis of equation (35), and setting them in equations (39).

there result

4

C2 =-2E-irGcf>

Cz
= -2G+(jd~E)

(40)
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where

D=^
(41)

F=W
In the left-hand members of equations (38) occur various products

of n {a and trigonometric functions of n {s . Quantities of the type
rifCl (1 — nca2

) are to be evaluated on the basis of the approximate
values of n*a given in equations (36). As regards the trigonometric

functions, we put immediately, since ft^o = q?M&, the approximations

sin 7iiS — 9 </>
2 cos nis — 1

sin n^o — 1 cos^o= -7 ^2<f>
2

sin n3s = 1 cos n3s = — -r J2<j?

Thus, the various equations (38), now become

ft + | V2 (ft - ft) - 1 (B2 + ft)0* = Co

fft + V2(£2 -ft) + i(ft + ft)0* = <71

ft-f V2 (ft - ft)4>
4 +| (ft 4- ft)0

2 - C2

I ft
4 + V2 (ft - ft) - § (ft + ftw - a<f>

The condition of the constancy of the center of gravity, equation (26).
vi. -Ids, putting «i-*-ga

which, in virtue of the approximations adopted, becomes

*+*-rgJJ^+iSfe«-w (43)

I htr immediate purpose is to obtain two relations among the C3
' To

unphsh this, first, the following equations

•-'/
;

j ^(ft-ft)+f(B,+B,)*»=Co+Ci

+2(B1+B,)*,-C,+0* (44)
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are derived from equations (42) with a view of eliminating the terms
containing tf>

4
. We remark that in equations (44) the (B2 + Bs ) terms

can be neglected in virtue of the equation (43). Accordingly

2B 1 +^{B2-B3)-C + C2

~^/2(B2-Bz )
=a-C2

pi -G + C*

yB\ + 2 y2 (B2 — Bz) = Oi— Cz<f>

(45)

from which the two desired relations

ft-fft+cw-o

c 1-c2+lc3<t>=o

(46)

follow. Substituting in equation (46) the expressions for the C's as
given in equations (40), there result

«+*T(T-»).^(rs)'*
(47)

2d+7rd4>" = (2-j) G+T—Ecp

Solving for/ and d, and setting the values of/ and d thus secured in

equations (41), there is finally obtained

F=-d 1 G<f>
2

(48)
where

. 7T
2

1
. _7T3

37T
fc-g— 1, S2-J2-T

To estabhsh a relation between E and G there remains to be con-
sidered the end conditions given in equations (23). Accordingly,
after substituting the values of F and D as expressed above, there

result

E [
— cos fx Si — cosh

fj. Si 4- 5i0
2

( — cos /xSi. + cosh /* .§0]

+ G [
— sin m Si — sinh y. S\ — 5i<£

2
(
— sin \i s\ + sinh n Si)

+ 52<A
3

(— cos ii 81 + cosh ju sO] =
(49)

Z£ [sin n Si — sinh m $i + 5 i<£
2

(sm M «i + sinh ju Si)] +

G [
— cos ju Si — cosh n Si— 5i<})

2
( — cos m $i + cosh ju s0

+ 52 <£
3 (sin m S! + sinh j* «i)] =
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Hence, the condition of compatibility, which is the equation for deter-

minin found to be

cos M 8] cosh n 8] i 2 5i m
2 a 2 sin fi s Y

sinh m «l~ ^2 a3
ju
3

(cosh ju 8i sin /* Si + sinh /x Si cos ju Si) = — 1
(50)

Now the smallest root of the equation

cos m cosh m = — 1

i-//,- L.8751. Accordingly, we put

iis 1
= m + x (51)

and substitute in the equation (50). This gives, neglecting powers of

x higher than the first,

n « 9/a\ 2 . -i - 3 /a \
3 (cosh m sin 771

2$im2 i - J

2 sin 7/i sinh ?n— 52 m6
[
-

) ,

. , N /rrtA
ys'i/ \Si/ +cos y?i sinh 777

)

(52)

x= sin 772 cosh m— cos 772 sinh 777

[ntroducing the numerical values of m, 5 l5 and 52 from above, and
expressing a, the radius of the circular yoke in terms of sQ , the expres-
sion for x further becomes

x = 0.49(0- 0.2^) m
where -° is the ratio of the length of the circular yoke to the total

r measured on the median line.

We are now ready to give the frequency of vibration of the funda-
mental mode, X. This, from equation (15), is

N-*-£M^(l +^ (54)
1-k 27r\co7Sr\ 777/

v

where B is the Bexural rigidity, 00 the cross-sectional area, 7 the den-
half the length of the U bar, measured on the median line,

751, and x which gives the effect of the voke on the vibra-
tion id hv equatiou (53).

ividenl from equation (54), that an elongated U bar of
id a clamped-free bar of length s, will vibrate with nearly

the same Frequency. In fact, when -equals one-tenth the frequency

ibration ol the U bar will be only 0.5 per cent higher than the
frequenc3 nl vibration of a olamped-free bar.
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3. THE DEFORMATION OF THE CIRCULAR YOKE

According to equations (37), the tangential and the radial displace-

ments of points in the yoke are

Vi(s) = Bi sin n-iS + B2 sin n2s + B2 sin n3s

Vi(s)=-riiaBi cos niS + n2aB2 cos n 2s + nzaB3 cos n3s

In elongated U bars the trigonometric functions are readily expressed

as functions of 4>
2

. The method is, as before, to introduce the approxi-
mate expressions of n&j as given in equations (36). In fact, putting
s = i>a, we obtain,

sin n\S = v<t>
2

sin n 2s = sin v—~ v cos v $
V2 ,

sin nzs = sin v + ^L- v cos v$

cos niS — 1

cos n 2s = cos v 4- -V- ^ sm i/ 0'

and

V2 .

cos 7i 3s = cos v— -V- ? sm v

Adopting these values of the trigonometric functions of nts, the
above expressions for the tangential and radial displacements now
become

ih (s) =JW + (£2 + BJsmv-^ (B2 - B,)vcosv<j>2

u x (s)
= B,62 + (£2 + £3)cosy - V 2 (

^

~

B*l [cos „_„ sin^ (55)

The numerical values of the constants B, etc., depend on the end
deilection. We write, from equations (43) and (45),

B, = ft

V2tB2
-£

3=-O3

The expression fcr B2 + Bz can be simplified still more.

43324°—31 4
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Since
qa = Si — s

a

#1

and
HSi= 1.8751 +x

where a: is a small quantity, we can show that, also,

B2 + B3
= - (1 .571 - O.250)<72

2 - O.6204

Equations (40) determine C2 and C3 in terms of G and Z£. The
values of G and i£ follow from equations (49), and, in fact, prove to be

£=0.367a

E= 0.500a

when terms involving 2 are discarded, a is the amplitude of the
end excursions or deflections. Thus, we write, from equations (40)

O2 =(l-1.1530)a

<73 = -0.734a

Accordingly, we have in terms of a

Bx = (1-1.1530)0!

y/2(B2-Bz )
= 0.7340a

B2 + B3 = -(1. 571 -2.O60)02a (56)

As an example, we shall evaluate the displacements of points in
the yoke of a particular bar. Let the total length of the bar be ten
times as great as the length of the circular yoke; that is, s M equals
0.1. This makes ^ = 1.880, and, therefore, ixa or equals 0.1194.
I sing (his value of and reckoning the end deflection a as unity, we
have from (56)

^02 = 0.01232

B, + B3
= -0.01895

i/2\{B2-BZ )
2 = 0.00063

Substituting these in equations (55) the numerical values of the tan-
gential and radial displacements result. These are plotted in Figure 5.
An important observation, which is of value in practice, will be

made presently. It appears from Figure 5 that the radial displace-
ment ,/, ranisnee at * = 0.05s„ whereas the tangential displacement

a1
.

,lir sam« rahie of % is about (0.4 per cent) of the end deflection.
We infer from tins that, if the bar is held vertical, the points of the
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yoke corresponding to s = 0.Q5si will have maximum vertical and
horizontal amplitudes of equal value and of amount 0.003 mm, when
the amplitude of the end deflections is 1 mm. This deduction fol-

lows from equation (2). Accordingly, to minimize the resistance of

the supports to the vibratory motion of the bar, it is sufficient that
the supports be introduced at the point s= ±0.05«i.

0.016

/
/

/u,

y

v

0.014

0.012

+
C 0.010

£

Jj
0.008

J3

g- 0.006

_ 0.004
e

~g 0.002

1 o
o
"^ 0.002

0) 0-004

?
^ 0.006

0.008

O 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Distance from mid point

Figure 5.

—

Tangential and radial displacement, V\ and u\, respec-
tively, of the yoke of an elongated U bar of ratio so/si—0.10

Displacements are expressed as fractions of the end displacement. Distance from
mid-points, measured on the median line, are expressed as fractions of the half
length, sj, of the bar.

IV. RITZ'S METHOD OF APPROXIMATION

1. APPLICATION OF RITZ'S METHOD TO CURVED BARS

In the cases where the method of representing the motion of curved
bars by differential equations leads to lengthy calculations in evaluat-
ing the required displacements, it is preferable to use Bitz's method
of approximation. The advantage of using the differential equations
is that they result in the formulation of normal functions. If, how-

:
ever, the interpretation of the differential equations is not clear, no
real information is secured. After all, all that is necessary for prac-
tical purposes in vibration problems is an approximate evaluation
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of the deformation for the fundamental mode of vibration. This
information is always obtainable by Bitz's method.

Following Ritz,3 the displacements U and V, and the change of

curvature K, will be expressed as

U=u cos kt

V=v cos kt

K=k cos kt

where u, v, and k are the polynomials

U = CiUi + c2u2 + • • • + cnun

v = CiVi + c2v2 + • • • + cnvn (57)

K = CiKi + C2K2
JT • • '+CnKn

The related group of terms u r , v r , kt by construction satisfy all the

end and continuity conditions, when the latter exist. Among them-
selves they also satisfy the condition of inextensibility of the median
line and the definition of change of curvature. The last statement
amounts mathematically to the following

:

dv r

d2u T d_

ds 2 ds*e)
where s is the distance along the median line and p the radius of

curvature of the bar. Accordingly, there are two possible proce-
dures for the construction of the terms (u r , v T , k t ). Once v r is chosen,
the rest will follow by differentiation. The alternate procedure is to
choose K r first, and arrive at v r by integration. Whether to choose
the former or the latter procedure will depend on the nature of the
problem.
The constants c T are as yet undetermined. For their evaluation

two principles are available—either the principle of virtual velocities,

or the Ha.miltonian principle of least action.
The latter one will be used here. Representing the potential energy

of deformation by W, and the kinetic energy by T, Hamilton's principle
states that

i P (W- T) <ft = (58)

In the case al hand, the required variation will be produced through
ing the constants c r .

Since at the instants t
{
and t2 the system must be in its natural

^figuration, we take

t 1
= {2m-\-l)~

c

/, (2//H-5)~

(59)

tor Ritz. CTber eine neae ir I
'> Ming pewisser Variations probleme dcr mathematischen

i. fm 016 reine unci angewandlo Mathematik; Band 135; 1909.
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where m is a positive integer. The potential energy of deformation
and the kinetic energy in a vibrating bar are given by the expressions

W=\ f'
1 BK2 ds

T =|r
rSl

coT (U2 -hV2)ds

where B is the flexural rigidity, y the density and co the cross-sectional

area, and 2s x the total length of the bar. Defining

i r +si

(60)

Tc=y_
s

(«
2 +»2

) &

and, assuming that the quantities B, y, w are uniform throughout the
bar, the expressions for the potential and the kinetic energies now
become

W=BWc cas2
kt

(61)

T=uyk2Tc sin2
let

In view of equations (59) and (61), the Hamiltonian equation (58)
gives

(BWC cos2 to- k2
a>y Tc sin2

to) dt =
(2m+l)g

which after integration is

8 {BWc-Way Tc )
=

or

8 (Wc-S Tc)=0 (62)
since,

4
k2wy

according to the equation (15). Expanding equation (62), since

Wc and Tc are functions of c s ,

8 (Wc-STc )
=2~(Wc~STe ) fc.-O (63)

As all the values of c s are independent of each other, it suffices, in

order to produce the variation required in equation (63), to put
c s
= for all values of s except where s = r. Thus,

£-<W,-ltTJr6, (r=l,2 ••-•») (64)
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Now, We and Tc are each quadratic in the c s . In fact, when the

definitions

Har-

are written, equations (60) yield

Tsr= (u r u s+ v r v s) ds

k s ds

Wc =^a rs C T C s W„+W1

5=1

Tc
=^a rs c T c s Trs +Ti

8=1

(a rs = 2, when T ±s\
a r,= 1, when r = s/

where Wx
and 2\ both are free from the particular constant CT .

Accordingly, the differentiation in (64) gives the following n homo-
geneous equations.

Sc s (^ s-^TJ=0(s = l-.-.n)
r=l

Introducing the dimensional quantities

Wrs^Si Wsr

trs $1 J- sr

the n homogeneous equations now become

2 C s [Wrs-i^Ytrsl-O (s = 1 , 2
, n)

(65a)

(65b)

The condition of compatibility among these n equations leads to the
determinant

:

Wll- (m«i)%1 VJl2
~ (/*Si)%j

^nl~ (jUSl)%il Wn2 ~ (m«i)%

• Wln -(/xSi)%,

w. (^Si)Hnn

= (66)

which Is .in algebraic equation of the nth degree in (/zsj
4 the frequency

characteristics. Theoretically, the number n ought to be increased
indefinitely. Physically, the number of degrees of freedom of the
Tibrating bar ought to be made correspondingly large. In practice,
a determinant of rank 2 or an algebraic equation of the second degree
in (jiSi)

4
suffices amply to determine the particular value of aiSi which

relates to the fundamental mode of vibration.
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2. AN ILLUSTRATION FROM A CLASSICAL PROBLEM

The modes of vibration of a straight bar, both ends free, are well

known. A new solution will be worked out as an illustration of the
preceding theory. This particular example has been chosen since a
straight bar may be thought of as a hmiting case of a U bar. Here,
only the symmetrical (that is, fundamental) vibration will be
considered.

Let the straight bar be of length 2$i. Let U be the transversal

displacement.
U=u cos k t (67)

As before, let B, co, y be the flexural rigidity, the cross-sectional area,

and the density of the bar, respectively. Putting s=SiX, we choose
for the change of curvature the polynomial series

d2
ii d2u 1

k=^'=
;^

2̂ =^[c1 (1 + cos ttx) + c2 (l-cos27nr)+-- •] (68)

since the bending moment G and the shear N vanish at x= ± 1. To
point out the analogy with the third of equations (57), equation (68)

may also be written

k= ~2 (c1 /c1 + c2 /c2 + ••• +cnKn ) (68a)
6

Integrating equation (68) with respect to x,

The constant of integration vanishes by virtue of the fact that the

bar experiences no change of inclination at the mid-point s = 0,

or x = 0. A further integration with respect to x gives

/ , x2 cos 7TZ\ . / , x2
. cos 2irx\

,
,_ Nu = c 1 la 1 + -2 ^) + c\a* + ~2 +

4?r
2 -)+ -' (70)

To determine the constants of integration, a s , the condition for the
conservation of the center of gravity is employed, which in the present
example will be expressed by the relation

udx =

As this is to be satisfied whatever the value of the constants a s ,

individually

and

f 1/ . X2 COSirx\ ,

f
1/ x2 cos2ttx\, a
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from which
1

So, finally, the expression for the displacement assumes the form

/ 1
,

as
2 cos ttx\

,
/ 1

,

x2
,
cos27ra;\

, /w< .

which may also he written, in analogy with the first of equations (57),

u = CiUi + c2u2 + . . . . (71a)

Rewriting the definitions

trs
— I u ru sdx

wTS= I K TK sdx

the quantities tn , wn , etc., on the basis of equations (68a) and (71a)

emerge with the following numerical values:

<'K^+£>i =3
-22712 ?' Wl2=1 <71 >

Thus, neglecting the constants c r , r larger than 2, the system of
homogeneous equations corresponding to equation (65b) becomes in

thifl example

(\h\\- (^iY'tn] + c4wv>- (m*i)VI = o

(72)

Cl[wl2
- (mSi)

4
*12] + C2[W22- (/ZS

1

)
4<22]=0

condition of compatibility leads to the characteristic relation,
expressed as b determinant

(/x.s-,)
4
/ 12 W,,- (fJLS.Yt^'

v. luclj when expanded yields, after introducing the numerical values
lor tlh etc., indicated in equation (71), the quadratic equation

'
r,,(i7(U(~)

8

- 1G-°^00^Y+5.00000 = (73)
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with the roots

Oi)i = 2.36506

(74)

002 = 5.50895

The smaller root gives the frequency characteristic of the funda-
mental mode of vibration. The larger, that of the next overtone.
To determine the ratio of c2 to cu we substitute fiSi — 2.36506, in the
first or the second of the equations (72). The substitution in the
first gives for c2/ci the value 0.07] in the second, the value 0.05.

In view of the smallness of this ratio, it is sufficient to take

u <-H-^) ™
as the expression for the transverse displacement of the bar when
vibrating in its fundamental mode.

In order to effect a comparison with the classical theory of the bar
with free ends, the consideration of the latter will be restricted to the
solution for the case of symmetrical vibration. As u(s)=—u(— s),

it follows from equation (22) that

u = D(cosfjLS + cosh fj,s) + E(cosns— cosh jas)

As the ends of the bar are free,

D(— cos/zSx+ cosh fisi) +E— cospiSi — cosh fis{) =

D ( — sin/xSi + sinh ju$0 + jEJ(sinjuSi — sinh juSi) =

with the condition of compatibility

cot/xSitanh #Si = — 1

The two smallest roots of this equation are

te)i = 2.3650204 (76)

(Ms0 2
= 5.4978039

which are in good agreement with the values already found by the
approximate method of Ritz and given in equations (74). The
values in equations (76) are taken from Rayleigh 4 and are the results

of dividing his values of mi and ra3 by 2.

To compare the displacements obtained by the two methods,
Ritz's and the classical, Table 1 has been prepared, in which the re-

sults in the second column have been calculated on the basis of the clas-

sical solution and those in the third have been calculated on the basis

of equation (75). The end deflections were chosen to be the same for

both methods. The agreement appears to be good, the deviations
of the results in the two cases being less than 1 per cent of the end
deflection

.

« Rayleigh The Theory of Sound, 5, 2d cd., p. 278.
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Table 1.

—

The lateral displacements in a free-free bar computed by the classical and
by Ritz's method

Distance
from

mid-point

Displacements

Classical method Ritz's method

0.0
.1
.2
.3
.4
.5

.6

.7

.8

.9
1.0

-0. 6078
- .5857
- . 5202
- .4142
- .2720
- .0992

+ .0977

-r- .3120
+ .5372
+ . 76775
+1. 0000

-0. 6167
- . 5937
- .5260
- .4169
- .2714
- .0959

+ .1027
+ . 3172
+ . 5413

+ . 7469
+1. 0000

V. RAYLEIGH'S METHOD FOR DETERMINING THE
FUNDAMENTAL MODE OF VIBRATION

If in equation (57) the displacements u r , v T are those due to the
r
th overtone in the rth mode of vibration, the quantities TTS and Wrs

vanish and the determinant (66) reduces to

Il(WrT-iSTTr) =

where
r=l

T„ =ja

S
\U>+V*)ds

2
rfs

k, being the change of curvature. The roots yx r
4 now are

/<•'=fe W<^< ...)T„ (77)

Suppose that for the fundamental mode of vibration a radial dis-

placement u, is assumed which is a slight modification of uu the
actual value, and with the same end conditions as in uu The quan-
tities Tu and Wn are evaluated on the basis of u, and the ratio

Ml

is formed. Is the approximate value £1 thus formed, larger or smaller
than the true value mi? To answer this question we again resort to
Ritz's method of approximation. Since u x is only slightly in error,
it is sufficient to put

U x
= C1U1 + c2u2

where \t% rives the displacement for the mode of vibration next higher
than the fundamental. The quantities vx and ku the tangential dis-
placement and fche change of curvature, respectively, follow from ux .
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The quantities W12 , T12 , etc., are formed which give rise, as in equation

(66), to the determinant

Wia-/i4T12 W22 ~ix*T22
=

which expands into

(78)

To determine the smallest root j^
4
, we write

Win

-til

and set it in equation (78), with the result that

A m (Wn-^Tl2Y
(79)

It is easily seen, by virtue of equation (77), that the denominator in
the right member of equation (79) is positive. The numerator, being
a squared quantity, is also positive. Accordingly Afx is a negative

quantity, since Tn is positive. Hence, any assumed configuration for

the fundamental mode of vibration which is a departure from the
actual configuration will give a larger value for jui

4 calculated on the
basis of

where

Mi4=^ (80)

*-jr
The above result, which we obtain by means of Bitz's method, was
stated, originally, by Rayleigh as a corollary to a general theorem on
vibrations. 5 In Rayleigh's method, therefore, filf will be made to de-
pend on a parameter (5. Then, to obtain the configuration which is

the nearest to the actual configuration present during the fundamen-
tal mode of vibration, we choose that value of /5 which makes the
right-hand member in (80) a minimum.

5 Rayleigh, Some General Theorems Relating to Vibrations. London Math. Soc. Proc. IV, pp. 357-368;
1873 (sci. papers, 1, p. 21)
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VI. VIBRATION OF A SHORT U BAR

The bar to be considered now is of length 2sx . The yoke is a semi-

circle of radius a and of length 2s . The ratio -^=2. (See fig. 6.)
so

Hence,
p = a

p= oo

o *
So3 -9

when o^s^s

when Sq^s^Si

Si

a

s*zS

Future G.

—

Median line of Die short U bar

The frequency characteristic of vibration of the fundamental mode
and the displacements present will be determined by Bitz's method.
The shear is assumed to be given by a sine series, as in the case of

the straight bar previously considered. Accordingly,

die d2 (du , v

(Is

d2 (du
,
v\ \\Ao . s

(81)

q=l

Putting s = SiX, a first integration with respect to x gives

"=*s'4*(S+£k-fi '^w+««.«) (82)

As the bending moment vanishes at s= ±s l} or a;=±l, CQ has the
value +1 or —1 depending on q_. Thus, introducing new constants
a*, ('([nation (82) becomes

d (du . r\ „ . . .

S«»(l + cos mrx) +
n

Sa m ( 1 — cos mwx) (83

)

in

71 = 3,5,7...

m = 2, 4, 6 ...
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Integrating equation (83) with respect to x,

du

ds

i » r sin ttxH.4---^^+——J+

SanL +
sin^

1+
71 L n7r J

^rx _ES»«|+ (84)

71 = 3, 5, 7 ...

m= 2, 4, 6 ...

The constant of integration vanishes, since the inclination of the bar
at the mid-point of the yoke, or at as = 0, experiences no change.
Next, putting

- u - v
u =—t v —-

s x s

the condition for the inextensibility of the median line gives, for the
curved portion

a\c_ 1 d?v

ds~ ir dx2

Also, in the curved portion, from equation (S4)

d2
v

-p2+ ir
2v = aiir(x+ sm irx)-h

-srv, _ / , sin mrx\
,

n \ Uir /

7i= 3, 5, 7 ...

m= 2, 4, 8 ...

Solving for v in the usual manner, we obtain for the curved portion

- a x ( TX COS TTX . , . \
,

V = Z2 ( ^ 9 ^ &1 sm ** ) +

^ aB / sin 7i7TX .

7
\

,

,„.^ -2 ^«*-n (ni-i)
+k «n«j+- (85)

•^ «m / ,

sin mTra; . , \
«^< -j ( liX-\ p—

«

TT + Om Sin TTX If...

n = 3, 5, 7 ...

m = 2, 4, G ...

since the tangential displacement v vanishes at x= 0. The constants
61, bn , and 6m are evaluated on the basis of the condition that the
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center of gravity of the bar remains at rest independently of au an ,

and am . Accordingly, we have, from equation (26),

, 2 TV sin -nr

2n(n2 -l)

u-

, 2 r ,
2 cos

,

&™= ---T+- ^_
7T <± IT-, 5 1~\2

(m2 — l)
2

71 = 3, 5, 7 ...

m = 2, 4, 6 ...

The radial displacement u divided by s x in the curved portion follows

from the condition of inextensibly, and, therefore, is

<ii /„ cos TTX
,
irx sin ttx

, t \
,

"^V 1—r" +—2— +*i cos«;+

•s-i an /, cos mxz
, , \

,

S £ (1+
52!JH5+6„i cos «)+... (86)

TO 7T \ 7/T— 1 /
V

71 = 3, 5, 7 ...

m = 2, 4, 6 ...

The expression which gives the change of inclination in the straight

portion of the bar simplifies to

du . .

-j-= a x [x + sm 7tx] +

2a [, sin 7t7r2fl
x-i

nrr J

„ smrrnrxl
,2aJ x +. . .

L wir J
7i = 3,5,7... (87)

m= 2,4, 6 ...

since the radius of curvature p is infinite. Accordingly, the lateral

displacement in the straight portion is given by

- ai/Vx2
,

\
,U = —d —p COS 71-2 + C L ) +

^an/i^x2 cos n irx
, \ ,

^\-2 tf- +c«) + ---

<OLm (Tt
1x2

. cos rmrx . \ .

n = 3, 5, 7 . . .

m = 2, 4, 6 . . .
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The normal displacement is continuous everywhere. Consequently,
the different expressions (86) and (87) for u give the same numerical
value when x is put equal to 1/2. This determines the constants

cu cn , and cm, with the following values:

Ci = 14
TV

4~
7T

2

' 8

Cn = 1- 7T
2

8

Cm = 1-
2 cos

8 m2 (m

m7r

2
2 -l)

m = 2, 4,6. .

.

The tangential displacement in the straight portion of the bar is

constant. Since the tangential displacement is continuous every-
where, it follows from equation (85) that

V-EKl+ »-)
(88)

T-l

We next write, in analogy with equation (57)

u = {diUi + a2u2
4- a3 it3 + . . .)—k

IT

v= {a3i + a2v2 + air3 + . . *)-4
IT

«= («i«i + a2 ^2 + a{ 3 = . . . _)—

where the expressions for the typical terms u r , v r , k t are obtained by
comparison with equations (85), (86), (87), (88), and (83).

Introducing the definitions

Trs = s l

2
(d tv s + u Tu s)ds = «i

3
I (y rv s+ u ru s)dx

WTS = 7^ Krtsds^— K
Tl sdx

s l Jo Sljo

the quantities Tn, IFn, etc., prove to have the numerical values

Tn = 9.64721^V WvL-%Tl

T12 = 6.17078—
4 » Wn-aT1

(89)T..=fti7n7fi^.. W„= «-l
7T

T22 = 4.09341 ^, TF.2^- 1
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Neglecting in the expansion for the displacement the terms with

the coefficients ag , where g is larger than 2, the system of homogeneous
equations in ag corresponding to equations (65) reduce to

oi(Wii - M^u) + ^(W12 - n*Ta) =

flfi (W12- i^T12) + a 2 (TF22 - M
4T22 ) =

with the condition of compatibility

Wa-i*Ta W22-^T22

which, with the numerical values of Wn , etc., given above, reduces to

=

1.41146 (^r
1

)
8 - 8. 25937 (^t)h- 1.25 = 0. (90)

To find the root of the smallest value; that is, the frequency char-

acteristic of the fundamental mode, we take first

or, with numerical values substituted,

(^i) = 0.15548.

Next, we take

(^)
4= 0.15548+ s

and substitute in the equation (90). The substitution gives,

2 = 0.000006.

Accordingly, the first approximations give a value for the frequency
characteristic y&y of 1.97275, which is sufficiently accurate for prac-
tical purposes. We also infer that there is no need to keep the terms
containing a 2 in the expressions for the displacements for the funda-
mental mode of vibration.

Bence, the radial and tangential displacements, u and v, in the
fundamental mode of vibration of the short U bar, may be written

[V cos wx . wx sin irx , /l 2 w\ ~]
, ^^ _",

" • tti II — g -!- g ~~~ ! \8"~V~4/ C0S TX
'

n

f
wx cos wx . /I 2 w\ "|

, ~__ _ t/
l "i «B- —« h( « j ) sin 7i\r when O^z^ft

U = n
l

I —-cos 7rir+1+ ^_|l when Jd^X^l (91)

hen &<:*<1
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where x = -, s 1 is the half length of the bar, s is the distance of a point
Si

from the mid-point of the yoke, measured on the median line. As for

the frequence of vibration, N,

N-
3.8917 /

2t V
B
coy

1

where B is the flexural rigidity, w the cross-sectional area, and 7 the

density of the bar.

The numerical values of the displacements, evaluated from the

formula (91) are given in Table 2. The radial or the lateral dis-

placement of the ends is assumed to be unity. It now appears from
this table that the radial displacement vanishes at the point s =
0.244si. Also, that the tangential displacement is 0.0594. We infer

from this that, when the short U bar is held vertical, the point

s = 0.24si executes maximum vertical and horizontal displacements of

equal value and of amount 0.042 mm when the amplitude of the end
deflections is 1 mm. This follows from equation (2).

Table 2.

—

The tangential and radial displacements of a vibrating short U bar

Fractional
distance from
mid-point

Radial displace-
ment

Tangential dis-

placement

0.0 -0. 1229 0. 0000
.1 -. 1018 -. 0365

>2 -. 0415 -. 0599
*3 +. 0501 -. 0591
.4 +. 1761 -. 0264
.5 +• 2752 +.0422

.6 +. 4065 +.0422

.7 +. 5487 +.0422

.8 +. 6966 +. 0422

.9 +. 8479 +. 0-122

1.0 +1. 0000 +.0422

VII. EFFECT OF THE YOKE ON VIBRATION

It was shown by Lamb 6 that when a straight bar is curved slightly

the frequency of vibration is lowered and the nodal points are brought
together slightly. The same effects are illustrated here. As one passes
from the example of the straight bar, to the short U bar, defined above,
and then to the elongated U bar with a length ten times as great as
that of the yoke, the frequency characteristic jjlSi takes the values
2.365, 1.973, 1.880, successively. With regard to the variation of dis-

placements in these examples, as effected by the presence of a yoke,
we refer to Figure 7, where the radial displacements are plotted against
the fractional distances from the mid-point. This figure illustrates

two important effects, as resulting from increased length of the yoke,
while the total length of the bar is kept the same; that is, the points,
where the radial displacements vanish, are brought nearer to the mid-
point of the yoke, and the ratio of the radial displacement at the mid-
point of the yoke to the end deflection is made smaller.

6 Horace Lamb, On the Flexure of a Curved Bar Proc. London Math. Soc, 14, p. 367; 15

43324°—31 5
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VIII. REPRODUCTION BY A SINGLE LOAD OF DEFORMA-
TIONS DUE TO VIBRATION

Theoretically, to reproduce in static tests the strained form of the

vibrating U bar, a continuous distribution of externally applied forces

is required. In practice, however, it is sufficient to have the form ob-
tained under the action of a single load. If the point of application of

the single load is properly chosen, the form thus secured will not differ

very much from the dynamic form during vibration. This is true only
for the fundamental mode of vibration, of course. For the determina-
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O
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/
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/
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s(0

/
/ $
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S
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•

-1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1.0

Distance from mid point

Figure 7.

—

Effect of the presence of the yoke on the radial dis-

placement u

Curve (1) refers to a straight bar; curved (2) to the short U bar; curve (3) to an
elongated U bar of ratio so/si = 0.lO. The apex of the curve (3) is slightly above
the zero line of the radial displacement. The distance from the mid-point is
given as the fractional value of the half length of the bar, measured on the median
line and the radial displacement as the fractional value of the end displacement.

tion of the proper location of the single load Rayleigh's method is of
great value.

Let s2 be the distance measured on the median line of the point of
a pplication of the single load X from the mid-point of the yoke. (See
fig. 8.) Also let 2Si be the total length of the bar and 2s , the length of
the semicircular yoke of radius a. Denote the radial and tangential
displacements in the yoke by u x and v Y \ in the portion from s = sQ
to

f
. *s by a., and <>

2 ; and in the portion s = s2 to s = Si by u3 and v3 .

It is clear that the bending moment G at s, when s is in the yoke, is

given by

G=X I s2
— s + a cos - )
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and the change of curvature ku by

587

Ki ~ds\ds ^aj
Hence

d (du x wA X( s\

where B represents the flexural rigidity of the bar, uniform throughout.
Making the substitutions

So

Figure 8.

—

Position of the point of application

of a single load acting on a U bar

the equation (91) becomes

d (dui

de

/du\
,

\ X ^,
,W +iV =

sa(n+C0S '

the integration of which, with respect to 8, gives, since there is no
change of inclination at the mid-point of the yoke (0 = 0)

-r? + 1\ = "o a? (nO + sin 6)

Or, introducing the condition of inextensibility,

Xdh
dO

1 + i
'1==

~B
a3^ + sin ^

Solving for vi} in the usual manner

,n. XaV „ 0cos0
, A . n.

t\(d) =^-{nO s—+A sm &) (92)
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since vx vanishes for = 0. The term p sin represents a rigid

displacement. In fact, it will be the displacement caused by moving

the bar along its axis by an amount —r>— As the present analysis is

for the purpose of finding the static deformation as nearly as possible

like the deformation during vibration, it is evident that the deter-

mination of the constants of integration should be made by using the

appropriate conditions implied by the dynamic deformation. As will

be remembered, the condition of constancy of the center of gravity

is one of these, and serves to determine A. Accordingly

and, hence
. n/ir 4\ 1

'.

4 = -2(2+^+8 <93>

The radial displacement Ui results, by differentiating v1} and is

Xa2 / . sin cosuM ( ,
sin cos , . \

( n +—^ o— +A cos
JB V 2 2 '

" V (94)

Next consider the portion in the straight part of the bar, from
s = s to s = s2 . The bending moment G at s is given by

G=X (s2 -s)

and the change of curvature k2 by

d2u2

Hence,
du2_X , _ .

which, after making the substitution

z = s2 — s

becomes
du2_X
dz ~ B Z

Two successive integrations with respect to 2 give

\\ here

21 = s2 — «o
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The constants of integration a and p are to be determined from the

conditions of continuity of the radial displacement and the change
of inclination at s = s :

Accordingly

fal) 9JL=K)«=2l

f
dui Vi\ = _ (dAh\

\ds
+ aj =t \dz Jz= zl

o^fi+g-^+a+ p)

As na = z1} the constants a- and j8 prove to be

i+l + JL
2 n2 ^2rc,

p~~3>*"t

"4n»'
1'2»

The tangential displacement Ka is constant, and is

»2= 0i(f) (96)

Finally, for the portion from s2 to Si, the radial displacement u3 is

given by

B
where

a: = s — s2

u*=»(-az?x+ Pz?) (97)

The displacement in this portion is a rigid displacement and fulfills

i the conditions

(>3)z=0=(>2) 2=0

/du3\ = _ /duA
\dxJx=Q \dz)z=t

i The tangential displacement is constant, and is

tf3= *i(f) (97)

The quantities n, x x and zu enter variously in the separate expres-
sions of the displacements. The quantities xi and zx depend on n

I na — Z\

^-s6-0
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Accordingly when n is given, xx and z l follow. To determine n, we
remark that if the same bar is put in vibration the deformations will

be given by
u= Ui cos Jet v = Vi cos let

u = u 2 cos Jet v = v2 cos Jet

u = u3 cos Jet v = v3 cos Jet

when

S2^S^S!

and proceed according to Rayleigh's method.
Introducing the definitions (given in connection with equation

(80)).

Tn= f
S

\u2 + v2)ds

and substituting the appropriate value of the displacements and of

the change of curvature from above, it is found that

— X2

Tn = jp (a
7
en + a 7

e 2 + zx
7ez + 2XV)

J^2

where

*-rfg+g)+»(a-^+4A)+Af-^+ if

96

e2

1

We require the ratio of Wu to Tn . This is from the above

Tii ~(i 7
(e 1 + e2 ) + z l

7
(ed + ei)
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Also, since z x
= na and s =-a

El-flY/^Y™ (99)

where
Ni(n) =Wi + n3w2

N2 (n) = e x + e 2 + n7
(e3 + e 4 )

Thus, for the frequency characteristic, we obtain from equation (99)

the expression

(?)'-(&)

where n x is the root of the equation

d Ni(n)
dn N2 {n)

N2 (ni )

=

(100)

as is required by Raylei^h's method. This particular value of n = nu
then, determines the position s2

s2 (ni + |)a

of the point of application of the single load to obtain a statical

deformation reproducing the deformation present during vibration.

We shall now determine the value of n = nu for the example of the

short U bar (
—= 2 \ already treated by Ritz's method. The value of

rii is best obtained graphically. Selecting various values for n, the
quantities Ni(n) and N2 (n) are calculated and also the ratios of Nx (n)

to N2 (n). These calculated values are given in Table 3. Plotting in

Figure 9 the ratio Ni(n) to N2 (n) against n, we find that the minimum
value of the ratio occurs nearly at n= l. Accordingly when the single

load is applied at the point

s2 = 0.815s!

the resulting static deformation will for the short U bar most closely

approximate the deformation realized during vibration.

This particular value gives for the frequency characteristic the value

m 0.15600

which is only slightly higher than the value obtained by Ritz's
method ( = 0.15548).

Similarly as for the short U bar (fig. 8), let s2 be the point of appli-
cation on an elongated U bar of a single load which gives the same
form of deformation as that when the bar is in vibration.
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Table 3.

—

Evaluation of the ratio Ni(n) to N2 (ri)

n Ni(n) Ni(n)
-Vi(n)

1. 5708 9.0948 56. 938 0. 15973

1. 3090 6.S3S3 43. 519 . 15714

1.0472 4.9852 31. 950 . 15604

1.0000 4. 6S95 30. 061 .15600

.9500 4.38S8 28. 131 . 15601

. 7854 3. 4866 22.265 . 15659

.5236 2.3111 14. 497 . 15942

0.0160

"0.0159

C 0.0158

CM

z.

-Z 0.0157

O0I56

0.0155

1 -i^O—

O

0.5 0.6 0.7 0.3 0.9 1.0

n

1.2 1.3 1.4 1.5 1.6

FlGTJKH 9.- -Graph to determine the minimum, value of the ratio A7
il

to N2 (n)

n Is given by the relation sj—so=na, where sj is the distance of the point of application of the
[ Lngle load X from ihe mid-point of the yoke, measured on the median line; 2»o is t he lengl h
of the yoke; a is the radius of the yoke.

Rayleigh,7 as an illustration of his method, has considered the
example of clamped-free bar of length st and found that when the
single load is applied at a point whose distance from the clamped end

I 8i t
the deformation thus obtained approximates the form of the

vibrating bar. Now* it was shown in the treatment of the elongated
U bar of length 2^, that the frequency of vibration is practically that

clamped-free bar of length sla Accordingly, to obtain in stati-

cal tests on elongated U bars a deformation which approximates
most closely that when the same bar is vibrating, it suffices to apply
the load at a point 8a= 0.75Si.
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