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IMUM USE OF MATERIAL IN BIOLOGICAL ASSAYS

By Warren W. Nicholas

ABSTRACT

is shown that the procedure often adopted in biological assay to determine
le mortality-dosage curve is very wasteful of animals and of time. The avail-

able animals are usually divided into equal groups to which are administered
various doses which differ in strength by equal steps; the inefficiency is due to

the fact that various points on the curve are determined with different degrees
of accuracy. A method is described which will determine the curve with uni-

form accuracy throughout its extent—here the animals are divided into unequal
groups, in which the relative numbers are described by a simple mathematical
expression.

The case usually encountered in routine biological assay where a single point
on the curve is to be determined (that is, corresponding to a biological test for

strength of a preparation) is also treated. A method is described which makes
the best use of a given number of animals, and permits the results to be expressed
quantitatively.
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I. INTRODUCTION

In biological assay, in order to specify the amount of drug (or other
effective agent) required to produce a certain effect (say mortality)
in a given organism, it is customary to specify a dosage (D ) of the
agent which produces the " end-point" effect in a certain specified

percentage of the organisms in a group sufficiently large in number to
reduce the probable errors to a small quantity. The necessity for

such a way of specifying dosage is apparent from a consideration of

what will here be called after Trevan * the " characteristic curve,"
which describes the effect of various doses of the effective agent on
the organisms. A characteristic curve which is approximated in a
great majority of such reactions is shown in Figure 1 ; here " survival"
(that is, fraction of organisms in which the agent did not produce the
end-point effect) is plotted as ordinates, and dosage (D) as abscissae. 2

It is seen that even doses which are a small fraction of D can produce

|

l J. W. Trevan, Proc. Roy. Soc, B. 101, p. 483; 1927. Trevan's treatment of the errors associated ;with
i
the determinatian of toxicity closely parallels that in the present paper at many points, but Trevan did not
discuss the present applications explicitly.

1 It may be pointed out that, if desired, D may represent throughout the present paper the dose per unit
susceptibility of an animal instead of the actual dose per animal; that is, corrections for weight, sex, etc.,
may be made without affecting the results of the paper so long as the meaning of D is consistent throughout
the calculations of any one experiment. (For example, if the Dreyer-Walker correction for weight held,

; the dose administered to an animal might be taken to be DW-« where Wis the weight of the animal, and D
s the quantity appearing in the equations of the paper.) It is obvious, however, that any statistical anal ysis
such as is given here will be valid whether such corrections are made or not, since the neglect of the correc-
tions will simply superpose another random variation upon the variations already existing;the characteristic
curve will, of course, be broadened by the neglect of such corrections.
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the effect in a fraction of the organisms, and that even for doses con-
siderably in excess of D , the effect is not produced in all the organ-
isms. The cause for this Large degree of variability in the reactions of

the different individuals is not yet ascertained, but in any event, this

uncertainly as to tho underlying cause is no factor in the present
discussion.

A great number of organisms is required to determine D with any
considerable decree of certainty, and there has been considerable
criticism of the paucity of material used in many assay experiments.
But even when a Large amount of biological material (as for example,
a Large number of animals and correspondingly largo amount of drug)
has been used, it is often questionable whether the best use has been
made of the material. For example, suppose the characteristic curve
has boon ascertained using, say, eight different values for the dose of

poison
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Figure 1. -Typioal characteristic curve, with best distribution of counts

Continuous lino, "oharaoteristio ourve" (see text) winch is approximated in a majority of

biological reaotions dealing with mortality due to x rayB, ultra-violet light, and various toxic
agents, physiological effeots of hormones and vitamins, and hemolysis due to speolflo sera.

Broken line, best distribution <>f Individual organisms or oounts for determining the oharao-
teristio ourve with uniform aoouraoy along Its length.

where />„ is in this example the dose required to kill half the animals,

and giving to one-eighth of the total number of animals each respective

value of the dose. Then for the characteristic curve ordinarily ob-
tained it can be shown thai with the ordinary use of the data found
(that is, without. Special weighting), more than half ot the animals
and poison have been wasted so far as an exact, determination of the

characteristic curve is concerned, and the experiment could have been
done just, as accurately with less than half oi the animals and poison,

or could have been done 1.4 times as accurately using, all the

material.8

The above point li entirely apart from the consideration that, for i given axperlmenta] unoertaintj In

tiir doss administered to an animal, the unci rtainty thereto caused in the mortality is greatesl at the steep
. i point "ii the oharaoteristlo ourve. This latter elfeol Is n<>i discussed In the presenl paper; but
foi the efleot Is reedll] made once the uncertainty In ttn> administered dose Is knovi d
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It will be shown below that, where the dosages are uniformly dis-

tributed along the axis of abscissa 1

, as in the above example, the best

use of materia] is made by dividing the animals into unequal groups
(instead of equal, as in the example above), the group containing the

largest Dumber being given the dose which will kill half of them and
the groups becoming continually smaller for both Increasing and
decreasing doses. The quantitative relation which will be found for

the optimum use of material (assuming it is desired to obtain all

points on the characteristic curve with equal accuracy) is

n 0.25 W
where n is the number of individuals in the group given a dosage for

which the fractional (not percentage) survival is 8, and n is the
number in the group given a dose for which 8 is 0.50. It is apparent,
from the fact that survival is equal to 1 minus the mortality (ra),

that the numerator of the fraction on the right-hand side can be writ-

ten in two other ways, namely, sm and m(l — m). The curve corre-

sponding to this formula, as applied to the characteristic curve shown
in Figure 1, is given in the broken curve of Figure 1

.

4

In cases where any number of organisms and any amount of

the effective agent are available, it is not necessary to have regard
to the optimum use of material. However, even in these cases, it

often happens that the administration of the agent or the counting
of the affected and surviving organisms is tedious or difficult; in this

event, the analysis given below is of as much value as in the experi-

ments in which a saving of material was important, the difference

being that here a saving of time and trouble is effected. An example
of experiments tending toward the latter typo arc those of Packard
on the effects of X rays on Drosophila eggs. Here a great number
of eggs were used in order to obtain high precision in a test of certain

quantitative theories for the nature of the biological action of the rays.

In fact, the present investigation was suggested by an observation of

Packard's that certain points on the characteristic curve seemed to

have associated with them a greater uncertainty of determination
than others. 6

The analysis contained in the present paper applies to a great
many biological reactions—in fact to every kind in which the inde-
pendent variable is the quantity or concentration of some effective

agent, such as X rays, ultra-violet light, many toxins and inorganic
drugs, hormones, vitamins, specific sera, etc., and the dependent
variable is the percentage of cases in which a given end-point effect

is produced in a group of individuals, this effect being of the nature
of something (such as mortality, hemolysis, production of oestrus,

etc.), which can cither happen or fail to happen to an individual.

The first part of the paper deals with the best distribution of animals

* In the past it has sometimes been the practice to mark on the graph the number of animals used for tho
determination of each point. In the future it will be Sufficient to Specify the total number of animals used
fur the entire graph, and to say that they were distributed according to the relation TO (1— m). The dosages
used win be evident from the points plotted on the graph.

i fharies Packard, J. Cancer Res., u, p. i; 1927. Packard Interpreted bii observation that the greatest
uncertainties were associated with mortalities in f he region of BO per cent as signifying that a greater degree
of biological variation was associated with organism! which were susceptible to the range of doses in the
vicinity of that which produced a .50 per cent mortality. As will appear below , however, this interpretation
can not be accepted without further analysis of the experimental data in terms of the present results.

26284°—30 6
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to use in case the characteristic curve is known approximately, and it

is desired to ascertain it more accurately, as has been the case,

for example, in Packard's experiments cited above. The second

part of the paper deals with the more usual case in biological assay

where it is not so important to determine the whole curve, but only

one point on it, for example the dose required to produce 50 per cent

mortality. The reason for discussing the two parts of the paper in

this apparently inverse order is because some of the formulas to be
developed in the first part of the paper will be needed in the second
part.

II. TO DETERMINE THE ENTIRE CHARACTERISTIC CURVE

Any determination of an " optimum use of material" in the present
sense implies such a use of material as involves the least error in the
final result, as indicated by statistical analysis. In order to make
familiar the application of statistics to the present problem, let us
first consider a special numerical case. Suppose an individual organ-
ism be given a dose D of some effective agent, say a poison. If, for

example, this dose is that which will kill half of any very large group
of similar organisms, we may conclude that the individual which we
have selected at random will have an equal chance of dying ( + ) (that
is, that we will obtain a positive effect) and surviving (— ). We may
represent this state of affairs by the symbolization.

+

giving, in our minds, equal "weights" to both. Suppose next that
two individuals, A and B, are each administered D ; A has as before
equal chances of + and — . Whether A dies or not does not affect the
reaction of B, so that there are equal chances, when A dies, of B's
dying and surviving; this may be represented by + + and 4- —

.

By similar reasoning we can show that the other two possibilities,
— + and — — , are equal, and also that + — is equal to — —

.

Thus we have finally four equally probable possibilities for the effect
of D on two individuals

+ +
+ -
- +

The abore reasoning may be nicety symbolized and the results
extended to any number of individuals as follows:

Two
indi\ [d

+{i _ t±
J+ - +

Three
individuals

+ +
+ -
- +

+ +
+ -
- +

+ + +
+ + -
+ - +
+
- + +
- + -

+

+

Four
individuals

+ + + +
+ + + -
+ + - +
+ + - -
+ - + +
+ - + -
+ +

=
- + + +
- + + -
- + - +
- +
- - + +

+ -
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It follows immediately, from an enumeration of the various possi-

bilities in the above representation, that with two animals the chance
of zero mortality is 0.25, the chance of 50 per cent mortality is 0,50,
and the chance of 100 per cent mortality is 0.25; with three animals,
mortalities of 0, 33 %, 66%, and 100 per cent correspond, respectively,

to probabilities 0.125, 0.375, 0.375, and 0.125. A graphical repre-
sentation of these probabilities, among others, is given in Figure 2.
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—

Some probabilities for mortality in small groups

Probabilities of obtaining various values for mortality in experiments on small numbers of
individuals (a) for doses of poison which would kill 50 per cent of a very large group of
individuals, and (6) for doses which would produce 80 per cent mortality in a large group.

Figure 2 (a) represents the case for a dose D0J as was illustrated

above, and Figure 2 (6) gives the result for a larger dose of poison,
one which would kill 80 per cent of the individuals in a large group.
The method of getting results for dosages other than D will be out-
lined below. It must be clearly understood that, although the above
analysis signifies, for example, that if eight groups, with three in-

dividuals in a group, were given a dose of poison D , the most probable
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result would be that one group would entirely survive, one would

entirely die, three groups would have only one death each, and

three other groups would have only two deaths each, it does not

signify that this result will always be obtained in practice; in fact

it is one purpose of the present paper to find how in practice the chance

of obtaining the most probable result varies with the number of

individuals treated.

It is shown in books on statistics that the above results may be

represented by a formula which is the ordinary binomial expansion

of (s + m) n
, namely

8.+*s->m+
n
-£p «-%'

+

n%

»

in~2)s-W + . . .+»• (2)

The numerical value of the first term is the probability that, if n
individuals are given such a dose of poison as would cause a

^
mor-

tality m in a very large group, none will die; the second term is the

probability that only one of the n will die; the third term that two
will die, etc.; the last term that all will die. That is, for mortalities

equal to

o,i,? 5^.1
' n n n

the probabilities are, respectively

„ n „ , n(n-l) „_„ 9 n _ . _

s
n

> T g
n" 1m> \ s

n 2m2 -

T sm
nl,mn

(4)

We next require an expression for the accuracy of an experiment
in which a certain dose is administered to only n animals instead of

the infinite number which would be required theoretically to deter-

mine the mortality with perfect accuracy. The accuracy obtained
may be regarded as being inversely proportional to the probable
error, which is, in a sense, a measure of the chance that the result

will be in error by a certain amount. Obviously such an expression
will involve not only the probability for given errors in m (expression

(4) above), but will also involve the errors in m obtained for these

various probabilities. These errors are the differences between the
true mortality m which would be observed for a large group of in-

dividuals, and the mortality actually obtained; these errors m mor-
tality corresponding, respectively, to the various terms in expression

(4) are obviously obtained directly from equation (3), and are as
follows

:

m, m—>m— . m > ra—

1

(5)n n n v '

An expression for cr, the mean error in the mortality (or the "standard
deviation" of statistics), in conformity with customary usage is the
following:

SP(Am)2

(
.

SP W
whereP represents a term of formula (4) and Am represents the corre-
sponding term of formula (5) and S signifies that a summation is to

-v
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be made over all terms of the formulas. Substituting from the for-

mulas, we have

o* =
s
nm2 +

j
s
n- lm(m-^J +

n (™
1

* )
s
n-2m2(m- ~Y+ • • • • +m\m- l

2
)

n i

n n-1 i

^(^—1) „_9 2
i

7l(?l— 1) (?l — 2) n_3 o , . B
s
n+ jsn 1m+

2>
, s* 2m2+—-—o^Ti s m3 + • • • • +mn

or, expanding the squared terms in the numerator, and noting con-
densations that can be made by means of formula 2 above

m2
(s + m) n

- 2m2[V 1 +~p s
n~2m + -^-~

y^
~ 2) 6-"-3m2 + • • • • +mn-"1

]

^-"L 1 ^1 J
(7)

Now we note that the first and second sets of terms in the square
brackets above are equal, respectively, to

i|(,+ m) » and
lj*[w|- (,+ »)-] (8)

this is easiest verified by differentiating the expanded form of (s + m) n
.

Finally operating directly on the unexpanded binomial in the manner
prescribed by formula (8), substituting in equation (7), reducing
algebraically, and remembering that s + m = 1, we readily find

Vsm

The above formula gives the mean error associated with the deter-

mination of any single point on the characteristic curve (that is, cor-

responding to some particular value of the dosage or poison or other
effective agent, or to some particular concentration in which the organ-
isms are placed, etc.), where n is the number of individuals used in

determining the point. The formula shows, for example, that if an
equal number of individuals_were used for each point, the mean error

would be proportional to ^sm ; this quantity will be a maximum for

ra = s = 0.5; that is

^J^ =^^m(l — m) = ll2(m—m2)~*(l—2m) = 0, or ra = 0.5

and will approach zero as either mors approaches zero. This means
that with equal numbers of individuals for all points, the points on
the curve corresponding to values of m close to and to 1, will have
been obtained much more accurately than points for which m is in the
neighborhood of 0.5. But for purposes of constructing a graph, there

is usually no purpose in determining one point more accurately than
any other; the accuracy of a graph may be ordinarily considered to
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be no greater than that of its least accurately determined region.

Therefore, more individuals than necessary have been used to deter-

mine all the points except that for which ra = 0.5.

For a more efficient use of material, we may assume that, unless

there happens to be some reason to the contrary, in a particular expe-

riment, it is desired to obtain all parts of the characteristic curve with

equal accuracy. Suppose the usual procedure has been adopted,

wherein doses are given which are equally spaced on the axis of

absciss®, 6 then the above condition of equal accuracy can be met by

distributing the individuals among the various points in such a fashion

as to make the mean error associated with any point equal to that

associated with any other point. That is, we wish to make <r in equa-

tion (9) above equal to some constant, say (47i<,)~
lZ2

whence
n

'~Vw " \4n.

= 4sm = 4m(l -m) =4s(l -s) (10)
n

which appeared as equation (1) in the introduction.7

III. TO DETERMINE THE DOSE REQUIRED TO PRODUCE
A GIVEN MORTALITY

If, as in many practical problems of biological assay, it is not re-

quired to determine the entire characteristic curve, but only the dose

D which will produce the end-point effect in a certain previously

specified fraction m (
= l — s ) of a group of individuals, a still more

efficient use can be made of the available material. The method is

dependent on the fact that, even if only a very small group of indi-

viduals is administered a dose of the effective agent, and the survival

found, a most probable value for D can be calculated at once from
the characteristic curve,8 and also the probable error associated with
this result. If this probable error is too large, a different dose (and

the method specifies what will be best to use next) may be adminis-

tered to another small group, and again the most probable value for

D (with associated probable error) calculated making best use of the
ivsults from both sets of animals used so far. If this second probable

error is still too large, the process may be repeated as often as neces-

sary, the progress of the experiment always being guided in the best

manner by all data secured up to that stage, and the final result always
making best use of all data and specifying the accuracy quantitatively.

• The (Vomer construction of a segment of a curvo from a set of observed points is in reality influenced by
.-ill the p< mils in tin- im mediate vicinity of the segment. Therefore, if the values for the dosage were grouped
closer together In one region than In another, the curve would ordinarily have been determined with greater
accuracy In the former region. A uniform distribution is chosen above for simplicity.

i it ought appear to have been better to replace n by n—\ in these formulas, as is shown in the theory of
errors to hoi ssarj in a e: t li u lat inn of mean error involving tho arithmetic mean of the observations instead
of the true value of the quantity to be determined (that is. corresponding to a posteriori probabilities).
However. It la here supposed that the mean errors for the various observed points (and thus the optimum
distribution -

I
re calculated from the 9O100thed characteristic curve (or its preliminary determi-

nation). Here tin ordinatea for any region Of the curve are really Influenced by all determined points in
the vicinity, and thus ihe \:due for u which ig eiTeetive in this regard is much greater than the value of

;
-lint on the curve, mid the fraction.il difference between n and n— l becomes negligible.

• In ordinary rout me assay work, the shape of the curve is known accurately, and it is merely desired to
find the potency Of a given preparation; this corresponds to determining the scale of abscissae for that
preparation, when the curve is not known, the above method may still be of considerable value if a rea-
sonable shape for the cm vc be assumed.
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In order to describe the calculations required above, let us consider

any one, say nk , of the small groups of individuals, na , n b , n c . . . .

which may be used in the experiment: Suppose a survival sk is found
for this group when a dosage DK is administered to each individual.

So far as can be determined from only this single isolated part of the
experiment, sk is the most probable value of the ordinate on the char-

acteristic curve corresponding to abscissa DK , and the most probable
value of D , say Dk , is found by simply noting the position of sk on
the characteristic curve and multiplying DK by such a ratio as will

appear to have produced a survival of s instead of sk (s =l —m ; see

above). If the characteristic curve be represented by the relation

D=J(s), this calculation of Dk may be described symbolically as

follows

:

To find the probable error associated with DkJ we note first that the
probable error associated with sk is

lsk(l-sk)As
fc= 0.6745A / ; i (12)

this is the same as formula (10) except for a change in the denominator
of the fraction as discussed in footnote 7 and the necessary change
from mean to probable error. When s varies along the characteristic

curve from sk— Ask to sk+ As k , D obviously varies from f(sk
— Ask)

toJ(sk+ Ask) ; for the purposes of the present paper,9 the probable error

ADk to be associated with Dk may be taken to be

f(So) j(sk-Ask)-f(sk+ Ask )

J(sk) 2
{U)

The fraction on the right above is the error associated with DK ,

and the purpose of the fraction on the left is simply to cause Dk

to have the same percentage error as DK .

Now, to begin the experiment, an arbitrary dose DA is given each
individual in a small group, n

? , the survival, sa , is noted, and the
probable value, Da , of D with its associated error, ADa , is calculated

as above. 10 (For additional clarity, an example of these calculations

is given in fig. 3.) If ADa is too large, we give each individual of a

9 It may be pointed out that the method described by equation (13) for the calculation of ADk from Ask
is only a special case of a more general method. For example, instead of finding ADk from f(sk—Asa) and
f(Sk+ASk) we might have found R ADk from f(Sk—RASk) and f(sk+RAs k), where R is a constant the value
of which is a matter of choice. When R is relatively small, when Sk lies on a relatively straight portion of
the graph, and when the determination of Sk is relatively accurate (that is, when Ask is small), the value
found for ADk will not depend appreciably on R; on the other hand, when the graph is strongly curved, etc.

,

ADk depends on R. It may be pointed out further that when Sk—RASk is equal to or less than zero, or when
Sk+RASk is equal to or greater than 1.0, ADk becomes infinite, and consequently the result with the group
of animals rik is discarded so far as its effect on the probable error of the final result is concerned. (Seo
Equation (14).) Both of these features are believed to be desirable, and the choice R= 1 seems a reasonable
value to select, although for some purposes other values of R may be found to be preferable.

io The degree of success attained with the above method depends to some extent on the determination
of the first dose to be given, Da. For the closer Da happens to approximate D , the fewer individuals
will be required to attain a certain accuracy of determination of D . For example, until a value for Da
is found which gives s a a value different from either zero or 100 per cent (that is 1.0), no definite statement
can be made about the most probable value of D ; that is, mathematically, the value D a is indeterminate.
However, the special case in which nothing whatever is known about the approximate magnitude of the
dose required to produce a known end-point effect is seldom encountered in practice. When it is encoun-
tered, the method usually followed when animals are valuable is to administer gradually increasing doses
to a single animal, making some kind of allowance for a possible adaptation.
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second group, nb , a dose DB =Da) and as before find Db and ADb .

As is shown in the theory of errors, we may combine the results of

the two experiments, and find that the most probable value for D
is now

Da/(ADa)
2 +Db/(ADb)

2

l/(ADa)
2 +l/(ADby

Dc=

Figure 3.

—

An example of the assay of a preparation of unknown strength,

but for which the shape of the characteristic curve is known

The strength of a preparation can be described by specifying the dose D which would be required to
produce its characteristic effect in a fraction s (say for example s<,=0.60) of a large number of animals.
Suppose a dose Da is administered to n«=8 individuals and it is found that 2 do not register the charac-
teristic effect (that is, a survival s o =0.25 is observed). Then the most probable value D a for D is Da times
the ratio of the abcissae which correspond to s and s a (equation (11)); for example, in the present case
D.=0.72 Da.

The probable error (equation 12) in s a is

As o =*0.6745V
0.25X0.75

1
=0.110

The values of dosage corresponding to the limits s o+As (=0.36) and s o -As„(=0.14) are/ (s„-As ) = 1.16 Da
and /(«o+A«„) =0.90 Da, and the probable error associated with Da may be approximated with

r(«. ;
A».)-/(«.+Aj.)

(=Q 13 Da iu the present case)

Likewise, the probable error in D a must be 0.13 D a , which is equal to -„
s
~x0.13 Z).4=0.09 Da (compare

equation (13)). Thus, finally, 7) o =(0.72±0.09) Da for the case taken here. If this happens to be an unde-
sirably large error, a second group of animals, Tib, may be administered dosages Z>s= 0.72 Da, and soon, as
described in the text. In ordinary assay work, where standard numbers of animals are used for n a , rib,

etc., the above calculations will reduce to a very simple routine.

and that the probable error associated with this value is

Vl/(ADa )
2 +l/AZ)6 )

2

We can now give to a third group, n r ,
dose Dc , and End Dc , etc., in

a similar fashion. J n general] after the kth group, n has been given
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dose DK , and Dt and ADk have been found, the most probable value
for D will be

DJ(ADay- + Dbl (ABby +DJ(APC)
2+ . . . . . + Dj(AD,y

i/(ADay+i/(ADby+i/(ADcy+ +i/(az>*)
(14)

and the probable error associated with this value will be the reciprocal

of the square root of the denominator of this expression (14).

I am very much indebted to Dr. Raymond Pearl for consultation

and suggestions regarding the above analysis. Also I wish^ to

acknowledge courtesies extended me by the Marine Biological

Laboratory at Woods Hole during the preparation of the paper.

Washington, August 30, 1930.


