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On the Most General Form of the Compatibility 
Equations and the Conditions of Integrability of 
Strain Rate and Strain 

Edmund H. Brown 
The most general forms of t he eq uations of compatibili ty are de ri ved by a very simpl e 

an alys is in terms of t he m ater ial strain rate tenso r an d the rate of change of t he Rie ma n n­
Christoffe l curva tu re tensor du ring t he defo rma tions. It is s ho wn t hat recen t statements 
on t he s ignifi cance of t he compatib ili ty equatio ns, essen t ially t hat t heir satisfactio n is 
equ ivale nt to t he cond it ion t hat t he space be locall y Eucli dean, a re misin te rpretations based 
o n r es tricted forms of t he eq uations. In addition, a new form of t he con di t ions of in te­
grabili ty of strain is derived in terms of the r ate of change of the cur vature tensor. 

1. Definitions and Notations 

Because of the great var iety of usage of authors in Lhe fi01d , a few of the definiLio ns and 
notations employed here will be discussed briefly . Howeve r, a ge neral knowledge of Lonsor 
analysis a nd modern elasticity is assumed. For the most general , and at the same Lime most 
readable introduction to tensor analysis, in clud ing appli cat ions Lo elasticiLy, the rearler is 
referred to Brillouin [1); 1 for an excellent and thorough revi ew of modern clastici Ly througl) 
1953, desp ite a frequently cumbersome notaLion , Lhe paper or Tl"Uesdell [2] is highly recom­
mended ; for more recen t general discussions, t he Lreatise of Green fi nd 7.erna [3], or th e article 
of Doyle and Ericksen [4] should be consul ted. 

To introduce th e strain tensor, we imagin e a compleLe n-dimellsional materi al co nLinuum 
G which , with an arbitrarily chosen coordinate system Xi, is defined by Lite form of Lhr metri c 
tensor gij= gij(X k ). To show the covari ant character of some of the qua ll t iLies in volvC'd it 
will occasionally be n ecessary to transform from one coordina te sys tem 1,0 anoth er. Following 
Craig [5] we shall indicate quan tities in one coordin ate sysLem by usc of indices from the 
group i, j , k , h, l , and quanti t ies in a second coo rdin ate sysLem by indices from the group 
p , q, r, s, t. Thus, slIch a transformation will be defin ed by a n analytic relation of Lhe form 
xT = XT(Xk). F urther , for conven ience, the componen ts of the transformation matrices OXk/OXT 
or OXT/OXk will be denoted by X~= oxkjoxT or X~= O.c T/OXk . Similarly , o2xkjoxS oxT will be denoted 
by X~s. During such a coordinate transformation, then, in one physical state, the components 
of the metric tensor will transform according to t he tensor law, gTS= gijX :X !, the Christoffel 
symbols, or connections, will transform according to the Christoffel law, r~jk= r~stX~XtX:+ 
XhX!, and the components of the Riemann-Christoffel curvature tensor by the tensor law, 
Rvq I TS=Rij l khX~X~X~X~. Note that we lise a short ver tical stroke between indices to emphasize 
variolls symmetry properties. In addition , foll owing Green and Zerna, we use a full vertical 
stroke behind a quantity, 9S in the iden tity gij!k= O, to indicate the covariant derivative. 

A material coordinate system is defined by assigning a value Xi to each particle of the 
material continuum, which it retains during any subsequent deformation. We shall assume 
that the deformation, itself, depends on a single scalar parameter J.L , independent of the 
coordinates xk , which in dynamic problems can be identified with the time t. Since the mate­
rial coordinates of a particle do not change during a deformation, we must have Xk (J.L2) = Xk (J.Ll) ' 
However , during the progress of the deformation the intrinsic quantities associated with 
the space, such as the metric tensor g /il must change, assuming a continuous set of values 
g jj (J.Ll), g/j( J.L2) , . . .. When we wish to indicate several stages during a deformation , the 
appropriate values of J.Ll, J.L2, ... will be used , but more often only two stages, an " initial" 
state and a "final" state, ~re of interest, so that, for instance, we can write for the " initial" 
metric tensor, g iil and for the " final" metric tensor g/j. In such cases, we shall make a general 
practice of indicating a final state by placing bars over quantities which in the initial state 
are unbarred. 

1 Figures in bracket s indicate the literature references at the end of th is paper. 
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At this time, it is well to note that, parallel to the "material" representation of quantities, 
a "spatial" treatment can be used: A complete n-dimensional geometric, or spatial, continuum 
H can be specified, using an arbitrarily chosen fixed spatial coordinate system y\ by the form 
of the spatial metric tensor, h/J= h jJ (yk). We imagine that the deformation of G takes place 
in H, that is, that there is a one-to-one correspondence between the "particles" of G and the 
"points" of H which, however, varies in form with p. . Thus, there is a "mapping" of G on H 
by y i= y i (Xk, p. ) , whose variation with p. represents the deformation of the material continuum. 
Since during the deformation, that is, dming the variation of p., the particles of G move through 
the points of H, y i (Xk,P.2) ,t-yi(XkP. l) , but at each given point y i , spatial quantities such as hiJ and 
the spatial Riemann-Christoffel cmvatme tensor S iJlkh remain constant. There is nothing 
of course to prevent one assuming that the space H may change with parameters other than p., 

a device which could possibly be of some use in discussions of plasticity; but for simplicity 
we shall avoid this here. In any case, a necessary condition that G remain in His 

at each value of p.. 

Quantities such as strain can be related to either the material or spatial systems, whereas 
the displacement u i is essentially spatial. Since we intend to discuss strain only, for con­
venience we will use chiefly a material representation and make little further reference to the 
spatial treatment. We should remark, however, that one of the principal applications of the 
results for non-Euclidean continua is in cases where (unlike our definitions above) the dimen­
sion of Gis m, the dimension of His n, and m< n, since they are useful in reduced problems 
involving shells and curved rods. These problems, however, require the introduction of 
n-m other mth-order quantities ("changes in curvature" , "changes in torsion", etc.) in 
addition to the strain, so that we shall not consider such possibilities here. 

2 . Introduction of Strain a nd Derivation of Results 

We shall take as a measure of finite strain the quantity 

(12 )e/j(xk) = }Ho jj (xk ,P.2) - gij (X\P.l ) l, (1) 

or, if we wish to think only of some particular initial and final states, 

(2) 

since-even though it is less used in the modern theory of finite elasticity- it reduces to the 
familiar strain tensor of " classical" theory, such as is found in Love [6], in the infinitesimal case. 
According to the above definition, strain depends merely on the initial and final states, and is 
independent of the way in which the deformation took place. Such a definition is too general for 
strain to be uniquely related to stress in more complex cases involving permanent set or plastic 
behavior. Thus, we are led to the introduction of the rate of strain tensor eij defined by 

. oe1j 1 ogt j 
ejj=-=-_ · 

OP. 2 OP. 
(3) 

We note that, since differentiation with respect to the scalar parameter p. does not affect the 
character of gih elj like gij is a tensor in the Xk coordinate system for a given value of p.. Sim­
ilarly, since both gif and gii are tensors, the finite strain (l2) e./J is a tensor. However, though 
Xk= Xk for all p., the identities (based on the hypothesis of a Riemann space, that is, that a 
unique measure exists) gii !ii = O and gfj!k= O do not allow us to conclude either that glj!;;= O, or 
g iJ!k= O, since glf is not the metric tensor of G, nor gif the metric tensor of G. In G, gil is merely 
a tensor field and not the metric tensor; similar statements can be made about the character of 
gtj in lJ. 
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J ow, considering elj to be a tensor field in G, in accord with the usual requirements for 
raising and lowering indices, we must have 

(4) 

and 

(5) 

Just as the metric tensor g ij changes during the deformation, the Christoffel connection 
r~jk based on g ij must change. We shall define the rate of change E:jk of r !jk by 

(6) 

However, since r .ijk transforms, when the coordinates are changed at one physical state, 
by the Christoffel law, and none of the quantities Xk, X;, X:s are functions of !,-, 

E ' = or~st= Or:ik X jX kX '=E i X iX kXr 
.st O!,- O!,- s t, .jk s t i, (7) 

which shows that-unlike r !jk-the quantities E:ik' and thus EI!jk=gihE~ jk ' are tensors, a fact 
first pointed out by Bergmann [7] . 

• lust as r~jk can be expressed, for a Riemann space, in terms of the metric tensor, 

so the E~jk can be written in terms of the strain rate eti ; for 

(8) 

or, since gij is an analytic function of Xi and !,-, and Xi and .u. are independent, 

(9) 

imilarly, E i!jk can be shown to be given by 

(10) 

or 

(11) 

Using the expression for the covariant derivative of the second order tensor eii> the three 
partial derivatives of eii appearing above may be written 

(12) 
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On adding these expressions, interchanging indices where symmetry permits, we obtain 

(13) 

Introducing this in the expressions for E~Jk and E ilJk in terms of the strain rate , and making 
use of the fact that gih lk = O results in the more elegant forms , 

(14) 

and 
(15) 

,Ye must, finally , consider how the Riemann-Christoffel curvature tensor R :Jlkh based on 
giJ varies during the deformation. Defining J:J lkh= oR:J lkh /OM , this rate of change ·of curva­
ture is given by 

@i _~ (Or~Jh)_~ (Or~Jk)+or!Jh r i +rl. Or~lk_ Or!Jk r i _ r l Or~lh 
o .Jlkh- OXk OM oxh OM OM .Ik . ih OM OM .Ih . Jk OM 

(16) 

or 

(17) 

and similarly, 

(18) 

both of which are especially elegant forms for the rate of change of the curvature tensor. 
Just as in the case of E ilJk , we can express tfftJlkh in terms of the strain rate, and, in doing so, 

we obtain the equations of compatibility in their most general form. By substitution and 
simple algebra these identities may be written 

(19) 

It is well to examine the significance of these equations. There is no reason for us to 
assume that the strain rate is a t ensor function (which would require that eo satisfy certain 
conditions of integrability), for in the most general case, the eo would be merely the com­
ponents of a tensor field. However, the curvature tensor R jJlkh is an intrinsic property of the 
material continuum G and must be related, as stated previously, to the curvature tensor S jJlk" 

of the spatial continuum H , in order that G remain in H . Thus, tfftJlkh must be related to SiJlkh 
by an equation of the form 

(20) 

We have assumed that H does not vary, that is, that the value of S iJlkh at each point yk is 
constant. In particular, if SiJlkh= O, R iJlk,,= O, and thus, of course iOlk" must also vanish. If, 
however, S iJlkh is not zero, tfftJlkh will be constant, or more strongly, zero, only if other special 
conditions hold. 

The conditions of integrability of the rate of strain tensor must now be investigated. 
Using the relation for tfftJlkh' and the fact that R iJlkh is skew-symmetric in the indices of both 
pairs, we can write 

(21 ) 
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H owever, the equations 
(22) 

are merely the conditions of integrability ; the vanishing of either sidl:l of the above equation 
implies tha t if eij is subj ec ted to parallel transpor t around a closed curve, it will r et urn to its 
initial value at the star ting point, and thus, may be considered a tensor function of the coordi­
nates Xi rather than merely a tensor field. 

Thus, the rate of strain is integrable if any one of the followin g equations holds iden tically: 

(23) 

the last of the equations being equivalent to the requiremen t that ~j l kh be skew-symmetric 
in its firs t two indices (it is already skew-symmetric in the second pair as a consequence of its 
definition). It should be noticed that these integrability conditions are distinct from the 
comp atibility equations, and in particular, it is not necessary for i;Jlkh to vanish for ei} to be 
integrable. 

If, however , the strain rate is integrable, and we substi tute the first of the above conditions 
in the compatibility equations, they take the simpler form 

(24) 

In a great many practical cases, either the space is Euclidean, or some special relation 
may hold, such that itJlkh= O, which r educes the compatibility equations to the form. 

(25) 

It is of some interes t to sec the forms which the last equations take when n::::;3. If n = l , 
all indices must be identical and we have, merely, 0= 0. If n = 2, only two indices can be 
distinct, resulting in only one independent equation 

i,c. k, (26) 

indices no t summed. 
If n = 3 , three indices may be distinct, and two independen t se ts of, in all, six equations 

may be derived : 
eH\ kk+ ekk\ii = 2eik\ik 

indices not summed (3 equations), and 

indices not summed (3 equations). 

i,c. k, 

i ,c.j ,c. k, 

(27) 

(28) 

The last two sets of equations, for n = 3, are equivalent to those given by A. E . H . Love 
in Cartesian coordinates. Thus, our completely general form of the compatibility equa tion 
r educes to the more well-known form for the appropriate conditions. 

We note that, since p. is a scalar parameter independent of Xi, derivatives of the infini­
t esimal strain tensor cleij= eijclp. may be written cleiJ\k= eiJclJ-L \k= eiJ\kclJ-L. Similarly, derivatives 
of the finite strain eij= f ei/ lp. may be written eiJ\k= f eijclJ-L \k= f eij\kdp. . Thus, all the rela­
tions and conditions derived above hold equally well for both the infinitesimal and finite strain 
t ensors. 

In conclusion , we can state the equations of integrability and the equations of compati­
bility are two independent sets of eondi.tions. Satisfaction of the::'former implies that the 
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space to which the deforming medium is assigned is Euclidean. Satisfaction of the latter 
implies the medium remains in that assigned space. The fact that both must hold for the 
solution of actual problems in elasticity should not lead to considering them as identical, for 
each has its own physical significance. 
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