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Radiation From Slots on Dielectric-Clad and
Corrugated Cylinders

James R. Wait and Alyce M. Conda

An approximate formula is derived for the radiation pattern of an axially slotted

cylinder with a thin dielectric coating.
for practical purposes.
rugated cylinder is derived.

clad and corrugated cylinders.

1. Introduction

The radiation from slots on smooth circular cylin-
ders is now well understood. However, if the cy-
lindrical surface is coated with a dielectric film, the
patterns can be appreciably modified. Although a
rigorous expression can be derived for the fields of
an arbitrary slot on a circular cylinder with a dielectric
coating, the resulting formulas are very cumber-
some.! For this reason, it seems worthwhile to
modify the final expressions for the field by making
several approximations on the basis that the thick-
ness of the dielectric film is small. Furthermore,
it is of interest to consider the problem by using
approximate boundary conditions. This latter
method can also be used to treat the corrugated
cylinder under the restriction that the teeth are
closely spaced with respect to the wavelength.

An attempt will be made in the present paper to
investigate the accuracy of the simplifying approxi-
mations for dielectric-clad cylinders. A comparison
is also made between thin dielectric coatings and
corrugations on an axially slotted circular eylinder,
from the standpoint of the directionality of the
radiation.

2. Dielectric-Clad Cylinder

The cylinder is taken to be of radius @ and the
concentric dielectric coating has a radius b, as indi-
cated in figure 1a and 1b. Cylindrical coordinates
(p,¢,2) are chosen to be coaxial with the cylinder.
The electrical constants of the coating are e and g,
and those of the homogeneous (air) space outside
are ¢ and u,. The tangential electric fields on the
slot are to be specified. In the case of a thin axial
slot (where the slot is parallel to the cylinder axis),
the electric field, %, in the equatorial plane is ver-
tically polarized, possessing only a z component.
It was shown before that (see footnote 1)
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where ko= (eu)*0=27/free space wavelength, and
where V(z’) is the transverse voltage along the slot

1J. R. Wait and W. E, Mientka, Slotted-cylinder antenna with a dielectric
coating, J. Research NBS 88, 287 (1957) RP2762.

The accuracy of the formula is shown to be sufficient
Using a similar method, the pattern function for a slot on a cor-
Extensive numerical results are presented for both dielectric-
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Ficure la. Azial slot on a metallic circular cylinder of infinite

length with a dielectric coating.

€o01Mo

Ficure 1b. Sectional view of the dielectric coating.

that extends from z=z; to 2z at p=a and ¢=0.
The pattern factor that characterizes the azimuthal
variation of the radiated field is given by
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where
1= T (kb)) Hy (ka) — Ty (ka) H (D), (3a)
L=, (kb) H}y (ka) — Ty (ka) H,,(kb), — (3b)

k= (ew)*w, and J, and H, are the Bessel function
and the Hankel function of the second kind, of
order m, respectively. The prime indicates the
derivative with respect to the argument of the
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function. When the slot is of infinite length, the
radiated field is a cylindrical wave? and the field
is given by

X 9 %
Ey=—160ewV <;r k&) ¢~ tEe=T/OP(¢)  (1b)

which has the same azimuthal dependence as the
spherical wave radiated from a finite slot.

Some numerical values for the function (¢) were
given in a previous paper (see footnote 1). The cases
considered were for ka=2 and 3, and various values
of b/a, e/e; and w/up. The numerical work involved
is extensive. In view of the complexity of the above
formula for P(¢), an effort was made to simplify it
by making several judicious approximations. The
validity of this procedure is best checked by compar-
ing the numerical values computed from the approxi-
mate and the exact formulas. This work will be de-
seribed in what follows.

Noting the Taylor expansions

Jm(ka)=d, (kb)+ (ka—kb)J (kD) + . . . |
H, (ka)=H,, (kb)+ (ka—kb)IT,,(kD)+ . . . |
it follows that to a first order in k(b—a),
T —[JnHy—JnH ) k(b—a). (4)

The argument of the Bessel functions, ./,, and 1, is
kb, and the double prime indicates a second derivative
with respect to kb. Making repeated use of the re-
cursion formulas

; m-+1
Jmkl:_" b ) Jm+1+Jm (53)
Jm Ib Jm Jm+1 (51))
and utilizing the Wronskian relation
/ r_ 2
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it is easy to show that

_— b—a =
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In a similar manner, an expansion in ascending

powers of k(b—a) can be developed for £,. Retain-
g terms to first order in k(b—a) leads to
ngﬁﬁ—b—;—“ (o1 — Ty H,)
2
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2J. R. Wait, Slotted-cylinder antenna with a dielectric coating, Addendum
to Radio Physics Lab. Project Report 19-0-11 (Ottawa, November 1954).

On the basis of the above derivation it would be
expected that these formulas for 7', and Z,, are valid
if (b—a)<b and k(b—a)<1.

The expression for the pattern factor now takes
the relatively simple form

€, COS MPe™™/?
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where

A
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with A=k, B=kb, N=k[k,. 1t can be seen that
if k=k,, or if b=a, the equation for the pattern
becomes

€, COS Mpe™™/?

H,(4)

Po)=7 > (11)

m=0

which is the well-known result for the uncoated

cylinder (see footnote 1).

3. Corrugated Cylinder

Before discussing numerical results, it is of some
interest to consider a closely related problem. A
line magnetic source (of strength K volts) is located
at p=p;, =0, parallel to a circular cylinder of
radius b and infinite length (see fig. 2). The ratio
between the tangential electric field (£,) and the
tangential magnetic field (/.) on the surface of the
cylinder is to be specified. That is,

1 QY
l:]ﬂ(b_'foCLJ Fp ;_le]/?:b

where y=H, and where 7 is the boundary impedance.
Following the method suggested previously (see foot-
note 1) the solution for p >b can be written

WK & :
‘r,/: e(,(; ’2_0 eijm (l‘m()pﬂ) [‘IIM (_l\f()p) +“1mIIm (k(Jp)}
cos mo for p<p, (12a)
and
K ©
\b:f(—’z_ = em[Im (kﬂp) [Jm (k(ip()) +‘A1m[Im (k(Jp1))]
cos me for p >p, (12h)

where A4,, is to be determined from the boundary

condition at p=~b. In the present case it is easily

found that
A"l_-

/rik077 +£Jr/1(k(bb) ] (1 2C)

m(k( b>+p[II'l kO )

where G:—’£Z/110, 7’)0:\’/#0/60.

The above result is now specialized in two ways.
Firstly, the far field approximation is made (kop>>1)
and, consequently, the leading term of the asymp-
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Ficure 2. [llustrating a line magnetic source at (py,0) outside
a circular cylinder whose average surface impedance, at p=>,
s to be specified.

totic expansion of /,,(kop) can be used. Secondly,
the source is allowed to approach the cylinder
(po—>b). Then, utilizing the Wronskian for ./,, and
I, the far field can be written

: 2 \¥ _,
E¢:—26060wv<———> e~ ®op=T/4 () (¢) (13)
7rk(,p
where the pattern factor ¢(¢) is given by

© (:,,LCO@quFi"“r/Z
WO~p X 1B L) o
where B=Fkb.

This formula is almost identical in form to that
for P(¢), the pattern of a slotted cylinder with a
dielectric coating. The surface impedance function,
7, although not strictly applicable to curved surfaces,
would be given by

Z~i+ule tan k(b—a)~iu/e k(b—a),  (15)

which is the appropriate value for a thin dielectric
film of thickness b—a on a flat perfect conductor

for a plane wave at normal incidence. Therefore,
G~ . < tan N(B—A
Mo ]V ( )
~% (B—A). (16)
Mo

It is interesting to note that

(1 o 132> (a7

If the refractive index, N, of the coating is large, the
quantity m?/N?B? is small compared to unity for
significant values of m (i. e., m<2A4) in the summa-
tion. Consequently, G,,l__(z, for thin dielectric
coatings of high refractive index. 1In the case of
polystyrene and other such dielectric materials, Nis of
the order of 2 and the term m?/N?B? is comparable
to unity for values of m of the order of A. In this

Kl g(“m

case, it 1s not justified to use an approximate bound-
ary condition.’

Although there are severe limitations to the use of
approximate boundary conditions for dielectric-clad
surfaces, they become very suitable for characterizing
corrugated surfaces. For example, if axial grooves
of width, w, and depth, A, are cut circumferentially
around the metal cylinder, it follows that the average
surface impedance at p=0b is

~1 f_ ,w T
Z:@n()(’uo)(dN) tan Nkoh

where d is the periodicity of the grooves in the circum-
ferential direction, and N is the refractive index of
the material filling the grooves. KEquation (18a) is
obtained by regarding the grooves as shorted trans-
mission lines of electrical length, Nkh, and consider-
ing only the fundamental (TEM) mode. This can
be expected to be valid * if d is small compared to
the wavelength. In the limiting case where /& tends
to zero, the cylinder again behaves as a perfectly
conducting object. When the width of the teeth
is small compared to the width of the grooves,
such that w=~d, it is seen that

. 1
7 (f‘,); tan N/
) " N an. ol

Gz:) 717 tan. N(B—A),

(18a)

(18b)

where Z corresponds to the surface impedance for a
plane wave at normal incidence on a dielectrie film of
thickness b—a. In the present instance, this
always can be expected to be a good approximation
since energy flow in the circumferential direction in
the dielectric film is not permitted because of the
presence of the teeth.

The relative location of the slot and the teeth on
the corrugated surface has not been specified. Pre-
sumably the slot could be cut in the bottom of one of
the grooves.

4. Numerical Results

The approximate formula for the pattern function
of an axial slot (of finite or infinite length) on a pure
dielectric (u=u,) clad cylinder is

1 & €, COS mgpe™™?
P@= 5 20 77 B+ G, H,(B)

3 Some improvement might be obtained if the value of the surface impedance
for a plane wave at grazing incidence on a thin dielectric coating on a plane con-
ductor was used. This would lead to

Ggﬁo(B—A) (1~N1—) .

iR. Elliott, Azimuthal surface waves on corrugated cylinders, J. Appl.
Phys. 38 368 (A])Ill 1955).

(19)
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where G,=(B—A) [1—(m?N?B?)] A/B. The ampli-
tude’land "phase of P(¢) for ¢ from 0° to 180° are
shown listed in tables 1 and 2. The columns
labeled “‘exact’” are based on the exact formula for
P(¢) given by eq (2), and the columns labeled
“approx.” are based on eq (19). The amplitude
values shown are normalized to unity at ¢=0 and the
phase, which is -arg. P(¢), is normalized to 0° at
¢=0.

The cases for the smaller cylinders (A=2 and 3)
are treated by both the approximate and exact
techniques. The excellence of the approximate
formula is evidenced by a comparison of the appro-
priate columns. For the case of the large cylinder
(A=8), only the numerical results from the approx-
imate formula have been obtained. The correspond-
ing¥exact numerical data for A=8 could be obtained
only from extensive and tedious computations. It
is believed, however, that the approximate results
for this larger cylinder would not differ more than
5 percent in amplitude and 10° in phase from reality.

The corresponding formula for Q(¢), the pattern
of a slot on a corrugated cylinder, is identical in

form to that for P(¢), except @, is replaced by G
where

4

=5

tan [NV (B—A)].

In this case, the teeth are of small width compared
to their separation. The refractive index of the
dielectric material filling the grooves is N and the
depth of the grooves is b—a. One might describe
this situation as a dielectric-clad cylinder with radial
fins contained within the dielectric coating (see fig.
3). For purposes of comparison with the noncor-
rugated cylinder, @(¢) has been calculated for the
same range of values of A, B, and N. Results for

€o1Ho

Wk e
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Fraure 3. Sectional view of the corrugated surface.

Tasre 1.  Amplitude of P (¢)

A=2.0 | A=2.0 | A=2.0 | A=2.0 | A=2.0 | A=2.0 | A=2.0 | A=2.0 A=3.0 | A=3.0 A=80 | A=8.0

A=2.0 | B=2.1 | B=2.1 | B=2.2 | B=2.2 | B=2.3 | B=2.3 | B=2.2 | B=2.2 A=3.0 B=3.2 B=3.2 A=8.0 B=8.1 B=8.2

B=2.0 | Exact |Approx.| Exact |Approx.| Exact |Approx.| Exact | Approx. | B=3.0 Exact | Approx B=8.0 | Approx. | Approx.
b N=2 N=2 N=2 N=2 N=2 N=2 N=1.5| N=L15 N=2 N=2 N=2 N=2
0° 1. 000 1.000 1.000 1.000 1.000 1.000 1. 000 1. 000 1.000 1. 000 1.000 1.000 1.000 1. 000 1. 000
10° 1. 000 0.999 1.000 1.002 0.995 1.003 1.002 1. 001 0. 996 0. 997 1.003 1.004 0.997 0. 995 0. 998
20° 0. 990 . 995 0.997 1.0056 . 987 1.012 1.012 1. 001 . 986 . 987 1.007 1.014 992 . 988 . 985
30° . 976 985 988 1.005 979 1.021 1.024 0. 995 .974 . 966 1.002 1. 020 . 986 988 990
40° . 942 961 967 0.993 .971 1.021 1.031 . 975 . 961 . 934 0.974 1.004 . 966 972 988
50° . 900 920 927 . 957 . 950 0. 995 1.081 936 .934 . 895 .924 0. 955 . 945 953 957
60° . 838 . 861 . 868 894 . 899 932 0.971 876 . 881 . 860 874 . 901 . 905 . 928 . 957
70° . 780 . 796 . 800 810 . 813 836 847 . 803 . 801 . 828 853 874 . 845 . 866 . 887
80° . 732 L 742 .743 733 .722 739 797 . 738 o) 19 .842 866 .788 . 822 . 869
90° . 698 711 L711 . 693 .674 . 691 739 . 703 .676 . 693 784 814 . 680 . 716 . 763
100° . 670 . 695 695 . 689 . 678 . 706 . 742 . 694 .677 585 . 657 . 688 . 601 .659 .724
110° . 622 . 661 . 664 . 680 . 692 729 . 760 . 673 .674 509 . 539 . 569 . 479 . 522 . 568
120° . 536 . 582 . 587 . 620 . 641 692 .719 . 603 .616 . 490 .535 . 548 . 401 . 486 . 561
130° . 412 454 . 459 . 493 . 508 . 563 . 589 . 473 .484 . 463 . 562 N570) 295 .333 .375
140° . 282 .305 . 308 . 327 . 323 . 366 .391 . 316 . 310 . 367 .483 . 502 . 282 . 348 . 428
150° . 227 .232 .231 .238 .215 .223 .245 .233 .215 L2156 . 282 . 300 .155 .179 . 208
160° . 285 305 .303 .331 .321 .331 . 343 . 308 .312 . 162 ALy 181 .205 . 286 . 348
170° . 361 402 . 401 451 . 453 . 485 . 496 l .413 .432 .271 . 350 .335 . 047 . 056 . 066
180° .392 .441 440 499 . 499 . 546 . 5567 ‘ . 454 . 478 . 325 . 436 . 449 .182 . 265 .323

TaABLE 2. Normalized phase of P (¢)

A=2.0 | A=2.0 | A=2.0 | A=2.0 | A=2.0 | A=2.0 | A=2.0 | A=2.0 ‘ A=3.0 A=3.0 A=8.0 A=8.0

A=20 | B=2.1 | B=2.1 | B=2.2 | B=2.2 | B=2.3 | B=2.3 | B=2.2 | B=2.2 A=3.0 B=3.2 B=3.2 A=8.0 B=8.1 B=8.2

B=2.0 | Exact |Approx.| Exact |Approx.| Exact |[Approx.| Exact | Approx. | B=3.0 Exact | Approx. | B=8.0 | Approx. | Approx.
@ N=2 N=2 N=2 N=20 N=2 N=2 N=1.5 | N=1.5 N=2 N=2 N=2 N=2

0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°

10° 1.6 1.6 1.7 1.8 2.1 2.0 2.1 1.6 2.1 2.4 2.6 2.8 7.9 6.9 6.2
20° 6.2 6.6 5.0 6.9 8.4 7.6 8.3 6.5 8.0 9.6 10.1 10.3 27.5 27.8 27.0
30° 13.9 14.5 15.0 15.1 18.3 16.3 17.8 14.5 17.3 21.5 22.3 23.3 60.7 61.6 62.3
40° 24.4 25. 4 26. 4 26.0 3%6 27.6 30.0 25. 4 29.3 38.2 39.1 40.1 105. 8 107.1 108.0
50° 37.9 39.2 39.8 39.5 45.0 41.0 44. 4 39.2 43.2 59. 6 61.1 61.7 161. 8 164.5 166. 8
60° 54.6 56.1 61.8 55.9 60. 5 57.2 61.3 56. 0 59.3 85.0 88.7 89.6 226. 1 229.6 233.1
70° 74.4 76.5 82.9 76.2 79.6 77.2 84.3 76.3 78.5 112.5 119.9 121.3 298. 9 303.7 307.9
80° 96. 8 100. 1 107.3 100.9 103.7 102.7 106. 2 100. 3 102.3 141.1 150.9 138.0 374.9 382.5 388.8
90° 120.1 125.1 132.1 128.6 132.3 132.9 136. 4 126. 4 129.7 171.2 18).9 184.4 459. 6 466. 6 473.2
100° 142. 4 148.9 156. 1 155.1 160. 1 162.1 166. 1 151.3 151.2 205. 4 214.0 216.3 543. 8 552.9 562. 5
110° 162. 6 169. 9 176.1 177.8 181.9 185.7 188.7 172. 8 177.5 244.9 256. 4 254.7 632. 3 641. 8 650. 7
120° 181.6 189.0 194. 6 197.1 199.3 204.5 210. 8 191.7 195.0 282.8 371.6 304.1 718.1 730.9 744.5
130° 202.0 208. 8 213.3 216. 4 216.1 221.8 229.2 211.0 212.2 312.7 334.2 337.1 8904.0 821.4 832.5
140° 231.2 237.1 238.3 243.7 249.7 245.3 253.3 238.7 237.7 337.6 357.9 361.5 894.2 910.7 928.7
150° 278.4 287. 4 281. 5 296. 9 297.2 300. 3 306. 0 289. 8 292.8 371.1 386. 4 389.1 988. 4 1001. 8 1014. 4
160° 317.8 330.1 322.9 342.9 346. 3 356. 5 361. 5 335.0 339.9 445.3 469.7 472.6 1089. 1 1090. 4 1112. 5
170° 334.6 347.2 342.2 359. 7 362. 0 374.0 379.9 352.7 355. 485.1 514.6 518.5 1168. 1 1179.3 1195. 5
180° 339.1 351. 6 347.6 364.0 366. 6 378.1 384.5 357.3 359.5 492.8 521.8 525. 8 1249.3 1270.3 1293.9




the normalized amplitude and phase of Q(¢) ar
listed in tables 3 and 4.
TasLe 3.  Amplitude of Q(¢)
A=20| A=2.0 | A=2.0 | A=2.0 | A=8.0 | A=8.0 | A=8.0
) B=2.0 | B=2.1 B=22 | B=23 | B=8.0 B=8.1 B=8.2
N=2 | N=2 | N=2 N=2 | N=2
0° 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000
10° 1. 000 1. 001 0. 995 0.997 0.991 1.007
20° 0. 990 1. 001 . 996 . 992 . 986 0. 999
30° . 976 0. 996 1. 006 | .986 1.005 . 996
5 o 1.023 966 1. 000 1. 005
1.026 945 0.976 0. 987
0. 983 905 . 949 . 985
. 886 845 . 905 921
.768 788 . 883 908
708 680 . 749 795
737 601 . 669 781
783 179 . 563 652
754 401 . 538 635
618 295 . 356 424
. 412 282 .391 513
282 155 . 193 241
R 205 . 268 400
390 205 . 285 439
. 541 047 . 083 088
. 600 182 309 | .415
\
TasLe 4. Normalized phase of O(¢>)
A=2.0| A=20 | A=20| A=2.0 | A=80 | A=8.0 | A=8.0
é B=20| B=21| B=22| B=23| B=8.0 | B=8.1 | B=8.2
N=2 | N=2 | N=2 N=2 | N=2
0° 0° 0° 0° 0° 0° 0° 0° ‘

10° 1.6 8.6 12.5 7.8 7.9 7.0 6.2
20° 6.2 13.5 19.9 15.7 27.5 28.5 26. 6
30° 13.9 20. 3 30.8 27.7 60.7 62.8 63.0
40° 24.4 32.4 43.7 42.1 105. 8 108. 1 109. 6
50° 37.9 46,1 57.6 57.6 161. 8 165.7 168. 1
60° 54.6 62.9 72.8 74.2 226. 1 231.8 237.1
70° 74.4 83.4 91.2 93.3 298. 9 307.0 310.9
80° 96. 8 107.5 115.7 117.9 374.9 384.7 395.7
90° 120. 1 133. 6 146. 8 150. 6 459. 6 467.1 478.1
100° 142. 4 158. 4 176. 9 178.3 543.8 556. 8 572.5
110° 162. 6 170.2 200. 0 213.7 632. 3 647.5 657.6
120° 181. 6 199.1 217. 5 233.8 718.1 735.8 757.8
130° 202.0 209. 5 234.3 250. 0 804.0 824.5 841.1
140° 231.2 245.9 258.0 270.0 894.2 917.1 945.0
150° 278. 4 297.0 309. 1 302.3 988. 4 1001.7 |.1024.3
160° 317.8 341.1 357.3 390.0 1089. 1 1100. 3 1130.8
170° 334.6 | 3585 374.3 408. 8 1168. 1 1204. 6 1206.1
180° 339.1 | 364.0 378. 4 [ 412.8 1249.3 1277.5 1312.9

5. Graphical Presentation of Results

The salient features of the radiation patterns are
best illustrated by graphical presentation. In figure
|P(¢)|, using the exact formula, is plotted for
A=20, and B=20, 2.1, 2.2, 2.3 with N=2.0.
This shows clearly the effect of varying the thickness
of the dielectrie film. The corresponding results for
|P(¢)|, using the approximate formula, are shown in
figure 4b. The two sets of patterns are identical in
appearance. The most significant feature is that
the dielectric film enhances the field to the rear.
The pattern |Q(¢)| for the corrugated cylinder for
the same values of A, B, and NN is shown in figure 4c.
There is a general similarity between these and the
corresponding patterns for the uncorrugated dielec-
tric film (i. e., fig. 4a or 4b). It appears that the
corrugations further enhance the field in the back-
ward direction.

The effect of varying N, the refractive index of
the dielectric coating, is shown in figures 5a and 5b
where |P(¢)] is plotted for A=2.0, B=2.2, and N=
1.5 and 2.0. As would be expected, the distortion
of the pattern for N=1.5 from the uncoated case
(i. e., A=B=2.0) is less than for the higher value
of N. The corresponding patterns for @Q(¢) and
N=1.5 also have less distortion than that for N=
2.0, which was plotted in figure 4c. This is readily
evident from the formula

N*(B—A)

G=-- tan N(B—A)~ 3

+ .-

which to a first order in (B—A) is independent of
N, but tends to increase with N when B—A is not
small.

The patterns, P(¢), for a slightly larger cylinder,
(A=3.0), are shown in figures 6a and 6b using the
exact and approximation formulas, respectively.
The rear lobes are now becoming "smaller. The
enhancement, resulting from the presence of the
coating of the field in the backward direction, is
again quite significant.

Flmllv, the pattern [P (¢)| for the large dielectric-
coated cylinder is shown in figure 7a for several
thicknesses of the coating. The corresponding
pattern |@(¢)| for the corrugated cylinder is shown
m figure 7b. It is strikingly noted here that the
pattern for the corrugated cylinder has a pro-
nounced lobe structure. This is evidence that sur-
face waves are being guided more efficiently, due
to the presence of the corrugations. This view-
point is further substantiated when eq (19) is trans-
formed to a Watson-Bremmer type® residue series.
The individual terms of this mode series are then
in the form of peripheral surface waves. The
dominant mode is of the type studied by Elliott
(see footnote 3).

6. Conclusion

It is seen that considerable simplification can be
made to the general formula for radiation from a
dielectric-coated, axially slotted cylinder. This new
approximate formula, which is valid for thin coat-
ings, is only slightly more complicated than its
counterpart for an uncoated cylinder. It is shown
that a direct approach, using approximate boundary
conditions, is not generally valid for curved dielectric-
clad surfaces due to the azimuthal flow of energy
within the dielectric. On the other hand, the form-
ulas derived using the surface impedance concept
are applicable to a corrugated surface, and the
patterns calculated therefrom have similar charac-
teristics to their dielectric-clad counterpart. Gen-
erally speaking, for a specified normal surface
impedance, the corrugated cylinder modifies the pat-
tern to a greater extent than the dielectrie-clad
cylinder.

$ H. Bremmer, Terrestrial radio waves (Elsevier Publishing Company, New
York, N. Y., 1949).
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180°

210°

A=2.0,B=20
s A=20,B=2.
— -— A=20,B=22
———— A=20,B-23

330°

240° 21 0

Ficure 4a. Pattern |P(¢)| (exact).

150°

180°

210°

330*

— -— A=20,B=22
— ———A=20,8-2.3

!
240° 2 30°
Ficure 4b.  Pattern |P(¢)| (approximate).
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Ficure 4c.  Pattern |Q ().
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Ficure ba. Pattern |P(¢)| (exact).
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Frcure 5b.  Pattern |P(¢)| (approximate).
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F1cure 6a. Pattern |P(¢)! (exact).
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Ficure 6b. Pattern |P(¢)| (approximate).
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Ficure 7a. Pattern |P(¢)| (approvimate).
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Frcure 7b.  Pattern |Q(¢)|.

Bovrper, Coro., May 9, 1957.
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