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Pattern of a Flush-Mounted Microwave Antenna

James R. Wait

The numerical results for the far zone radiation from an axial slot on a circular cylinder

of perfect conduetivity and infinite length are discussed.
:an be expressed in a universal form that is suitable for pattern

large diameter cylinders

calculations for arrays of slots on a gently curved surface.
related diffraction problem considered by Fock.

1. Introduction

The radiation from flush-mounted microwave
antennas has aroused considerable interest in recent
vears [1—6]." From a theoretical standpoint the
problem would seem to be simple enough ; the surface
on which the antenna is mounted is considered to be
adequately represented by a sphere or cylinder
whose radius of curvature 1s matched to that of the
local curvature of the actual surface. Unfortunately,
the formal solution of the problem, in terms of the
classical harmonic series involving integral or half-
integral order Bessel functions, always converges
very poorly when the radius of curvature is large
compared to the wavelength. There are two well-
known alternative representations [6, 7], however,
which can be used to advantage in certain cases.
In the illuminated region of the antenna, geometrical
optics is most satisfactory, while deep in the shadow
the rigorous harmonic series can be converted into
the rapidly converging residue series.

The calculation of the radiation field of a flush-
mounted antenna in the tangent plane (the classical
light-shadow boundary) is not readily treated by
either geometrical optics or the residue series.  In the
former case the field is indeterminant, and in the
latter case the convergence is extremely poor and
would actually diverge in the illuminated region.
Despite the fact that the harmonic series is cumber-
some, 1t 1s valid in this transition zone between the
luminated and shadow regions of space. There-
fore, it is desirable to attempt to adapt the harmonic-
series representation to surfaces of large radius of
curvature. This is the purpose of the present paper.

2. Theoretical Basis

A thin axial slot, cut on a circular cylinder of
infinite length and perfect conductivity is con-
sidered because it gives rise to a plane-polarized
radiation field. The cylinder is taken to be of radius
a and coaxial with a cylindrical coordinate system
(p,9,2). The slot that extends from z; to z, at $=0,
has a voltage distribution V' (z) throughout its
length. The radiation pattern is best expressed in
terms of spherical coordinates (r,¢,0) where 6=0

! Figures in brackets indicate thelliterature references at the end of this paper.
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It is shown that the results for

The work is compared with a

corresponds to the axis of the cylinder. It has been
shown [9] that the electric field, which has only a ¢
component, is given by

—Mr
E, =£ SO)M (z,9), (1)
where
5(0 k ‘%1]1 0 " (Z) ,ikz cos 9 2, (2)
e €,6M% cos me .
M(z,¢)= = z_j “How (3)

‘77r/f10<‘ space wavelength, e=1,¢,=
‘) (m #()), .m(l HZ' (x) 1s the derivative “of the ll(m]wl
function appmplmt(- for a time factor exp (iwt).
Equation (1) is valid for krsin 1.

The function S(6) is the space factor of the slot,
or an array of collinear slots if they were cut in an
infinite plane conducting sheet.  The function
M (z,¢) is called the “cylinder space factor” as it
fully describes the effect of the finite diameter of
the cylinder on the radiation pattern in both the
0 and ¢ directions. For purposes of computation,
it 1s written

Mz,¢) = |M(z,9)|ete. (4)
The phase function a(z,¢) is a rapidly varying func-
tion of ¢ for the larger z values. For this reason, it
is desirable to express « in the illuminated region
(0<|¢p|<7w/2) as a geometrical-optical term plus a
correction factor A(z,¢), as follows [9]

a(z,¢) =a(@,0) —z(1—cos ¢) +A(x,9).

In the shadow region (7/2<|¢|< x), it is desirable to
express « as a physical-optical term plus a correction,
which is also designated A(z,9), in the following
manner.

a(z,)=a(x,r/2)+ (r/2—¢)x+Alz,d).

The amplitude |[M(z,¢)| and the phase correction
A(x,¢) of the eylinder space factor are shown plotted
in figures 1 and 2 for ¢ from 0 to 180° for z=10, 12,
15,18, and 21. To prevent troublesome overlapping,
the ordinates are shifted for each curve by a constant
amount.

(5a)

(5b)
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Frecure 1. Amplitude of cylinder space factor for marrow

azxial slot.

N. B. vertical scale is shifted for each curve.

[ 2 40 60* L 100* e 140 160° 180*

Azimuth Angle ¢

Ficure 2. Phase of cylinder space factor for narrow axial slot.

N. B. vertical scale is shifted for each curve.

For [¢|<90° but not near 90°, the value of the
space factor is quite well approximated by the

geometrical-optics approximation. That is
Ar,9) =0
and
M (e,8)| =1

Deep in the shadow, that is |¢|>90° but not near
90°, M (x,¢) has the form of a damped standing wave,
and can be characterized by a function of the form

L (3T
A(¢_7T/2>e_iz(¢"7r/2)_{_A(Sﬂ_/2_¢)e—lz(?_¢)

where

A(B) =exp [—ir(ra/N)* B]

with 7=0.808 exp(—in/3). This exponential form
for A(¢) is the first term of a rather complicated
residue series [7]. It is only valid for ka>1. The
higher order terms (higher modes) are also parametric
in (wa/\)¥B, where B is some angular distance. It
is, therefore, logical to expect M (z,4) to be parametric
in (z/2)%(¢p—m/2) and (x/2)*[(37/2)—¢]. In fact, if
the ripples are ignored, the function M (z,¢) should
be a function only of (2/2)**(¢—m/2). The dotted
curves in figures 1 and 2 are believed to be the
appropriate form of M(z,¢) when the standing-wave
effect, due to the interfering traveling wave from the
other side of the cylinder, is removed. These
“smoothed” curves are then replotted as a function
of X, where X=(2/2)"(¢—=/2). The results are
shown in figure 3a where both the values of amplitude
IM(X)| and the phase correction A(X) for z=10,
12, 15, 18 and 21 fall on the same set of curves for
the range of X indicated. The amplitude is also
shown in figure 3b, being plotted on a log scale.

Having the space factor for the cylinder plotted
in this universal form suggests that one may ex-
trapolate the results to larger values of z. This
concept, embodied in presenting the results in terms
of a parameter X, is not unrelated to the notion of
angular distance that has been successfully employed
in the representation of field strengths of a trans-
mitter at large ranges over a spherical earth [10].
In the latter instance, the angular distance is de-
fined as the angle subtended at the center of the
earth between the horizons of transmitting and
receiving antennas. In the present situation, the
angular distance is ¢—7/2 since the source antenna
is on the cylinder and the observer is at infinity.

While the present problem is concerned directly
with the radiation of an axial slot on a circular eylin-
der, there 1s a direct application of the results to the
reciprocal case where a plane wave is incident on the
cylinder (the £ vector is to be perpendicular to the
cylinder axis). Then it is possible to regard M (x, 6)
as being proportional to the surface current execited
on the cylinder. 1In other words, the axial slot can
be regarded as a receiving antenna and the source is
taken to be at infinity.

In view of the reciprocal nature of the problem, it
is desirable to compare the present results with those
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of Fock [11] for the currents excited on a curved sur-
face by an incident plane wave. Fock first considers
the diffraction of plane wave by a paraboloid and, in
particular, focuses his attention on the tangential
magnetic field in the penumbral region (near the
boundary of light and shadow). Then, after postu-
lating that the surface currents are only dependent
on the local radius of curvature, be obtains a repre-
sentation for the current distribution that is only de-
pendent on the parameter [/d where [ is the distance
from the light-shadow boundary and d is the width
of the penumbral region. Fock then believes that
his results are reasonably valid for any shaped bodies
so long as the radius of curvature is always very large
compared to the wavelength. As a crucial test of
Fock’s approximate formula, his results are plotted in
figure 3a along with the cylinder computed data. The
agreement is very good. There appears to be a slight
discrepancy for larger positive X" values which is not
entirely unexpected because some of Fock’s restric-
tions are becoming violated. Nevertheless, consid-
erable justification is given to the validity of the
extrapolation of the cylinder curves to larger values
of x.

3. An Application

An interesting application of the foregoing theory
is the calculation of the pattern of an end-fire array,
of slots on a gently curved surface. For example
consider the array of 2N-1 parallel and axial slots
on a cylindrical surface of radius @ indicated in figure
4. The angle @ defines the direction of the observer

AR AT i mie

2N+
slot elements

(PLAN VIEW)

(END VIEW)

Ficure 4. Schematic diagram of end-fire array of slots on a
curved conducting surface.



with respect to the normal at 0, the center of the
array. The array and the observer are taken to be
in the principal plane (i. e., the plane of the paper).
s is the distance from 0, measured along the cylinder
surface, to P, the location of any one of the elements.
The field due to the source at £ is then proportional

to
e™K () A(s)

where K(s) is the relative strength of the element, ¥
is the projection of s on the ray from 0 to the observer
and A(s) 1s the correction factor to geometrical optics.
In terms of the function M, A(s) is given by

A(s)=M(X) for X=0, (6a)
X
~ M(X)e 3 for X=0, (6b)

where

v o))

The factor y is given by y=c¢ sin [®— (s/2a)] when ¢
is the chord length OP and because

C:|:2a2<1—00%§>]%zs <1—-—8—2~>; (7a)
' a) | T 24a?

it follows that
s? . s ~
Y2 <l—m> sin (@—%) (7b)

subject to s< < a.
Remembering that there are 2N-+1 elements
spaced at intervals As, it is seen that

2N XAs=L

where L is the length of the array. The source is
now written

()=

where T' is the propagation constant of the exciting
wave along the array. For the present purpose

I'=-tmk,

where m is a constant real number.
The total field of the array is now proportional to

N
Z 6ikye—lkmsA(s>
n=—N
where s=n-As with n=—N, —N+1, . .. —1, 0,
1,2 ... N—1, N. Introducing dimensionless pa-
rameters, defined by

AS=FkAs and S=nAS

it follows that the pattern 7'(®) of the array is given
by

N
T(@)= 35 eUO-mIA), (S2)
n=—N

where
S? . S
Y(Lg) = Ag <1 s W) S1n <(b—.r/€(l) (8b)

(G I

When ka tends to infinity such that the surface is
effectively flat, the pattern becomes

and

N
T@)=Ty@)= 3 ¢T®,  (on)

n=—N
where Y (S)=S sin ® and since S=n-AS,

I'—e
1—e%

—i.\'K( i(21\'+1)K)

Ty (@)=2 (9b)

where K=AS[sin ®—m)].

According to the analysis of Hansen and Wood-
vard [12], the maximum gain in the end-fire direction
(. e., ®=90°) is obtained when m=~(N-}+2)/N.
Then, taking the electrical spacing between the
elements as 45° or AS=m/4, the array has 65 ele-
ments, N=32 and the total length of the array is 8
wavelengths. The pattern 7(®) in this case is only
defined for the region —90°<®<90°. The main
lobe and the first side lobe are shown plotted in
figure 5 normalized such that the maximum field is
0 db. Using the same values of N and AS, the cor-
responding pattern 7'(®) is plotted for ka=200.
The main lobe is seen to be somewhat changed in

=30 —
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Ficure 5. Paltern of end-fire array of slots on a curved surface.

...... ka=;
ber of elements=65.

ka=200; — — — ka=200, A(X)=1; array length=8\; num-
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form, particularly in the directions near ®=90°
which is the tangent plane of the center of the array.
The decibel level of the field in the diffraction zone
(®>90°) is seen to decrease linearly with angle.
There are no lobes formed in this region. It is of
interest to know how the curvature of the array
itself would modify the pattern. Therefore, for
sake of comparison, the pattern 7'(®) of the end-
fire array of isolated elements on a circular are
(ka=200) is also plotted in figure 5. The working
formula here is identical to equation (8a) with
A(X) being replaced by 1 because diffraction effects
are no longer present. The pattern is almost identi-
cal to that for an end-fire array where elements are
on a straight line. TLobes, in this case, are formed
on both sides of the main beam although they are
not quite symmetrical about it.

The pattern 7'(®) is also computed for ka=100,
and is shown plotted in figure 6 along with the curve
for ka=  and the curved array of isolated elements.

It would seem that an end-fire array of slots on a
curved surface has some rather interesting properties.
The main effects of the non-flatness of the surface is
to tilt the maximum of the main beam up slightly,
and to extend the total width of the main beam into
the shadow region. There is no evidence of lobes
on this side of the beam, although at large angles
(® approaching 180°), there is the possibility that the
back lobe from the end-fire array could creep around
the surface in the other direction and form lobes.
This effect from a practical standpoint, however, is
completely insignificant for ka>>100.
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Frcure 6.  Pattern of end-fire array of slots on a curved surface.

...... ka=co; ka=100; — — — ka=100, A (X)=1; array length=8\; num-

ber of elements=65.

4. Concluding Remarks

It is seen that the radiation pattern of a flush-
mounted antenna is influenced, to a considerable
extent, by the radius of curvature of the surface on
which it 1s mounted. In most cases, the main beam
is tilted upward away from the surface, although the
total width of the beam can be broadened into the
shadow. Similar phenomena had been observed in
the calculated patterns of slots on a conducting half-
plane [13]. It would appear that any attempt to
reduce the side lobes of an end-fire array by using a
diffracting edge or surface will lead to a broadening
of the main beam. It is also quite apparent that
the resultant pattern of a flush mounted antenna is
not simply obtained by multiplying the free space
pattern by the pattern of a single slot on the curved
surface. Such a process would produce a pattern
with lobes in the diffraction or shadow region which
do not exist in reality for a nonclosed surface.
Furthermore, this “multiplication” technique would
not predict the broadening of the beam in the tangent
plane.

The author thanks William Briggs for his assistance
in the calculation of the patterns in figures 5 and 6.
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