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An Approximate Expression for Gamma-Ray Degradation
Spectra

U. Fano and Ann T. Nelms

The equation for gamma-ray degradation spectra is reduced to a form suitable for a

simple approximation.

The approximation is valid in a wavelength range between two

Compton wavelengths larger than the wavelength of the source and the region where photo-

electric absorption becomes very intense; this range is wide for low 7
are provided for application to various materials and source energies.

materials. Input data
The results of sample

calculations are shown and compared with those obtained by standard numerical calculation.

In the course of gamma-ray penetration, the spec-
trum of multiply scattered, degraded, secondaries
approaches a shape that depends only on the prop-
erties of the medium." This limiting spectrum is
that which arises when a gamma-ray source is
distributed uniformly throughout a medium and the
only relevant factor is the accumulation at each point
of secondaries of various energies.  When degrada-
tion spectra were first calculated numerically,” M. H.
Johnson pointed out, in a private discussion, that
the main features of the degradation spectrum at low
energies are determined by very simple arguments.
A formalism of degradation theory, starting from
this remark and from the corresponding neutron
theory,® was developed later.t But this theory was
not applied i actual gamma-ray calculations,
because these were being carried out routinely by
direct numerical computation.” Lately, the exten-
sion of calculations to degraded photon energies = 2()
kev hasmade it desirable to try to evaluate the simple
approximate analytical formulas and compare the
results with those obtained by numerical integration
of the basic equations. These low photon energies
are of interest, e. g., in LiH. This paper contains a
description of the procedure, beginning with the
qualitative analysis, together with a discussion of the
results of the comparison.

If successive steps of degradation by Compton

scattering, characterized by wavelength shifts
£=X—X\’, have approximately equal statistical dis-

tribution (see footnote 4) with a mean (&), the prob-
ability for each photon to attain a wavelength be-
tween X and XA\ at the end of one of the steps of
degradation is AN/(§).° If the photon does “land”
in this interval, it will “spend” there a mean free
path 1/u..(N), where ... is the probability of
scattering per unit pathlength and coincides with the
total ,u()\) when absorption is disregarded. For a
source strength oi § photons per unit volume and

L 1See, e. g., U, Fano, Nucleonics 11, Nos. 8 and 9, 55 (1953).

2 P. R. Karr and J. C. Lamkin, Phys. Rev. 76, 1843 (1949).
- 3( See, e. g., R. Marshak, Rev. Mod. Phys. 19, 185 (1947), and in particular,

. Placzek, Phys. Rev. 69, 423 (1946).

7 U. Fano, Phys. Rev. 92, 328 (1953).

5C (Llcul ations of ponetmuon by the moment method, a: given by H. Goldstein
and J. E. Wilkins, Jr.,, NYO Report 3075 (1954), mcludv under the name of
““zero-th moment”’, the spectrum discussed here.

6 This problem is similar to the determination of the probability that a pedes-
trian will step on a line drawn across a sidewalk. The probability equals the
length of the pedestrian’s foot divided by his mean step length.
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unit time, we thus expect at each point a flux of
photons in the assigned wavelength range

T(N)AN=S[1/u(N)](AN(E)) (1)

per unit area and per unit time. This approximate
spectral distribution is expressed in the scale of
waveleneths because it is in this scale that the
statistical distribution of successive steps of degrada-
tion is more nearly a constant.

Equation (1) is subject to three main limitations:
(a) Tt does not hold at photon energies = 500 kev,
where the distribution of degradation steps varies
rapidly from slvp to step; (1)) it represents the
spectrum for a “steady state” of degration, which
does not hold for photons that have been scattered
only a very few times because their spectral distri-
bution depends on the source wavelength (“tran-
sient”” effect) (see footnote 4); (¢) it does not take
into account outricht photon absorption, by photo-
electric effect. The effect of absorption can easily
be included in (1) as a progressive decay of intensity
as X increases, provided the probability of absorption
at each step is small.

Equation (1) is contained as a special case in the
solution of degradation problems by successive ap-
proximations (see footnote 4). In this solution the
degradation spectrum is resolved into steady state
(m(l transient components. A numerical cale ulation
of the first few terms of this solution for the X-ray
degradation would be possible, but it was found
more convenient to proceed as in the analogous
electron degradation problem.” One starts from an
integral form of the degradation equation, namely

"\ N2
J (zw(w‘)[#abs(ww f k(x’,x”)dk”:lrS @)
A A

which represents a sort of “balance sheet” of photons
in the entire wavelength range from X\, to \. The
source injects S photons per unit volume and unit

time at X.. Of thoso,J AN TN ) pans(N') are lost
A

0
through outright absorption, and the remainder by

Compton scattering with final wavelength N’ >\,

7 L. V. Spencer and U, Fano, Phys. Rev. 93, 1172 (1954).



where £\ \7)d\’ is the probability per unit path-
length that a photon of wavelength N be scattered
to a final wavelength between X/ and N\’/-+d\".
Note that the wavelengths are expressed in Compton
units of h/me=2.4>X10"1° cm.

Equation (2) should now be transformed so that
it displays an approximate solution similar to (1)
and so that the necessary corrections can be easily
estimated and then calculated either by successive
approximation or by numerical solution of the new
equation. To minimize the difficulties (a) and (b)
indicated above, we restrict our discussion to wave-
lengths A\_>\o+2; thus no photon from the source can
reach X in a single Compton scattering, because
EON N 7)=0 for N/ >N'+2.  As a first step we trans-
form the Compton scattering term in (2), by setting
N/=X+E and N’=X—n, and find

f "I f MO N AN
. )\0 A
:J&hzo~m{[ko—mx~n+9&

R
=f0 dEL dnI(N\—n)k(A\—n,A—n+§). (3)

Because the procedure that is being developed is
expected to apply when 7 and £ vary slowly with 7,
it is convenient to represent (3) in a form suited to
expansion in powers of 5. This is done by an
operator symbol based on the power expansion
formula

S =) =0 fO)+5 7 o f )

o}
+ .. =¢ Q). (4

The integrand on the right of (3) can therefore be
indicated in the form

o
IN—nk\—n, \—n+8=¢ MNEN N+E). (5)

We consider in particular the value ot (3) for 7 set
equal to zero in the exponent of (5). This value
18

0 J:ds EeO0, M5 =T(VM (V). (6)

The function M;(\) defined here is the first moment
of the wavelength shift and may be expressed as
tseart(£), which coincides with the denominator of (1).
We add the right side of (6) to the expression (3)
and subtract its left side from (3), utilize (5) and
combine the result with the degradation equation
(2), which becomes

TNM, )+ f NI ) e (V)

2 2
n f d f () I0E, M =S. ()
0 0

The solution (1) is thereby obtained if the integrals
in this equation can be disregarded by assuming
paps =0, and 70/ON=0 in the exponent.

Consider now the absorption, represented by the
first integral in (7), taking into account that /M,
should be effectively constant in the absence of
absorption. The absorption term is then written

J ;Xd"'#abs(%’)l O\')ZJ :d%’mm )M (N, (8)

showing that /M, is effectively reduced, as \ in-
creases, by a fraction

Mabs()\) A_)\
Mseatt(N) <£>
in every small interval AX. Notice that this fraction

has the dimensions of a pure number. This absorp-
tion effect, taken by itself, would cause IM; to

decay, as \ increases, according to exp I: = f: BN )dN ] .

BO‘) A= #abs()‘)A)\:

M, )

Accordingly we replace the spectral distribution
I(\) with a new unknown w(\)=~1 defined by the
expression

A
-] BN
- e J;" w(N).

IN=®

(10)

When this expression for I(\) is substituted in (7),
the source strength S drops out as a common factor.
In the first term we use the identity

N N
—f B(N)dN A —f B(\')d\"
e J =1—f AN'B(\)e Jro )
Ao

(11)
so that the second term from this expression may be
combined with the absorption term in (7). In the

second integral of (7) the term exp [—f;ﬂ()\’)d)\’]
may be factored out utilizing the operator formula

o 2 ’ ’ 2 ’ ’ 2
—msx —f B(N) dX —f BN ] BN
e JMo =@ YN e [ ]; (12)

Equation

(4

after factoring, (11) is applied again.
(7) becomes now

w M)+ :dmw)[ﬁ”’” " {w W)= [ e [“an
<M}+desfdn

7\)\+E;
M(\)

laeol ety
M, ()\)

( [t ] >

This equation is fully equivalent to the initial
eq (2), for A >N\+2. Its zero-order approximation
solution is w(N\)=1, obtained by disregarding all the

M=l (13)
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integrals. To obtain a better approximation, the
integrals may be evaluated by whatever procedure
appears expedient. We proceed here by expanding
into powers of the operator o/oX and of the rate of
absorption B, to first order only. The integral
over N\ yields no contribution to first order, because
of the factor B(N\) and because the factor contained
in the curly brackets vanishes in zero-th order.
Where the zero order approximation { } =0 is poor,
for N<I\+2, B(N') is very small for most materials.
The second integral is evaluated to first order by
writing

et D) fra[gom]

=— Ez ‘—'B()‘)] (14) : 'S, coMPTON UNITS (n/‘mcl)o e

Frcure 1. Graph of corrective parameters in eq 17.

and w(\)=1. Integration over & yields the first
order estimate of the second integral

1M, \) = 100,
“[ax Bm] 2 M,(\) (15)

where Mg()\):f. dg £k (NNFE) indicates the second

0
moment of the wavelength shitt & Thus we find

3

W) =l4g3 3 PN 33T - 19 | £
and §
S —[ieanax 0 1 M,y(N) 5
IN=31.° s [ IR ‘
lMg()\) =
—B(2) = 5 M()\) ] (17)

The function (1/2)M./M, was determined analyti- | oL
cally using the Klein-Nishina formula for Compton
scattering. A graphical differentiation was used to

obtain (b/b)\) (1 /2)M2/M1' These .data’. which are Ficure 2. The absorption exponent f)\ﬁ()\’)d)\’ for severa)
the same for all materials, are given in figure 1. 0

. terials.
The absorption exponent ﬁ;d)\’ﬁ()\’), where only e
photoelectric absorption is included in the tabulations
of B(\), is given for a few materials in figure 2.
The computation of B(\") utilized total attenuation S — { 1 ‘

coefficients from G. Grodstein® and the total 50 [(compton” # Thomson? <6> ]~

Compton cross section from the Klein-Nishina L

formula. The integration was carried out numeri-

cally. Figure 3 gives values of M;7'(N). The solid ol |

curve 1s a dimensionless plot of the quantity X 3

[(ucommn/umompson)(S)] ! which is independent of "§20 "; 1,
o

atomic number. For a particular material, the
nomograph on the left permits the conversion to
units of g/em?®. If the source yields S photons 30 =0
g lsec™, S/M;(N\) is in units em*sec ' (h/me) .

With the data from figures 1 to 3 the zero-th order a0 —

expression may be calculated, and the importance ERRSRERR R - BV S T R S R e
of the first order correction may be evaluated A COMPTONLUNITS i[h Znc)

§ G. W. Grodstein, NBS Circular 583 (1957). ~ Ficure 3. Speciral distribution of photon track length.
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Ficure 4. Degradation spectra for LiH and H,0.

_____, Approximation, eq (17); O,A, exact numerical integration.

readily. This has been done for two cases, namely
gamma rays with initial wavelength \=1 in LiH
and H,O, the source strength S being unity. The
results are the curves in figure 4. The points in the
figure show the results of direct numerical integration.
The agreement is well within the expected accuracy
of the approximation. The departures at increasing
wavelength reflect the increasing strength of photo-
absorption, which leads eventually to a breakdown
of the validity of the assumption that the absorption
changes little over a wavelength range (¢§)~1.

Of general interest is the absorption “cut-off”” of
the spectra. This point, which may be characterized

- o o A
by a parameter N, satisfying the relation f{)zﬁ()\’)

20— — ——
|
|
| |
E \ | | |
2 08— i —
= Az o, ‘
= [ an=i
(9] o
E
=
=)
> lo—— ] .
o |
=
a
=
S
(&)
n
< 5
\\
0 |
(o} 10 20 30 40 50
Z
Frcure 5. Absorption “‘cut-off”” of the spectral distribution.
dN'=1. 1t is the wavelength or energy at which

the absorption reduces sharply the spectral distribu-
tion. Figure 5 gives a curve of A\, versus the atomic
number Z. Again, the values for g(\’) take into
account only photoelectric absorption.

The authors thank L. V. Spencer and M. Berger
for many helpful discussions, and J. C. Lamkin, who
contributed the results of the direct numerical
integration.

WasaiNnaron, March 12, 1957,
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