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Estimation of the Frequencies of Thin Elastic Plates
With Free Edges

Tosio Kato,' Hiroshi Fujita,” Yoshimoto Nakata,” and Morris Newman

A variational method is proposed for calculating the frequencies of thin elastic plates
with free edges, with rigorous error estimates. As a numerical example, the fundamental
frequency of a square plate with the Poisson ratio 0.225 is calculated with a satisfactory
result, the possible relative error being less than 1/2000. Generalization to more complicated
boundary conditions is straightforward.

1. Introduction

1.1. The present paper is concerned with the study of the vibration of a thin elastic
plate with free edges. liet us consider a plate that occupies in its natural condition a plane
domain ) in the zy-plane bounded by a sufficiently regular contour €. It is known [1,2]?
that the problem of determining the frequencies of this plate may be reduced to the following
eigenvalue problem, denoted by (Pr.), for the differential system consisting of the differential
equation

o, O | OV ) .
Aw= 6’P+5'1/2> W= NW in 1), (1)
with the boundary conditions
QAW d O*w
“= Sy - C
on +a 'u)({.\' onot e on & 5
, o*w @
pAW+(1—pw) =0 on (,

on:

where p is an elastic constant, called Poisson’s ratio, such that 0=u<3 (the mathematical
theory applies for 0 £ u<1), and where s is the are length parameter of €' and o/0n, 0/0t repre-
sent respectively the derivatives in the directions of the outer normal vector n and the tangential
vector t to (' at the point under consideration. In the case of angular points on €, where the
direction of n varies discontinuously with a jump, w is subjected to an additional boundary
condition [1]: 0*w/ondt at a point I on ' tends to the same value as I approaches any one of
the angular points from either side.

The main object is to propose a variational method that enables us to caleulate approxi-
mate values of the eigenvalues with a rigorous estimate of the error; in other words, to calculate
upper and lower bounds for the eigenvalues. Such a method seems interesting and important
from the viewpoint of application, inasmuch as it appears, even for most elementary shapes of
(', almost impossible to obtain an explicit solution of (Pr.). On the other hand, usual approxi-
mating methods applied to (Pr.) seem to suffer from the lack of error estimation. For example,
the well-known method of Ritz is applicable and was actually applied to the case of a square
plate [2]. Although we know empirically that his method provides us with approximate
values whose accuracy is satisfactory in most cases dealt with in practice, it should be noted
that they are only known to be upper bounds for the quantities in question and nothing can
be said about the error bounds. See [10] for a comparative discussion of existing methods,
some of which furnish lower bounds.
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1.2.  Our method is based on the following theorem, proved in [3], concerning a self-
adjoint operator in a Hilbert space * of the type 7*7, which reads, in a form slichtly modified
for our later convenience,

TaroreMm 1.5 Let T be a closed linear operator with its domain dense in a Hilbert space
$ and its range in a second Hilbert space &' and let T* be the adjoint of T. Let o*<N<f*
(0=a<B) be an open interval containing at most one nondegenerate eigenvalue of the operator
T*T but no other points of its spectrum. If w and v are elements belonging to the domains of T
and T*, respectively, such that

lull %0, o]0,  (Tup)=(u,T*)20 3)
and
(n—a)(B—n) >¢ (4)
hold, where
_ @uy) 1Tl [T
"=l ol [w W] ™ )

then there exists certainly an eigenvalue N of the operator T*T in the interval (o?,8%) and the following
inequality is valid: ®7
L=V U, (6)

<) @)

In order to make this theorem applicable to (Pr.), it 1s required to construct the spaces
9O, 9" and define the operators 7,7* in such a manner that the eigenvalue problem 7*7Tw=\w
is equivalent to (Pr.) and the quantities in (5) are practically calculable, at least for the % and
» chosen. (Pr.) is nothing but the eigenvalue problem for a self-adjoint operator /7 (in a real
Hilbert space © of square integrable functions on 1), defined as

where

2

L:L(u,z:):< — B:—n>2, U=U(un)=

Huw=Aw 8)

for w subjected to the same boundary conditions as those of (Pr.), in addition to certain regu-
larity conditions making A%w well-defined. Therefore, our problem is to reduce this pre-
assigned operator /7 to the form

H—T*] 9)

with a suitable choice of £/, 7, and 7% Here, v and » may be called “trial functions,” or
ossibly “trial vector functions,” in estimating \’, a better choice of which will vield a better
. ) t=} .
estimate. Finally, o and g% are, loosely speaking, a rough upper bound of the next lower
eigenvalue to N\ and a rough lower bound of the next upper eigenvalue, respectively. Such
rough estimates will be obtained by other methods (for instance, the Ritz method for «%), or
occasionally by solving an appropriate auxiliary problem, as in the case for §° concerning a
square plate, treated later. The decomposition of 7 into the form 7*7 is carried out in
section 2 for a general shape of (. This is followed by some supplementary remarks on theorem
4 Concerning the theory of Hilbert space, we mostly follow the notations and terminology of Stone [4]. For operators between two Hilbert
spaces, see Murray [5].
5 An elementary proof of this theorem will be given elsewhere.

6 Any eigenvalue of 7* 7 is nonnegative, because (7* Tw,w)= || Tw|2Z(.

2 &2
7 n-;>0 and n+——>0 follow from (4).
B—n N=ct
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1 for improvement of the approximation. In section 3, confining ourselves to the case of the
square plate bounded by 2= +1, y= + 1, we illustrate in detail the method of actual calculation
along the lines mentioned above and give a numerical estimate of the smallest positive eigen-
value of (Pr.), taking p=0.225, with a relative error bound less than 1/1000. Section 4 is
devoted to concluding remarks, with a brief reference to other methods with the same object
that are applicable to (Pr.).

2. Decomposition of the Operator and Remarks on Theorem 1
¥ The first part of this section is devoted to decomposing 77, the differential operator of (Pr.)
including the boundary conditions, into the form 7*7 in the sense stated in the introduction,
namely, to constructing 7 and 7* so that H=T*T, 1. e., T*Tw=w, implies (Pr.). Strictly
speaking, the differential operators appearing here as well as in the sequel must be replaced by
their closed extensions with certain extended domains, or in other words, differentiations should
be interpreted in a certain generalized sense.  Nevertheless, detailed discussions of this situa-
tion will not be given, for they seem to be unnecessary for practical application, which is the
ultimate object.

2.1.  We begin with the following heuristic considerations.® Let 7" be a closed operator
from  into H” and 7* its adjoint. Then the eigenvalue problem 7*7Tw=—\w is equivalent, at
least under a suitable assumption on the spectrum of 7*7, to the variational problem
lul2=1,

|
el 1}

3

where 6 is the first variation. Thus, 7*7"is the “gradient operator” of the quadratic functional
| Tull> in the sense that 8 Tu|[*=2(7T*Tu,6u). On the other hand, as explained in textbooks
[1, 8], (Pr.) is derived from the variational problem

6J[u]=0, [ wrdedy=1,
L

o D

where J[u], which represents (apart from a constant factor) the elastic energyv of the plate, is
) t= l

expressed by
) 8 o*u O*u *u \? , {
J [u] an I:(Au) —2(1 Py O.rC]/) }] dxdy, (10)

that is, 77 is the gradient operator of JJ[u]. Accordingly, © being the same as that introduced
in defining 77, it is reasonable to adopt $” and 7 such that

| Tu||2=Jlu] (11)

holds. In fact, we proceed as follows. lLet L2(D;p) denote the real Hilbert space consisting
of functions integrable (in square) on 72 with norm defined by

|
Il

" li‘:pJ wdxdy,
D

where p is a positive constant.
In view of (11) and the fact that J[u] can be written as

J|u] J [;u (Au)*+(1 —p) {( 07/ ) <aa:)gq/))}:| dxdy, (12)

we define § by

O'=L*(D;u) X LA(D;1 —u) X L2(D;1—p) X L2(D;2—2u), (13)

8 Some general devices useful in such decomposition are proposed in [6].
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where X represents the Cartesian product of Hilbert spaces. It should be noticed that an
element » of §’ is a four-component vector function v:{vl,vz,vs,m} defined on 2. Now the
requirement J[u]= || Tu|]? is evidently fulfilled by the operator 7, defined by

’u O*u  O*u :
Tu—Tu(x,y)—{Au, oet o bxby} €D’ (14)

Elements % belonging to the domain D of 7" are subjected to certain regularity conditions, but
are otherwise arbitrary, i. e., free from any boundary conditions. Though these regularity
conditions are too complicated to be specified explicitly in elementary terminology, it will be

A
enough for our purposes to know that the class €' of functions %, such that w, ou/dz, ou/oy are
continuous and 0%/dz?, 0%u/dxdy, O*u/dy* are piecewise continuous on -, is contained in
A
D; namely, CCD.
T* is defined (together with its domain D*CH’) by the condition that

(Tw,w) = (u, T*v) (15)

be valid for any # €D, To determine the form of 7%, we note that
(@)= [ [ mewot 0= St 1 —) vt 20—s) s o faady. (16)

In reducing the right side of (16) to the form f w-T*p dxdy, we can resort to devices similar to
D

those usually employed in deriving the differential equation and the boundary conditions of
(Pr.) from the variational problem concerning J{u]. Before doing this, we introduce some
notations, some of which appeared in section 1.
Let
s=arc length parameter,
n=n(s)= (n,,n,)=unit outer normal vector to C,
t=t(s) = (I,,t,) =unit tangential vector to €' in the positive direction,

and note that

> o, 0 o > _
=" a’i‘ny o Y —OE-H” B (17)
and also
0 0 0 o 0 o)
o Mot hor oy ™oan ot =

Hereafter it is assumed that the components of n and ¢ are differentiable except at possible
angular points P, P,, . . .,P, with s=s.,8, . . .,s,. Also it is known that, for any suffi-
ciently regular functions #(z,y), G(x,y), the identities

OF dG
o Gdady—— LFSE dady+ fc F-Gn,ds
F aq (19)
fo) o]
oy Gty [ 73] | -G,

are true.

Provided the components of » are sufficiently regular that all procedures used below may be
justified, the expression for (7u,») in (16) becomes, by some small calculations that make use of
(18) and (19),
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0? o) 0? 0 0
(T, M—f [,uAUrHl #){ & a;f-i-? bxgi }:Id;rdy—fcu -Pd~+fca-;t st—}—fca%b Rds,

(20)
where

o, oDy vy vy Oy
O ) e 2 _
P=P(,9) =p32+(1 m{ax gy gy kgt e }

Q=0Q,s) =uv,+ (1 —w) {vn2+vsmi+2vmmn,},
R=R(v,s) = (1—p) { vt +-0sm,t,+vs(nst, +n,t5) } .

(21)

Furthermore, because at a point P with s=¢ we have

@) ~ (du(s)
ot p_ dS‘ s=0

du
dé—J;ﬁ Rd&,

we can rewrite the last term of (20) by partial integration, taking account of the fact that 'is
closed and that 2, as well as the components of z and ¢, is differentiable with respect to s except
at =gy, . . ., S, so that

and consequently

a Ly ud—[[}- ds—Zu(s,)Di, (22)

where D;=lim R—lim R, =1L7, 5 - )

88;10 8-8:—0

The substitution of (22) into (20) results in

D, | Oy , . O, iR >
(T~ DU,[;LA}\-HI—,U.){OQ;—{—a;’a—l—Z bxéy}}dm f u<P+‘ ‘)d s+ S8 Qs —>uts) .
(23)

This expression should be equal to (u,7%*). Because w and 0ou/on on C are arbitrary, we
immediately conclude that this is true if and only if » satisfies the boundary conditions

d
Q:(); (24)
DiIO, (7::1,2, .« e ,77/)-

Then 7™ is given by

0? zvz b va 0%,
ey Iy L _|_ .
= {01,02,1}3,04} }LAUI (1 ﬂ) { axay} (25)

Though an element » belonging to D* must obey certain regularity conditions besides the
boundary conditions (24), we will not discuss these in detail. Again it is sufficient to know

that any » with components belonging to 6‘ and satisfying the boundary conditions (24) is
contained in D*,

The construction given above shows that the operators 7" and 7* are certainly the desired
ones, but it may be worthwhile to verify directly the equality H=T*T, i. e., the equivalence
of the eigenvalue problem 7*7Tw=\w to (Pr.).
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Let w belong to the domain of 7#7. Then 7w belongs to ©* and consequently is subjected
to (24). But

oA o’ a
P(TU/) n £+(1—M>{OTZ)“I+ II+O‘£ZOU +b?bwyznr}

0Aw o*w
Mo +- [{bx(bﬁ ay bﬂ) } {bx

bAw 0 [ o*w , O*w
=t U™ M5 br’+6y>

9 [Oo*w
le+8:l‘/ <W> n_,,}]

a

by virtue of (17). Similarly, we obtain

02
2 =~ 2
nz+07 R

e}

Q(Tw>:qu+<1—u>{-§Z?

a? 3
=pAw+(1—p) %}

R(T’W)Z(l—u){ g lf/nz :+a ) ny y+ara n::t +n fz)}

a w

= Ui

Thus, w satisfies all boundary conditions of 7/ and therefore belongs to the domain of /7. Con-
versely, by a similar argument it 1s seen that any element in the domain of / belongs to the

domain of 7*7. Finally, we observe that
2 /2 2
7 (o ) 255y ()
0y° ordy Drby

T*Tw=uA(Aw)+(1—p) {aalz o w>+
=A%w,

as it should be.

2.2, The following remarks on theorem 1 include some devices that would be of use in
obtaining a good estimate, particularly in constructing a desirable pair » and ».

Remark 2.1. The estimates given by theorem 1 are sharp when ¢ is small.  But it is
known [3] that € can be written in an alternative form,

1 ( ' n 2>
== ——ul )
2\ HU\‘ HU\‘ Il

and e=0 occurs if, and only if,

Tl 1 ru

<Z,’i

Tu= H “ v and T*v=rluﬁnu.

ol ™
This implies that 7*7Tu=n"u, so that »*is equal to an exact eigenvalue N\ of 7*7 and u is the
corresponding exact eigenfunction w. Thus we may expect a good result when « and » approxi-
mate, apart from constant factors, w and 7w closely. This interpretation of % and » should be
taken into account, in particular when some knowledge concerning the behavior of w is given
in some way or other, for instance from physical considerations or experimental results. As
for precise discussions of the relations between %, », and w, reference is made to the paper by

Kato [3].
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Revark 2.2, If u and » are not completely preassigned but admit of some free parameters,
it would be intrinsically the best way to choose those parameters first to minimize { and then
maximize L. In practice, however, it appears sufficient as well as convenient for calculation to
determine them by minimizing €. A standard form for such adjustable trial functions is

— 1 a1 @ (
u=ouV+au®+ . . . F+au™,
(26)
=LV +Bw?@+ . . . +B0™,
where ™V 4@ . . 4 are fixed functions belonging to © and »® »®, . . 2™ are fixed vector
functions belonging to ©* and where aj,as, . . .,am, 81,8 . . .,B, are free parameters. If we

calculate the quantities in (5) with these » and », then |[u/]?, || 7%|* become quadratic forms in
{ad, [[o][%, || T#0]?* quadratic forms in {8}, and (7u,») a bilinear form in {a;} and {8:}. Thus €&
becomes an algebraic expression in those parameters whose minimum is desired. There is
little difficulty in the necessary computations, especially when we can resort to an automatic
computer, even if m and 7 in (26) are not very small.

Remark 2.3. Suppose that a closed subspace M of § reduces the operator H=T*T,
that is, let ZZwet for any w belonging to the intersection of M and the domain of /. Then we
can regard F as an operator in the Hilbert space I denoted by FHy,. It is known that eigen-
values and eigenvectors of Hgy, are also eigenvalues and eigenvectors of /7, so that we may speak
of an eigenvalue of /7 in M. If the eigenvalue N of /7 in question turns out to be an eigenvalue
of Hgy, we can derive an estimate for X\” from theorem 1 more conveniently by restricting 7" to
N, and 7% to a suitable closed subspace N* of ', with the properties

TEONROD)CM*, T*I*OD*)CIM. 27

This procedure is particularly advantageous when a degenerate eigenvalue of the /7 in question
is converted into a nondegenerate one of Hy by a suitable choice of I so that applica-
tion of theorem 1 becomes possible, or when the neighboring eigenvalues of Hyy, are more widely
separated than those of 77, thus permitting us to take smaller « and larger 8 so as to make the
estimate better. Moreover, though the smallest eigenvalue of 77 in our problem is equal to
zero, the associated eigenfunctions being of the type ax-+by-+e¢, we can sometimes find 9 such
that the eigenvalue N\, originally intermediate, becomes the smallest eigenvalue of FHgy, and
hence its upper bounds can be obtained by
U _[[EI,'H:>)\’ WEMND
R— ) ( ‘\)7 (28)

[l =

the so-called Rayleigh principle. This seems more convenient than the estimation by the right
inequality of (6), for it does not involve », an element of ©*, for which a good choice is not easy
because of the complication introduced by the boundary conditions. Therefore, we may
prefer Uy to U as an upper bound for such an eigenvalue.

Nontrivial ¢, M* as mentioned above are often obtained by considering the symmetry
properties of the operators H, T, and 7T* reflecting those of (', as we shall illustrate in the
succeeding section in the case of a square plate.

3. Vibration of a Square Plate

In this section the general results obtained so far are applied to the case of a square plate.
Let (' be the square with vertices (1,1), (—1, 1), (—1,—1), and (1,—1), which is the same as
that treated by Ritz [2]. Bounds will be calculated for the smallest positive eigenvalue of H=T*T
according to theorem 1 and the Remarks in section 2, 1. e., lower bounds by means of (6) and
upper bounds by means of (6) or (28).

175



3.1.  We begin with a preliminary consideration.  Let
Ttul=(1—) | (2, + ) dady. 29)

Let the self-adjoint operator H in § be the gradient operator of J[u]. Explicitly, any element
w in the domain of /7 is subjected to the boundary conditions

a;;‘; aa; =0, (e=41,—1<y<1)
(30)
g;" gy =0, (—1<a<l,y=:1),
and we observe that
Hw=(1—py) bb:f aa;” (31)

The eigenvalue problem /7 = \w is reduced, by separation of variables to the eigenvalue prob-
lem

di3:k4u’ (—<z<L1), 52
,u//(:{: l):u/”(:i: 1):0)

and a similar one in the variable y. Equation (32) is nothing but the eigenvalue problem treated
in the analysis of vibrations of a free bar of length 2, and is completely solved in textbooks
[7,8]. If we denote the eigenvalues by k, (n=0,1,2, . . .) and note that 0 is the unique degen-
erate one with eigenfunctions a-bx, we have

kOZkl:Oa 0<k2<k3<k4< c o ¢ g
where *
(33)
k,=2.3650204,  ky—3.9266023,
ky=15.4978039, k;=7.0685828,
The normalized eigenfunction u,=u,(x) associated with £} is given by
1 3 )
U():EJ ulzv/QI’
sosh k,-cos k,z-+c -cosh k,x
e len cos kflr+( 0s I?L( osh k,,g, G T (34)
veosh? k,+cos® I,
- . .
uﬂ:sm 1 /e, - SIN k,,1+j11171§c %mh ke for odd n>3.
vsinh? k,—sin? k, )
It should be noticed that u, is an even or odd function, according as n is even or odd.
The eigenvalues and eigenfunctions of /1 are given by
Xlﬂn: (1_“) (k‘r‘n_i_ki); /}I}?ﬂﬂ:u”l(x)un(y)$ (/’n'7n:0]1}2) LA ')' (35>
We note that ,,, (m, n=0,1,2.. . .) constitutes a complete orthonormal system of eigenfunctions

of the self-adjoint operator 71.

3.2. Comparing two quadratic functionals J{u] and Jul, or two operators I and T,
we can not only determine the constant 8 in theorem 1 in a rigorous fashion, but also the sym-

9 ky is obtained as a root of equation tan k=tanh k or tan k= —tanh k, according as n is odd or even.
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metry of the eigenfunction associated with the smallest positive eigenvalue. We note that
Jlu) < Jlu). (36)

From (36) it follows, by virtue of the properties of I stated above, that the spectrum of H
consists only of discrete eigenvalues, and also that, if we number all eigenvalues of /7 and /1 in
ascending order, counting any degenerate one repeatedly by its multiplicity, we have

AN Ay, 37)

where Ay and Ay are the Nth_eigenvalue of I and the Nth eigenvalue of 71, respectively [7].
Thus the eigenvalues (35) of H are the lower bounds of the corresponding eigenvalues of /|
and hence we can take 8 as

Bz mn‘(l_l") (l(.m+k;t)y (38)

if the eigenvalue N of /1 in question is the rth eigenvalue from below and X,,, is the (#+1)th
eigenvalue of 77.

We turn to the study of the symmetry properties of 77 and 77, i. e., of closed subspaces
specified by the symmetry properties of their elements, and to the reduction of each of these
operators. For the square plate under consideration, the boundary conditions of 71 follow
from (2) and the remark there and take the form

a aaz:f’Jr(z “)a rrrrr =({), (r=41, —1<y<1) ]
S| SAHenIa 0 =1, —1<e<,
%Z’?w%”’ =0 =21, —1<y<1), ¢ (39)
aaz;l)%—u %Z;U =0, y==x1, —1<z<1),
sioy=%  G=Ely==D. |

In the deduction of the last condition of (39), use is made of the fact that, for instance,

cill Gl n the side z=1 bzwﬁ__ i
ondy ooy O UORACTTL ot T ooy

on the side y=1,

and hence that the condition

. o*n . 02w d2w

i il = vans ———=0 at the vertex (1, 1).
lim Snot Im L means 250y 0 at the vertex (1, 1)
st s

Owing to the symmetry properties of (39) and those of the differential operator A% H is
reduced by the following subspaces:

M (0,0)=set of functions odd both in 2 and in 7,
M (o,e)=set of functions odd in z and even in 7,
M (e,0)=set of functions even in z and odd in y,
M (e,¢) =set of functions even both in z and in v,
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which are mutually orthogonal and whose direct sum is the whole space . We see immediately
that 7 is also reduced by each of these subspaces, so that the inequality (37) still remains valid,
if we regard H and 77 as operators in any of them. Let the eigenvalues of F/ in these subspaces
be denoted as

<N . ., in Nt(o,0),
o< <l . ., either in Mt(o,e) or in M(e,0),
Vo< n<wval. . ., in M(e,e)

the union of which is the total spectrum of /Z. On the other hand, the eigenfunction w,,, of H
with the eigenvalue X, belongs to M (0,0), M(0,e), N (e,0), or M(e,e), according as (m=odd,
n=odd), (m=odd,n=even), (m=even, n=odd), or (m=even, n=even).

Because the zero point set 9t of H (the eigenspace with the eigenvalue 0) consists of func-
tions of the type az—+by-+c, it follows that

M(0,0) LN, 3

M(o,e) " N={u; u=ax},

(40)
M(e,0)"N={u; u=dy},

M(e,e) " N={u; u=c},
and hence that

)\o>0, po=»,=0.

In consequence, the smallest positive eigenvalue of H is equal to min(\jum,). We can
determine the order relations between Xy, w, and », as follows. Because (40) means that g,
i1s degenerate neither in 9i(o,e) nor in Ni(e,0), and », 1s not degenerate in Ni(e,e), we note,
according to (37), that Xj2(=X21) and X, are lower bounds of w, and »,, respectively, and hence
we have, by means of (33) and (35),

%

M1

Me=Nai=(1—wki=(1—pn)xX31.28 . . . ,}
(41)

Ne=2(1— p)ki= (1 —p) X62.59. . . .

v

V1
On the other hand, the substitution of the trial function w=ay & M (0,0) into (28) yields
NS (1—‘#)><18. (42)

Combining (41) and (42), we conclude that the smallest positive eigenvalue of 77 is the smallest
eigenvalue Ny in N(0,0). Moreover, owing to (42) and the relations M=0, Ay=Au=(1—p) X
237.72 . . ., we obtain _ o

>\11<)\0<)\13:)\317 (43)

which shows that A, is the unique eigenvalue of 77 less than A, and hence )\, is not degenerate.
Also we have, by means of (37), N\;s<\;, which enables us to take as 8 in theorem 1, with respect
to N =X\o, any number such that

B (1—u)X237.72 . . . . (44)

Furthermore, we divide 9(0,0) into the following two mutually orthogonal subspaces
N and M,
M= {u; ucMo,0),  ulzy)=ulyw)},

M= {u; ucMo,0), ul@y)=—u@yz},

10 Evidently, the spectra of 9 (o, and those of £ (., are identical, and any eigenfunction of one of them is converted into an eigenfunction
of the other by permutation of 2 and .
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each of which is seen to reduce both of A and 1.

From (43) it follows that X\ is an eigenvalue of 7/ not in M’ but in M, because the smallest
eigenvalue of Hin M is Ay with eigenfunctions Const- (w,3— s, ), though this is at the same time
an eigenvalue of H in M with eigenfunctions Const-(w,;3-+y). In calculating bounds of X,
to which we confine ourselves hereafter, we may therefore restrict 7/ and 7" to M.

3.3 We go on to the construction of the trial elements ' w and » in theorem 1. Introducing
six elements v . . . u® of M, given by

uh = P,@)Py(y), u® =Py (&) Pa(y) + Pa() Pr (),
u®=Py(z)Ps(y), u® =Py (@) Ps(y)+ Ps(x) P, (y),

u®=Py@)Ps(y) +Ps@)Ps(y),  u®=P;@)P5(y),

where P; represents Legendre’s polynomial of degree 7 (z=1,3,5), we put, in accordance with
U= UV +oau®+ . .. Fogu® (45)
with free parameters a;,a, . . . @ to be determined later. This u evidently belongs to
IMOD, because it is a polynomial and surely satisfies the regularity conditions of ®.
The other element v= {,,2,,05,0,} is constructed as follows. We can easily verify that the
boundary conditions (24) of ©* now reduce to the following forms:

~

v, oty s - A
by TA—RG H2A =05 =0, (=1, —1<y<D),

o,

o,
Foy

+ (1 _I-") ay

+20-wI=0,  (—1<a<], y=21),
> (46)
“?‘l+(1*/~‘)]‘2:()7 (T:i]7 _1<y<])v

o+ (1—p)0;=0,  (—1<e<1, y==£1),
,=0, (x=+1, y==+1).

J

In view of the symmetry of 9, on the other hand, we can take as 9* the subspace com-
posed of elements » with the following properties of symmetry:

—/

vy, s, 4 are odd both in z and in vy,
v4 18 even both in z and in vy, (47)
0 (2,y) =0, (y.x), 0a(x,y) =03(y,2), 04(x,y) =04(y,2).

Then the relations (27) obviously hold.
A general element » satisfying the conditions (47), and whose components are polynomials
in 2,7 with the degrees shown below, is expressible as

V= { ’UI)UZ;Z’&@‘}} )

=y +ax(@y’ +2°y) + age®y’ +ay(ey’ +27y),

0= by + oy +bar®y -+ bsx’y? + by’ +biady, > (48)
v3=byxy + bsxy® + bax®y + bsx®y® + bixy® + by,
vi=cr (@Y7 e’y +ou(@ ). )

11 If we are contented with a rough estimate of A%, we can construct the trial elements more easily (see [9]).
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Moreover, for such a trial function » the boundary conditions (46) are equivalent to

vy | Ovy | SOV T
Ua_l—al +2“a_y_‘0) (CI?———l, 1<y<1>7
o0 +1,=0, (x=1, —1<y<1), (49)
0,=0, (x=y=1), J

where o=pu/(1—pu).

Substituting (48) into (49), putting z=1 and equating the coefficients of v, %°, ¥° to zero
or putting z=y=1, we obtain the conditions for » given by (48) to satisfy (49) and hence to
belong to ©*. The results are the following six equalities: '

N
o(a+3ay+5a,) + (b4 3b;+ 5b,) + (de;+4¢3) =0,
o(a,+a+ay) +<b1+b;+b;) =0,
a(ay+3a;) =+ (b>+3b3) + 8¢y =0,

- (50)
a(ay-+ay) =+ (b2 4-b3) =0,
olly +b, =0,

cl+202+03+2c4:0.J

By inspection, we find the following 8 independent families, (1), (2), . . . , (8), of
parameters satisfying the system (50) of 6 equations in 14 unknowns:

ay a=i, b=—o,

2) a,=1, by=b,= —o,

(3) bi——1, =1, o=l e—=—1{2,
4) a;=1, by=—o0

5 G=e=1l, G==—1,
(6) ay=1, bi=b;=—o,

(7) by=—1, by=1, =l Gyl

(8) e = il e i)

The absent members of each family are equal to 0.
In thig way, we have the following 8 elements v® = {0 o® o »F} (k=1,2, ... 8)
contained in M*~D*,

vO={zy, —oxy, —ozy, 0},
0@ ={ay' taly, —oley’+a’y), —oley'+aty), 0},
v@={0, —ay+aly, —aytay’, 1—@+y")/2},
(2P, —ox¥yp, —ar’y, 0},

{0, 0, 0, (1—2’)(A—y)},
vO={wy*+aly, —oly’+ay), —o(yi+ay), 0},
vD={0, —zy+aiy, —zytay’, 1—2a%?},

vO={0, 2(—ay’+a'y’), 2(—2y+a%y’). 1—@'+y)/2}.

12 The result of equating to zero the coefficients of y5 in the first and second conditions of (49) coincides and gives the fifth condition of (50).
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With these 8 elements as basis, we construct the trial function » in accordance with (26):
v=B"+Bp®+ . . . +B® (51)

with free parameters 8,8, . . . ,Bs.

Making use of the trial functions  and » given by (45) and (51) respectively, we get, after
the necessary integrations,

=

]!Tul]2= ¢ Agao=(1—p) D Ajay, (Au=A),

i,k=1

=
Il

=

[[ulP= 'k=lBilcaiak; (Bu=By),
8
T = — CuBiBr=1—p) 25 CiiBBr, (Cu=Cky),
8
”UH2=Z D uBiBr=(1—w) 2 DB, (Dix=Dhry),

=
Il

1 1

6 8
(Tuyu):(u:T*”)=§ g Epoifr=1—pu)>32] Ejxeups

with A%, By, Ch, Dy, Ei given by the tables.

Au
N 1 o B T -
S 1 2 3 4 5 6
1 \\ '
1 ' 8 16 8 16 16 8
2 ‘ 4000+ 312 96 11200+ 672 192 96
3 g’ﬁzgm 3600 496 2400+ 816 288
4 46480+ 3336 10080+ 336 240
22248 37206 | 1680 . 17520
E i1 °t 1 i1 °t 11
6 8400+ 2640
Bik
] . ‘ 1 } 2 ’ 3 ’ 4 5 6
B,‘ == 3 ]C
5 s | 8 | 4 | 8 | 8 | 4 o e
i 9 21 19 33 77 121




i 3|3 | 3 \ 38 |5 |5 |5 |7 | 7 |
‘ [ = | ‘ ' For other values
k 3 5 7 | 8 |5 7 | s | 7 | 8 | 8 i
| | | | | | C’1 =0.
i 178 | 256 | 348 | 256 | 512 ‘ 256 | 8704 4096 117664 ‘
Ca | 84|73 E 3 |5 |9 |9 |5 |3 |3 | 175
D;
< ‘ | | | %
N 4 | 5| 6 | 7 8 ‘
PN 1 | 2 3 ‘ ; ) ‘
\| | . \ | !,
| |
A 16 P O R T 32
| 15" 457 25" 217 63 757
1 - . I |
|
2 | - 368 64 8 1 496 512 256
; ST S V1 35 | 9457 9457 5257 |
!7 li | L ‘7 ) (S |
i 1 ‘ ‘ ‘ ‘
5 | | lag 16128 32 992 2528
% | 3. 1ws 45 13y 189 ‘ 525 \
| | . ,}4 | \ |
4 : 1 | 4. | o | & 32 32
| 1 9" T 2257 245
_ i ‘ * i \ .
— — = B . S !, 7E
. 512 o 256 1024
7 225 ‘ 75 315
] B — o N IO N
] 66 192 64
L° ; | 1617 539 1897
S I S I S | S
- | 119744 1088
‘ i 17325 175 '
| g | 63424
E ) 11025
7 i
‘ \
i 1 | 1 ‘ O I 2 | 2 | |
k 1‘ 5 i & | 7| 8 | For other values of 7 and £k,
| Ey.=0.
o 16 82 64 2 64 o ) |
i o3 ‘ 9 9 5| m
! I -
. . _ K I
Here ¢ and  are constants given by o=——, 7= -——-
= \I-M)

In the numerical computation we take p=0.225, the value used by Ritz. Then the quan-
tity 2¢* becomes an algebraic expression of the form

;A ’ ’ N2
262_1‘ A‘t_i_y Oy D) (22 Eyl (52)

“'Bxy'Dy " (' Br)y'Dy)
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where z, i are the column vectors with components {a,}, {8, respectively, #’, 3" are their
transposed vectors, and A, B, €, D, I are matrices with numerical elements.

In order to minimize ¢, we choose the following procedure. First we minimize the first
term on the right-hand side of (52). This gives rise to an eigenvalue problem of order 6, for
which we determine the lowest eigenvalue m (which is the minimum value in question) and
the associated eigenvector =xz;. Then we put z=uz; into (52); this converts (52) into a frac-
tional form of which the numerator and denominator are known quadratic forms in . We
minimize this expression; this is equivalent to solving another eigenvalue problem of order 8,
and we determine the lowest eigenvalue m’ and the associated eigenvector y=y,. In the next
step we should put y=y, into (52), converting (52) into a ratio of two quadratic forms in z,
and determine its minimum m’’. This procedure could be repeated indefinitely, and the
sequence m’, m’’, . . . is certainly nonincreasing. It is not clear whether these values con-
verge to the true minimum of 2¢.  But this is not important, for actually we need not obtain
this true minimum; it is sufficient for our purpose that a very small value of 2¢ is given by
some set of z and .

The actual computation was done by using SEAC, and it turned out that the value of
m/ was sufliciently small, so that further computation was not necessary. To avoid the uncon-
trollable error arising from the use of the machine, the components of x,,7, thus obtained have
been rounded off' to five significant figures, and the value of 2¢ for these arguments has been
calculated anew on a desk calculator. The final values are

a;= 3.6100 000, Bi= 2.0362 000,
a,=—0.2071 000, Bo=—1.1853 000,
az;=—0.0357 000, B;=—1.6269 000,
ay=0.0335 000, ;= 0.3121 000,
as;=—0.0012 000, B;=  0.5907 000,
as=—0.0017 000, Bs= 0.0112 000,

;= 0.0176 000,

Bs= 0.1233 000,

€= 0.009172, n= 3.6266247.

We can take a=0 and g=13.5 in (7) for {/ and L in conformity with (44). Thus we
obtain
=2 551538 I=l2 AU,
where the rounding-off errors are within 5>X107? by the most conservative estimates. Thus
12.4305< \y< 12.4555.
For the upper bound we can also use Ug, given by (28). This gives
Ur=12.454620,
which is somewhat sharper than V. In this way we arrive at the final result:
12.4306<N\g<12.4547. (53)
If we adopt N\g=12.4427, the average of upper and lower bounds, as the smallest positive
eigenvalue of /{="T*T, the relative error is less than 1/1000.

The corresponding value of the fundamental frequency of a thin elastic square plate
(x=0.225) with free edges is
/N Eh_. E b
l/:%—jﬁ? = 7:0.3420>< s 7)
243ry1—z Vo @ pa
with relative error less than 1/2000. Here 2a=edge length, 2h=thickness, p=density, and E=
Young’s modulus.
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A remark is necessary regarding the relation between the result of Ritz [2] and that of this
study. Ritz gives the estimate N\ < 12.43, and this appeared exceedingly sharp in view of the
results shown here (53). Ritz used products of eigenfunctions of free bars as trial functions
u@ . This suggested that these trial functions might lead to a sharper upper bound than the
one presented in this paper. Because the last figure in Ritz’ result is unreliable, the same
calculation was carried out for purposes of comparison by retaining more significant figures.
The result obtained gives only A< 12.488, a less sharp estimate than the one herein. This
seems to show that, as far as the fundamental frequency of a square plate is concerned, use of
polynomial trial functions is preferable to products of eigenfunctions of free bars.

4. Concluding Remarks

4.1. This method is also applicable to a plate whose edge is not wholly free but subjected
to conditions of a more general type. For instance, let us assume that C, the boundary of the
plate under consideration, consists of three arcs, Cy, €}, and C, and that the edge is free, sup-
ported, and clamped along (), ), and (;, respectively. Among all angular points on C, we
denote those on O by Py, Ps, . . ., P, with s=s;,85, . . .,s,. Then as in the case of the free plate
discussed above, the vibration of this plate is characterized by the eigenvalue problem of a

A . A . . . . A
self-adjoint operator H in $. Again, /1 is the gradient operator of a quadratic functional .J
[u], which is the restriction of .J[u] to the class of functions u» satisfying the boundary conditions

w=0 on O+ O,

ou , (54)
on =1 on (.

. A AA
Thus, following a course parallel to that of section 2, we can reduce /1 to 7*7 and make theorem
1 applicable. The results of this decomposition are as follows. £ and $’ being the same as

A A . . . )
before, Tw and T*» are formally identical with 7w and T*», respectively, and now any u be-
A
longing to the domain of 7"is subjected to the boundary conditions (54) and any » belonging to

A
the domain of 7™ is subjected to the boundary conditions

Q:O on 001 +017

Pt C(ZisR:O O (55)
Dl:O, (i:1,2, .. .,n),

where P, @, R, D; are those defined in section 2.

Applications of theorem 1 to the cases of such mixed boundary conditions will be treated
elsewhere.

In addition, if both C, and () are empty, i. e., the whole edge is clamped, another de-
composition seemingly more convenient is possible. Namely, by means of (19) and the con-
ditions u=0u/on=0 on C, we have

" o*u O*u VAT T ot
» ] : y‘/z dxdy=]n <W/> dxdy ZJDU W drdy,

and hence, in consideration of (10), we obtain

Juj= fD g
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O’ =L*D;1) we can decompose H into the desired form by using 7, 'and

Thus, taking ©
T such that

Tu=Au, (u:%zo on (),

D=7

4.2, Before his derivation of theorem 1, one of the authors gave also the [following
theorem 2 [10], which stands in a close connection with the former.

Tuarorem 2. Let H be a self-adjoint operator of a Hilbert Space $, and let (e,8) be an open
interval containing at most a nondegenerate eigenvalue of I but no other point of its spectrum.
Let w be any vector of the domain Dy of H with |wi|=1, and set n= (Hw,w), €= ||(IH—n)w|*=
|| Hw|>*—n? If €< (n—a) (B—n), then there is certainly an eigenvalue X' of H in (a,8) that satisfies
the inequalities

2 ‘7
I
B—n~=

= (56)

This theorem can be interpreted as follows. If we can construct a “trial function” w in
accordance with the conditions stated above, we would obtain an estimate of the eigenvalue
N in question by means of (56). Comparing theorem 1 with theorem 2, we note that, if a
good choice of w is easy for the operator /7 under consideration, theorem 2 may be preferable
inasmuch as it does not require the dec ()mposuu)n == and also it involves fewer quan-
tities to be calculated. However, this is not the case so far as (Pr.) is concerned, for the
difficulties in obtaining a suitable w seem greater than those in obtaining a suitable pair of «
and » (essentially ») because of the increased complication of the boundary conditions of Dy.
Furthermore, we have four components »;, »,, v3, vy at our disposal in constructing the trial
vector function » belonging to ©*, whereas we must make a single funetion w satisfy all boundary
conditions in order that w€ Dy For instance, let us consider the case of the square plate
dealt with in section 3 and look for a polynomial trial function w contained in D,09:. For
any w belonging to 9, the boundary conditions (39) of ©; reduce to

,,7+(2 o Mir«o, @=1, —1<y<1), |
o'w | O'w o
OIZ—}_MO 5=0, (=1 —1<<y <L) (57)
o*w

On the other hand, a general form of a polynomial of degree 2N—2, belonging to 9t is given by

N m+n=r
w:rz_z m‘g\il Am"(zzm——lym—1_}_1.27;71:1/2”;—1)' (58)
m'.ﬁn_

Substituting (58) into (57), putting =1 and equating the coeflicients of all powers of 7 to zero,
or putting z=y=1, we derive the conditions for w given by (58) to satisfy (57). This gives
rise to a system of 2N—3 equations in N?/4 unknowns, or a system of 2N—4 equations in
(N*—1)/4 unknowns, according as N is even or odd. The smallest value of N permitting
nontrivial solutions is seen to be 7. Therefore, in order to obtain a function of the type (58)
in DyOM, we have to qolvo at least a system of 10 equatlons n 12 unknowns, loavmg two
homogenecous parameters, i. e., essentially only 1 free parameter in a 12-degree polynomial.
4.3.  Weinstein and Aronszujn have developed an approximating method [11],"* with a
wide range of application, which also enables us to calculate upper and lower bounds of eigen-

14 See [11] for a standard list of references concerning this method.
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values of a certain kind of operators. Although the arguments used in establishing the con-
vergence of their method are theoretically interesting, it appears that, from the viewpoint of
practical applications, the essential parts of their method are the procedures leading from
rough bounds to those that improve as sharply as possible. In this sense their method seems
to have some similarity to the present one, and hence it will be worthwhile to reveal the mutual
relations between these two methods and to compare their merits. However, we reserve
this for some future occasion and remark here only that, with respect to lower bounds of
eigenvalues in the case of the square plate treated in section 3, the eigenvalue problem of the
operator F can play the role of the “auxiliary problem’ in their method, of which the complete
set of the exact eigenvalues and eigenvectors is required to be known.
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