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Estimation of the Frequencies of Thin Elastic Plates 
With Free Edges 

Tosio Kato,l Hiroshi Fujita/ Yoshimoto Nakata,2 and Morris Newma n 

A variational method is proposed for calculat ing t he frequencies of t hin elastic plate 
with free edges, with rigorous error e t imates. As a numerical example, t he fundamen tal 
frequency of a square plate with t he Poisson ratio 0.225 is calculated with a satisfactory 
r esul t , the possible relative error being less t han 1/2000. Generali zation to more complicated 
boundary condi t ions is straightforward. 

1. Introduction 

1.1. The present paper is concerned with the study of th e vibration of a t hin elastic 
plate with free edges. Let us consider a plate that occupies in its natural condition a plane 
domain D in the xy-plane bounded by a suffi ciently regular contour O. It is known [1,2) 3 
that the problem of determining the frequencies of this plate may be rcdu ced to the following 
eigenvalu e problem, deno ted by (Pr. ), for the differential system consisting of t he differential 
equation 

with t he boundar~- conditions 

in D, 

on 0,1 
on 0, J 

(1 ) 

(2) 

where J.I. is an elastic constant, called Poisson 's ratio, such that 0 ~ 11<! (t he mathematical 
theory applie for 0 ~ 11< 1), and where s is the arc length parameter of 0 and 'O / 'On, 'O /'Ot repre­
sent respectively the derivatives in the directions of the outer normal vec tor n and the tangential 
vector t to 0 at the point under consideration . In the case of angul ar points on 0, wh ere the 
direction of n varies discontinuously with a jump, W is su bj ected to an additional boundary 
condition [1): '02w/ 'On'Ot at a point P on 0 tends to the same value as P approaches anyone of 
the angular points from either side. 

The main object is to propose a variational method that enables us to calculate approxi­
mate values of the eigenvalues with a rigorous estimate of the error ; in other words, to calculate 
upper and lower bounds for the eigenvalues. Such a method seems interesting and important 
from the viewpoint of application, inasmuch as it appears, even for most elementary shape of 
0, almost impossible to obtain an explicit solution of (Pr. ). On the other hand, usual approxi­
mating m ethods applied to (Pr.) seem to suffer from the lack of error estimation. For example, 
the well-known method of Ritz is applicable and was actually applied to the case of a square 
plate [2). Although we know empirically that his m ethod provides us with approximate 
values whose accuracy is satisfactory in most cases dealt with in practice, it should be noted 
that t hey are only known to be upper bounds for the quantities in question and nothing can 
be said about the error bounds. See [10) for a comparative discussion of existing methods, 
some of which fmnish lower bounds. 

I University of 'l'okyo, American University, and National Bureau of Standards. 
, Department of Physics, University of Tokyo. 
3 Figures in brackets ind icate the literature references at tile end of tbis paper. 
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1.2. Our method is based on the following theorem, proved in [3], concerning a self­
adjoint operator in a Hilbert space 4 of the type T*T, which reads , in a form slightly modified 
for our later convenience, 

THEOREM 1.5 Let T be a closed linear operator with its domain dense in a Hilbert space 
,S) and its range in a second Hilbert space 's)' and let T* be the adjoint oj T. Let a 2<"A< {32 

(0 ~ a< (3) be an open interval containing at most one nondegenerate eigenvalue oj the operator 
T* T but no other points oj its spectrum. Ij u and v are elements belongin!J to the domains oj T 
and T* , respectively, such that 

and 

hold, where 

!l u ll ~O , 

(Tu,v) 
77= llull ·llvll' 

l! v ll ~O, (TU ,E) = (u , T*t) ~ 0 (3) 

(4) 

(5) 

then there exists certainly an eigenvalue A' oj the operator T * T in the interval (a2 ,(32) and the jollowing 
inequality is valid: 6.7 

where 

( E2 )2 
U= U(u,v) = 77+- . .,, - 0'. 

(6) 

(7) 

In order to make this theorem applicable to (Pr. ), it is required to construct the spaces 
,S), ,S)' and define the operators T ,T* in such a manner that the eigenvalue problem T*Tw = AW 
is equivalent to (Pr.) and the quantities in (5) are practically calculable, at least for the u and 
v chosen. (Pr. ) is nothing but the eigenvalue problem for a self-adjoint operator H (in a real 
Hilbert space ,S) of square integrable functions on D ), defined as 

( ) 

for W subjected to the same boundary conditions as those of (Pr. ), in addition to certain regu­
larity conditions making !:J.2W well-defined. Therefore, our problem is to reduce this pre­
assigned operator H to th e form 

H = T*T (9) 

with a suitable choice of ,S)', T , and T* . Here, u and v rna.,· be called" trial functions ," or 
possibl)T "trial vector functions," in estimating "' , a better cho ice of which will y ield a better 
estimate. Finally, a2 and {32 are, loosel~· speaking, a rough upper bound of the next lower 
eigenvalu e to ,,' and a rough lower bound of the next upper eigenvalu e, respectively. Suc h 
rough estimates will be obtained by other methods (for instance, the Ritz method for ( 2), or 
occasionally by solving an appropriate auxiliar·~· problem, as in the case for {32 concerning a 
square plate, treated later. The decomposition of H into the form T*T is carried out in 
section 2 for a general sh ape of C. This is followed b.,· some supplementary remarks on theorem 

• Concerning the theory of Hilbert space, we mostly fo llow the notations and termi nology of Stonc [4J. For operators betwcen two Hilbert 
spaces, see Murray [5J. 

I An elementary proof of this theorem will be given elsewhere. 
6Anyeigenvalue of T'Tisnonnegative, because ( T'Tw.w)=II Tw ll'~ II . 

€2 €2 
7 ~-->O and ~+->o follow from (4). 

f3 -~ ~-a 
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1 for improvement of the approximation. In section 3, confining ourselves to the case of the 
square plate bounded by X= ± 1, Y= ± 1, we illustrate in detail the method of actual calculation 
along the lines m entioned above and give a numerical estimate of the smalles t positive eigen­
value of (Pr.), taking J.L = 0 .225, with a relative error bound less than 1/1000. Section 4 is 
devoted to concluding r emarks, with a brief reference to oth er m ethods with the same obj ec t 
that are applicable to (Pr. ). 

2. Decomposition of the Operator and Remarks on Theorem 1 

r The fust part of this section is devoted to decomposing H , the differential operator of (Pr.) 
including the boundary conditions, into the form 1'*1' in the sense stated in the introduction, 
namely, to constructing l' and 1'* so that H = 1'*1', i. e., 1'*1'w= Aw, implies (Pr. ) . Strictly 
speaking, the differ ential operators appearing here as well as in the sequel must b e replaced by 
their closed extensions with certain extended domains, or in other words, differentiations should 
be interpreted in a certain generalized sense. Nevertheless, detailed discussions of this situa­
tion will not b e given, for th ey seem to be unnecessary for practical applica tion , w'hich is t he 
ultimate object . 

2.] . , ,ye b egin with the following heuristic considerations .8 L et T be a closed operator 
from .p into .pI n,nd 1'* its adjoint . Then the eigenvalue problem 1'*1'w= Aw is equivalent, at 
least under a sui table assumption on the spectrum of 1'*1', to the variational problem 

where 0 is the first variation. Thus, T *T is the "gradient operator" of the quadratic fun ctional 
II 1'u l! 2 in the sense that 011 Tu W= 2(1'*1'u,ou). On th e other hand , as explained in textbooks 
[1,8], (Pr. ) is derived from th e variational problem 

r u 2d.cdY = 1, 
~D 

oJ[u] = 0, 

where J[u], which r epresents (apart from a constant factor) th e clas tic CJ lergy of t he plate , is 
expressed by 

(10) 

that is, His Lhe gradient operator of J [u ]. Accordingly,.p being the sam e as t hat introduced 
in defining JJ, it is reasonable to adopt .pI and l' s uch that 

(11 ) 

holds. In fact , we proceed as follows. L et D(D;p) denote the r eal Hilbert space consisting 
of functions integrable (ill squar e) on D with norm defined by 

wbere p is a posi tive constan t. 
In view of (11 ) and th e fact that J [u ] can be written as 

(12) 

\\' 0 define S)' b.\" 

(13 ) 

, Some general devices 1lseful in such decomposition are proposed in [6]. 
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where X represents the Cartesian product of Hilbert spaces. It should be noticed that an 
element v of S)' is a fom-component vector function V={Vl,V2,V3,V4} defined on D . ow the 
requirement J[u] = II Tu l1 2 is evidently fulfilled by the operator T, defined by 

(14) 

Elements u belonging to the domain §) of T are subjected to certain regularity conditions, but 
are otherwise arbitrary, i . e., free from any boundary conditions. Though these regularity 
conditions are too complicated to be specified explicitly in elementary terminology, it will be 

.A. 
enough for om pmposes to lmow that the class 0 of functions u, such that u, ou/ox, ou/Uy are 
continuous and 02U/OX2, 02U/oxoy, 02U/oy2 are piecewise continuous on D+ 0, is contained in 

.A. 
1l; namely, 0(1). 

T* is defined (together with its domain 1l*CS)' ) by the condition that 

(Tu,v) = (u, T*v) (15) 

be valid for any u E1>. To determine the form of T*, we note that 

(16) 

In reducing the right side of (16) to the form fD u·T*v dxdy, we can resort to devices similar to 

those usually employed in deriving the differential equation and the boundary conditions of 
(Pr.) from the variational problem concerning J [u]. Before doing thi , we introduce some 
notations, some of which appeared in section 1. 

Let 
8=arc length parameter, 
n = n(8) = (n x ,ny )=unit outer normal vector to 0, 
t= t(8) = (lx,ty) = unit tangential vector to 0 in the positive direction, 

and note that 

(17) 

and also 

(18) 

Hereafter it is assumed that the components of nand t are differentiable except at possible 
angular points Pl,P2, .. . ,Pn with 8=81182, . . . ,8n. Also it is known that, for any suffi­
ciently regular functions F(x,y), G(x,y ), the identities 

fD~~ Gdxdy= - fDF ~~ dxdy+ 1 F.Gn Xd8, } 

l oF r oG i - Gdxdy=- F - dxdy+ F-Gnyds, 
DOY .,D oy C 

(19) 

are true. 
Provided the components of v are sufficiently regular that all procedmes used below may be 

justified, the expression for (Tu,v) in (16) becomes, by some small calculations that make use of 
(18) and (19), 
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where 

P P OVI { OV2 OV3 OV4 OV4 } } = (v,s)= J.Lon+ (l - J.L) ox nx+oy ny+ Ox ny+ oy nx 

Q= Q(v,s) = J.LVI + (l - J.L) { V2n;+V3n~+2v4nXny }, 

R = R(v,s) = (l - J.L) {V2nXtX+V3nyty+V4(nx ty+nvtX)} ' , 

(21) 

Furthermore, because at a point P with S= IT we have 

and consequently 

J' ou {du 
cot Rds= J cds Rds, 

we can rewrite the last term of (20) by partial integration, taking account of the fact that a is 
closed and that R, as well as the components of nand t, is differentiable with respect to s except 
at S=SI, .. 0' Sn, so that 

l ou i dR n " t Rds=- u -Z- ds-~u(si) Dt, 
C V C C S .=1 

(22) 

where Dt=lim R - lim R, (i= 1,2, .. . ,n). 
8--78,+0 8--78,-0 

The substitu tion of (22) into (20) results in 

This expression should be equal to (u, T*v). Because u and ou/on on a are arbitrary, we 
immediately conclude that this is true if and 0111y if v satisfies the boundary conditions 

d 
P + ds R = O, 

Q= O, 1 (24) 

(i= 1,2, . . . ,n). J 

(25) 

Though an element v belonging to :;0* must obey certain regularity conditions besides the 
boundary conditions (24), we will not discuss these in detail . Again it is sufficient to know 

" that any v with components belonging to a and satisfying the boundary conditions (24) is 
contained in :;0*. 

The construction given above shows that the operators T and T * are certainly the desired 
ones, but it may be worthwhile to verify directly the equality H = T *T , i . e., the equivalence 
of the eigenvalue problem T*Tw = Xw to (Pr. ). 
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Let w belong to the domain of T*T. Then Tw belongs to ~* and consequently is subj ected 
to (24). But 

= M o:nw +(1-M) [ {o~ (~:~) nx+ o~ (~:~) ny } + {o~ (~:~) nx+ o~ (~:~) ny} ] 

OLlW 0 (02W 02W) 
= M on +(l - M) on ox2 + 0?J2 

o 
= - !:1w on 

by virtu e of (17). Similarly, we obtain 

02?J) 
= (l-M)-' olon 

Thus, w satisfies all boundary conditions of H and therefore belongs to the domain of H. Con­
versely, by a similar argument it is seen that any element in the domain of H belongs to the 
domain of T*T. Finally, we observe that 

T*Tw= M!:1(!:1W) +(l -M) { 00: 2 (~~~)+0~2 (~:~)+2 o~~y (oo:~y)} 
= !:12w, 

as it should be . 
2.2 . The following remarks on theorem 1 include some devices thaL would br of use in 

obtaining a good es timate, particularly in constructing a desirable pair u and v. 
R EMAR K 2.1. Thc estimates given by theorem 1 are sharp wlwll E2 is small. But it is 

known [3] that E2 can be written in an alLernati ve form , 

and E2= O occurs if, and only if, 

Tu=~ TJV 
II ull 

and 

This implies that T*Tu= TJ 2u, so that TJ2 is equal to an exact eigenvalue ).,, ' of T*T and u is the 
corresponding exact eigenfunction w. Thus we may cxpect a good result when u and v approxi­
mate, apart from constant factors, wand Tw closely. This interpretation of u and v should b e 
taken into account, in particular wh en some knowledge concerning th e behavior of w is given 
in some way or oLher , for instance from physical considerations or experimental r esults. As 
for precise discussions of the relations between u, v, and w, reference is made to the paper by 
Kato [3 ]. 
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REMARK 2.2 . If u and v are not completely preassigned but admit of some free parameters, 
it would be intrinsically the best way to choose those parameters fu'st t o minimize U and then 
maximize L. In practice, however , it appears sufficient as well as convenient for calculation to 
determine them by minimizing f 2. A standard form for such adj ustable trial functions is 

u = alu(1)+ a2u (2)+ .. . + amu (m>, } 

V= 131V(1)+ 132V(2)+ ... + 13"v (n) , 
(26) 

where u(l) , U(2), .. . ,u (m) are fixed functions belonging to [) and v(l ),v(2) , .. . ,v(n) are fixed vecLor 
functions belonging to ~*, and where al ,a2, .. . ,am, 131,132, .. . ,13" are fr ee parameters. If we 
calculate the quantities in (5) with these u and v, then Ilu11 2, II Tu l1 2 b ecome quadratic forms in 
{ai}, Ilv[[z, II T*v I1 2 quadratic forms in {13k}' and (Tu,v) a bilinear form in {at} and {13k}. Thus f 2 

becomes an algebraic expression in those parameters whose minimum is desired . There is 
little difficulty in the necessary computations, especially when we can r esort to an automatic 
computer , even if m and n in (26 ) are not very small. 

R EMARK 2.3 . Suppose that a closed subspace 9)( of Sj reduces the operator H.= T*T, 
that is, let HWf'ille for any W belonging to the intersection of 'ill'/: and Lh e domain of H . Then we 
can r egard H as an operator in the Hilbert space 'ill'/: denoted by H <JJl ' I t is known that eigen­
values and eigenvectors of H <JJl arc also eigenvalu es and eigenvectors of 1-1, so that we may speak 
of an eigenvalue of H in 9)( . ]f Lh e eigenvalue A' of H in question turns out to be an eigenvalue 
of H 9Jb we can derive an estimate for A' from theorem 1 more conveniently by r estricting T to 
9)e, and T* to a suitable closed subspace 9)e * of Sj', with th e properties 

T(9)1n :t')c 'ill,/ *, T *(9)'/ *n [) *) OlJ/ . (27) 

This procedure is particularly advantageous when a degenerate eigenvalue of the H in q ues Lion 
is converted inLo a nondegenerate one of H 'J)l by a suitable choice of 9)( so that applica­
tion of th eorem 1 becomes possible, or when the n eighboring eigenvalu es of El<JJl flre more widely 
separated than those of H, thus permitting us to takc smaller a and larger {3 so as to make the 
es timate better . Moreover , tho ugh the smallest eigenvalue of H in our problem is equal to 
zero, the associated eigenfunctions being of the type ax + by+ c, wc can sometimes find 'ill'/: sueh 
that th e eigenvalue A' , originally intermediate , becomes the smallest eige nvalue of Elm and 
h ence its upper bounds can be obtained b~T 

(2 ) 

the so-called Rayleigh principle. This seems more convenient than the estimation by the right 
inequality of (6), for it does not involve v, an element of [)*, for which a good choice is not easy 
because of the complication introduced by the boundary conditions. Therefore, we mOT 
prefer UR to U as an upper bound for such an eigenvalue. 

Nontrivial 9)(, 9)( * as mentioned above are often obtained by considering the symmetry 
properti.es of the operators H , T, and T * reflecting those of 0, as we shall illustrate in the 
succeeding section in the ca.se of a square plate. 

3. Vibration of a Square Plate 

In this section the general results obtained so far are applied to th e case of a square plate. 
Let 0 be the square with vertices (1,1), (- 1, 1), (- 1, - 1), and (1, - 1), which is the same as 
that treated by Ritz [2]. Bounds will be calculated for the smallest positive eigenvalue of H = T*T 
according to theorem 1 and the Remarks in section 2, i. e., lower bounds b~T means of (6) and 
upper bounds by means of (6) or (28). 
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3.1. We begin with a preliminary consideration. Let 

Let the self-adjoint operator 11 in 5) be the gradient operator of J [u]. Explicitly, any element 
w in the domain of H is subjected to the boundary conditions 

and we observe that 

",,2- ",,3-
UW= UW= O 
ox2 ox3 ' 

(- l < x< l , y=±l) , 

-_ (04W 04W) 
Hw=(l - j.l ) OX4 + 0y4 . 

(30) 

(31) 

The eigenvalue problem H w= ~w is reduced, by separation of variables to the eigenvalue prob­
lem 

(-<x<l), 1 
u//(± l) = ul//(± 1)= 0, 

(32) 

and a similar one in the variable y. Equation (32) is nothing but the eig,mvalue problem treated 
in the analysis of vibrations of a free bar of length 2, and is completely solved in textbooks 
[7 ,8]. If we denote the eigenvalues by lei (n = 0,1,2, . .. ) and note that ° is the unique degen­
erate one with eigenfunctions a+ bx, we have 

wh ere 9 

leo = lei = 0, 0< le2< le3< le4< ... , 

le2= 2.3650204 , 

le4 = 5.4978039 , 

le3= 3.9266023 , 

le5 = 7 . 0685828, 

The normalized eigenfunction u n= u n(x) associated with le! is given by 

1 
uo=-, 

, (2 

Un 
sinh len · sin lenx+s in kn· sinh lenx 

"'\ 

fo,"von n ;' 2, l 
for odd n;' 3. J 

It should be noticed that U n is an even or odd function, according as n is even or odd . 
The eigenvalues and eigenfunctions of H are given by 

(m,n = 0,1,2, ... ). 

(33) 

(34) 

(35) 

\iV e note that wmn (m, n = 0, 1 ,2 ... . ) constitutes a complete orthonormal system of eigenfunctions 
of the self-adjoint operator H. 

3.2. Comparing two quadratic functionals J[u] and J[u], or two operators Hand H , 
we can not only determine the constant f3 in theorem 1 in a rigorous fashion, but also the sym-

'k. is obtained as a root of equation tan k=lanh k or tan k= -tanh k. accordin g as n is odd or even. 
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metry of the eigenfunction associated with the smallest po itive eigenvnlu c. We note that 

J[u] ~J[u] . (36) 

From (36) it follows , by virtue of the properties of H stated above, that the spectrum of H 
consists only of discrete eigenvalues, and also that, if we number all eigenvalues of Hand H in 
ascending order, counting any degenerate one repeatedly by its multiplicity, we have 

(37) 

where AN and AN are the Nth eigenvalue of H and the Nth eigenvalue of H , respectively [7]. 
Thus the eigenvalues (35) of H ftre the lower bounds of the corresponding eigenvalues of H , 
and hence we can take {3 as 

(38) 

if tbe eigenvalue A' of H in ques tion is the Tth eigenvalue from below and )\",n is the (l' + l ) th 
eigenvalue of H. 

W e turn to the study of the symmetry properties of Hand II, i. e ., of closed subspaces 
specified by the symmetry properties of their elements, and to the reduction of each of these 
operators. For tho square plate under consicier fttion, the boundary conditions of H follow 
from (2) ftnd the remark there and take the form 

0 2W 
--=0 oxoy , 

(:r=± l, - l < y < l ), 

(y=± l , - 1< x< l ), 

(x = ± ] , y= ± 1). 

In the doelu otion of the last condition of (39) , use is made of the fact that, for ins tance, 

0 2W 0 2W . 
~=~ on tho Side x= l , vnvy vXvy 

and hence that the condition 

. o 2m . 0 2W 

hm onot= lllll onot mean s 
x= ] x .... 1 
y --+J y~ l 

0 2W 0 2W . 
~= -~ on the Side y= 1, un v t vxvy 

02W 
--= 0 at the vertex (1, 1). 
oxoy 

(39) 

Owing to the symmetry properties of (39) and those of the differential operator ,:l2, His 
reduced by the following subspaces: 

WC(o,o) = set of functions odd both in x and in y, 

9TI (o,e) = set of functions odd in x and even in y, 

9TI (e,o) = set of funotions even in x and odd in y, 

W1 (e,e) = set of functions even both in x and in y , 
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which are mutually orthogonal and whose direct sum is the whole space S). We see immediately 
that H is also reduced by each of these subspaces, so that the inequality (37) still remains valid, 
if we regard Hand H as operators in any of them. Let the eigenvalues of H in these subspaces 
be denoted as 10 

AO< AI < A2<. 

J.lO< J.lI< J.l2< . 

in 9)( (0,0), 

either in 9)C(o,e ) or in 9)1 (e,0), 

in 9)((e ,e) 

the union of which is the total spectrum of H . On the other hand, the eigenfunction wmn of H 
with the eigenvalue X:mn belongs to 9)( (0,0), 9)( (o,e), 9)( (e,o), or 9)((e,e) , according as (m = odd , 
n = odd), (m= odd,n=even) , (m = even, n = odd), or (m = even, n = even). 

Because the zero point set 9( of H (the eigenspace with the eigenvalue 0) consists of func­
tions of the type ax+ by+ c, it follows that 

9)1 (0,0) ":"9(, "I 

9)( (o,e) n 9( = {u; u = ax }, I 
r 

9)( (e ,0) n 91={u; U= bY }, J 

9)C(e,e) n 91 = {u; u = c } , 

(40) 

and hence that 

In consequence, the smallest positive eigenvalue of H is equal to min(Ao, MI ,VI). We can 
determine the order relations between AO, J.lI, and VI as follows . Because (40) means that J.lo 
is degenerate neither in W1(0 ,e) nor in 9)((e,o) , and Vo is not degenerate in 9J1(e,e), we note, 
according to (37), that X:1 2(= ~21) and }:22 are lower bounds of J.lI and VI , respectively, and hence 
we have , by means of (33) and (35), 

MI~ ~12= ~21 = (l-J.l)k~ = ( 1 - J.l ) X 3 1.2S ... '} 

VI ~ A22 = 2(1 - J.l )k~ = (1- J.l ) X 62.59 ... . 
(41) 

On t he other hand , the substitution of tbe trial function U= XY E 9]( (0,0) into (2S) yields 

AO~ (1- J.l) X 1S. (42) 

Combining (41 ) and (42) , we conclude that the smallest positive eigenvalue of H is the smallest 
eigenvalue AO in 9)( (0,0). Moreover , owing to (42) and the relations }:.1l = 0, ~13=~3 1 = ( 1 - J.l) X 
237 .72 . . . , we obtain 

(43 ) 

which shows that ),,11 is the unique eigenvalue of H less than AO, and h ence AO is not degenerate. 
Also we have, by means of (37), A13~ AI, which enables us to take as {3 in theorem 1, with respect 
t o A' = AO, any number such that 

{32~ (1- J.l ) X 237 .72 .... (44 ) 

Furthermore, we divide 9)1(0 ,0) into the following two mutually orthogonal subspaces 
9)( and 9)(', 

9)( = {u; u E 9)((0,0 ), 

9)(1 ={U; u E9)( (o,o) , 

U(X ,y ) ==u(y ,x) } , 

u (x,y ) == - u (y ,x) } , 

10 Evidently, the spectra of lIm (o,e) and those of 11m (t "l) are identical, and any oigenfunction of oneo f them is converted intoan e igenfunction 
of t he other by permu tation of 1 and y . 
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each of which is scen to reduce both of Hand II. 
From (43) it follows that Ao is an eigenvalue of H not in '>J)( ' but in 9JI, because tbe smallest 

eigenvalue of J1 in m' is Xl 3 with eigenfunctions Const· (W13 - W31), though this is at the same time 
an eigenvalue of J] in [1'( with eigenfunctions Const,(wI3 + W31)' In calculating bounds of Ao. 
to which we confine ourselves hereafter, we may therefore re Lrict Hand T to 9JC. 

3.3 W e go on to the construction of the t rial elements II u and v in theorem 1. Introducing 
six elements u (l), ••• ,U(6) of we, given by 

u (1) = P 1(X)P 1 (Y), 

u ta) = P 3(X) P 3(y ), 

U(5)= P3(X) P 5(y ) + P 5(X) P 3(y ), 

U(2) = P1 (x) P 3(y ) + P 3(X)PI (y ), 

U(4) = P1 (x) P 5(y ) + P 5(X) P I (Y), 

U(6) = P5(X) P 5(y ), 

where P i r eprese nts Legendre's polynomial of degree i (i= 1,3,5), we put, III accordan ce with 
(26 ), 

(45) 

with free parameLers (Xl,a2, .. . ,a6 to be determin ed later. This u evidently b elongs to 
[lC1l:n, because it is a poJynomial and sureJy satisfi es the regularity conditions of :no 

The other element V= {V1,V2,V3,V4 } is constructed as follow . We can easily verify th at t he 
boundary condition (24 ) of ~* now redu ce to th e followin g forms: 

OVI + (l_ )ov3 + 2(l _ )OV4 = O 
p, oy P, oy p, ox ' 

P,VI + (l- ,u )V2 = O, (x = ± 1, - l < y < l ), 

(- l < x< l , y = ± l), 

(x=±l , y=± l ) . 

(46) 

In view of Lhe ymmeLry of [lC , on the other hand, we can take as 9)'( * Lh e subspace com­
posed of eJements v with the folJowing properLi es of s:\Ommctry: 

VI, vz, 1'3 arc odd both in x and in y , 

V4 is even boLh in x and in y , 

Theil the i"claLions (27) obviously hold . 

'I 

,,(x,y l E"(Y'Xl .J 
(47) 

.:\. general element v satisfying the conditions (47 ), and whose components arc polynomials 
in X,Y with th e degrees shown below, is expr essible as 

VI = alxy + a2(xy3+x3y ) + a3x3y3 + a4 (xy5+ x5y ), 

V2 = b1xy + b2Xy3+ b~x3y+ b3x3y3 + b4Xy5 + b~x5y , 

V3= b1xy + b~xy3 + b2x3y + b3x3y3 + b~xy5 + b4x5y , 

V4 = CI + C2 (x2 + y2) + C3x2y2 + C4 (x4 + y4). 

11 If we are contented with" rough estimate or A', we can coostruct the t rial clements more easily (see [9]). 
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Moreover, for such a trial function v the boundary conditions (46) are equivalent to 

where o- = }J. / (l - }J. ) . 

(x = I, - 1<Y<l), } 
(x = I , - 1<y<l), 
(x = y = I), 

(49 ) 

Substituting (48) into (49 ), putting x= l and equating the coefficients of y , y3, yS to zero 
or putting x=y= I , we obtain the conditions for v given by (48) to satisfy (49) and hence to 
belong to 'D*. The results are the following six equalities: 12 

u(al + 3a2+ 5a4) + (bl + 3~~+ ~b;) + (4C2+ 4c3) =0, ""l 
o- (a[ + a2 + a4 ) + (b 1 + b2 + b4 ) = 0, 

u(az + 3a3) + (b2 + 3b3) + 8c. = 0, 
(50) 

: ~' J 
Cl + 2CZ+ C3 + 2C4= 0: 

By inspection, we find the following 8 independent families , (I), (2), ... , (8), of 
parameters satisfying the system (50) of 6 equations in 14 unknowns : 

(1) a[ = l , bl=- u, 

(2) a2= I , bz= b~ = - 0-, 

(3) b, = - I, b~ = 1, c[ = l, cz=- 1/2, 

(4) a3 = l , b3=- u 

(5) c1= c3 = 1, c2=- I , 

(6) a4 = l , b4= b~= - 0-, 

(7) b[=- I , b~= I , c1= I , c3=- 1, 

(8) b2=-2, b3= 2, c1= I , c4 = - 1/2. 

The absent members of each family are equal to 0. 
In this way, we have the following 8 elements v(k)={ vik ), vik ) , V£k), v1 k )} (k = 1, 2, .. . ,8) 

contained in WC* r<D* 

vel) = {xy, - o-xy , - uxy , O}, 

V(2)={ xy3+ X3y , - o- (xy3+ X3y ), - U(xy3+ X3y ), o }, 

V(3)={ O, -xy + x3y , -xy + xy3, 1- (x 2+ y 2) /2 }, 

v (S)={ O, 0, 0, (1-x2)(1- y 2) }, 

V(6)={ xy5+ X"y , - o-(xy5+ X5y ) , - U(( y 5+ X5y ), O}, 

v (7) = { 0, - xy + x5y , - xy + xy 5, 1- x2y 2} , 

V(8)= {O, 2( - xy3+ X:y3), 2 (-x3y +x3y3) , 1- (X4+ y4) /2 }. 

12 The result of equating to zero tho ooefficients of y' in the first and second conditions of (49) coincides and gives the fifth condition of (50). 
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With these 8 elemenL as basis, we construct the trial funCLion v in accordance with (26 ): 

(51 ) 

with free parameters (3),(32, . . . ,(38' 

Making use of the trial functions u and v given b~' (45) and (51 ) respectively, we get, after 
the necessary integrations, 

~ k I 
i ~ 

1 2 3 4 5 6 

I 1-- 16 16 16 

---

2 
I 

400,,+ 312 96 1120,,+ 672 192 96 

3 6000" + 2616 
7 7 

3600" + 96 2400" + 816 288 

---

4 1 46480" + 3336 10080" + 336 240 

5 22248 + 37296 
~O" - 1- 1-

1680 + 17520 
---.u:-u - 11-

-----

6 
I 1 840u + 2640 

-

i 1 2 
1 

3 4 5 6 

4 8 4 8 8 4 
B ;k= O (i~ k) 

B ii -
49 

-
77 

-
9 21 33 121 
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c;. 

___ i _ 11-_ 3_ 3 3 1 3 I 5 I 5 I 5 I 7 7 1_8_
1 

k 3 - 5--7-1-8- 1-5--7- 1- 8-1-7--8-1 8 For other valu es 
------1--- of i and k, 

C~k 1~1 256 1 348 1 256 512-1 256 1 8704 1 4096 1_17_6°_'4 C~k= O . 
64 -a- 3 5 9 I 9 5 03 35 175 

" 
1 

~ k 
1 2 3 4 5 6 7 8 

i " ~ 
, 

1 
4 8 ]6 4 

0 
R 32 32 

97 157 450- 257 217 63" 750-

--- - - -----

2 
368 64 8 

0 
496 512 256 

5257 1750- 357 9457 9450- 5250-

-

3 
144 ]6 128 32 992 252R 
- -

1350-
- --

35 175 45 189 fi25 

4 
4 

0 
8 32 32 

I 41? 457 2250- 2450-

5 
1 

512 
0 

25G ]024 
225 75 -315 

1---._-- --

1 6 1 
I 

[)56 192 64 

I 

lti177 53\J0- 1890-

--- -----! 

7 
119744 

I 
108S --

I I 
17325 175 

I 

I 8 

I 

63424 
--

I 
11025 

i 1 1 I 1 I 1 I 2 I 2 
------- ---

k 3 5 7 I 8 I 7 8 For othe r valu es of i and k, 
----- - ----- E~k= O. 

I 
16 

E~k 3 
1 1 

32 64 32 64 64 
-0- 9 -

21 35 5 

H ere 0- and 7 are constants given by "=-11-' , - 1 + I-' 
-I-' 7-(1- 1-')2' 

In the numerical computation we take .u = O.225 , the value used by Ritz. Then the quan­
tity 2e2 becomes an algebraic expression of the form 

() 2 _ X' Ax y' Cy (x' E y)2 
<oe - x' E x + y'Dy - 2 (x IBx)(y'Dy)' (52) 
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where x, yare t he column vectors with components {Cit}, {{3k}, r espectivcly, x', y' are their 
transposed vectors, and A, B , G, D , E are matrices with numerical elements. 

In order to minimize t 2, we choose the following procedure . First we minimize the fint 
term on the right-hand side of (52) . This gives rise to an eigenvalue problem of order 6, for 
which we determine t he lowest eigenvalue m (which is the minimum value in question) and 
the associated eigenvector X = X1. Then we put X = Xl into (52) ; this converts (52) into a frac­
tional form of which the numerator and denominator are known quadratic forms in y. vVe 
minimize this expression; this is equivalent to solving another eigenvalue problem of order 8, 
and we determine the lowest eigenvalue m' and the associated eigenvector Y= Yl' In the next 
s tep we should put Y= Yl into (52), converting (52) into a ratio of two quadratic forms in x, 
and determine its minimum m" . This procedure could be repeated indefinitely, and the 
sequence m', m", ... is certainly nonincreasing. It is not clear whether these values con­
verge to the true minimum of 2€2. But this is not important, for act ually we need not obtain 
this true minimum ; it is sufficient for OUT purpose that a very small value of 2€2 is given by 
some set of x and y. 

The actual computation was done by using SEAC, and it turned out that the valu e of 
m' was sufficiently small , so that further computation was not necessary. To avoid t he uncon­
trollable elTor arising from the use of the machine, the components of X1,Yl thus obtained have 
been rounded off to five sign ificant figures, and the value of 2€2 for thcse argument ha becH 
calculated anew on a desk calculator. The final val ues are 

Cil = 3.6100 000, 
Ci'I=- 0.2071 000, 
Ci3= - 0.0357 000, 
Ci4= 0.0335 000, 
Ci s= - 0.0012 000, 
Ci6=- 0.0017 000, 

f31 = 2.0362000, 
f32=- 1.1853 000, 
f33= - 1.6269 000, 
f3.= 0.3121 000 , 
f35= 0.5907 000, 
f36 = 0.0112 000, 
f37 = 0.0176 000, 
f3s= 0.1233 000, 

.,., = 3.6266247. 

We can take Ci = O and (3 = 13.5 in (7 ) for U and L in eo nformit), with (44). Thus \ve 
obtain 

u = ] 2.455433 , L = 12.4:30613 , 

where t he rounding-off errors are within 5X lO - 5 by the most conservative cstimates . Thus 

12.4305 < "0 < 12.4555. 

For the upper bound we can also use Un, given by (28) . Tbis gives 

UR = 12.454620, 

which is somewhat sharper than U. In this way we arrive at the final result : 

(53) 

If we adopt "0= 12.4427, the average of upper and lower bounds, as the smallest positive 
eigenvalue of II= T*T, t he relative error is less than 1/1000. 

The corresponding value of the fundamental frequency of a thin clastie square plate 
( }L = 0.225) with free edge IS 

" .JXo 111 h;=0.3420 X I?l. ~, 
2.J31T'.Jl - }L2'V p a 'V p a 

with rcla,tive error less than 1/2000. Here 2a= edge length, 2h = thickness , p= density, and E = 
Young's modulus. 
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A r emark is necessary regarding the relation between the result of Ritz [2] and t hat of this 
sLudy. Rit z gives the estimate Ao ~ 12.43, and this appeared exceedingly sharp in v iew of the 
results shown here (53). Ritz used product s of eigenfunctions of fr ee bars as trial functions 
u (i) . This suggested that these trial functions might lead to a sharper upper bound t han the 
one presented in this paper. B ecause the last figure in Ritz ' result is unreliable, the same 
calculat ion was carried out for purposes of comparison by retaining more significan t figures . 
The r esult ob tained gives only Ao< 12.488, a less sharp es timate than the one her ein. This 
seems to show tha t, as far as the fundamental frequency of a square plate is concerned, use of 
polynomial trial functions is preferable t o products of eigenfunctions of free bars. 

4. Concluding Remarks 

4.1. This method is also applicable to a plat e whose edge is not wholly free but subj ected 
t o conditions of a more general type. For instance, let us assume that C, t he boundary of the 
plate under considerat ion, consist s of three arcs, Co, C], and C2, and that th e edge is free, sup­
ported, and clamped along Co, C], and C2, resp ectiveJY. Among all angular points on C, we 
denote those on Co by P I, P 2 , ••• , P n with 8 = 8],82, . . . ,8n . Then as in t he case of the free plate 
discussed above, the vibration of this plate is characterized by the eigenvalue problem of a 

A A A 

self-adjoint operator H in ~ . Again, II is the gradient operator of a quadratic functional J 
[u], which is the restriction of J [u] to t he class of functions u sa tisfying the boundary condi tions 

u = O 

ou = O 
on 

(54) 

A A A 

Thus, following a course paralJ el to that of section 2 , we can reduce H t o T* T and make t heorem 
1 applicable. The results of this decomposition are as follows. ~ and ~/ b eing t h e same as 

A A 
before, Tu and T*v are formally identical wit h Tu and T*v, respectively, and now any u be­

A 
longing to the domain of T is subjected to the boundary condit ions (54) and any v belonging to 

A 

the domain of T* is subj ected to the boundary conditions 

(55) 

(i=1,2, . . . ,n), 

where P , Q, R, Di are t hose defined in section 2. 
Applications of theorem 1 to t he cases of such mixed boundary conditions will be treated 

elsewher e. 
In addit ion, if bot h Co and C] are empty, i. e., the whole edge is clamped, anot her de­

composit ion seemingly more convenient is possible. N amcly, by means of (19) and t he con­
ditions u = oujon= O on C, we have 

and hence, in consideration of (10), we ob tain 

A ~ 

J[u] = JD (D.u)2dxdl '· 
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A 

Thus, taking Sj = f!, = D(D; I ) we can decompose H into the desired form by usmg Tc :and 
T; such that 

ou 
(u= On = 0 on C), 

T ;v= f:. v. 

4.2. Before his derivation of theorem 1, one of the author" gave also the [following 
theorem 2 [10], which stands in a close connection with the former. 

THEOREM 2. L et H be a selj-adjoint operator oj a Hilbert Space 5), and let (a, {3 ) be an open 
interval containing at most a nondegen erate eigenvalue of H but no other point oj its spectrum . 
L et w be any vector oj the domain 'IJH oj H with iiwii= l , and set TJ = (Hw,w), ~2 =II (H- TJ)w li2= 
liHwIl 2-7J2. If ~2< ( TJ - a) ({3 - TJ ), then there is certainly an eigenvalue A' oj H in (a,{3) that satisfies 
the inequalities 

(56) 

This theorem can be interpreted as follows. If we can construct a "trial function" w in 
accordance with the conditions stated above, we would obtain an estimate of the eigenvalue 
A' in question b? means of (56). Comparing theorem 1 with theorem 2, we note that, if a 
good choice of w is easy for the operator H under consideration, theorem 2 may b e preferable 
inasmuch as i t docs not require th e decomposition H = T * T, and also it involves fewer quan­
tities to b e calculated . However , this is not th e case so far as (PI'. ) is concerned, for the 
difficulties in obtaining a suitable w seem greater t han those in obtaining a suitable pair of u 
and v (essentially v) because of the increased complication of the boundary conditions of 'J) j{. 

F urthermore, we have four components VI, V2, V3, V4 at our disposal in constructing the trial 
vector function v b elonging to 'IJ *, whereas we must make a single function w satisfy all boundary 
conditions in order t hat wE 'IJ/l. For instance, let us consider the case of the squar e plate 
dealt with in section 3 and look for a polynomial t rial function w contained in 'J)/ln 9JI . For 
any w belonging to we, the boundary conditions (39) of 'IJfI r educe to 

(57) 

(x= y = l). 

On the other hand, a general form of a polynomial of degree 2N- 2, belonging to 9J1 is given by 

N m+n = r 
W = ~ ~ Amn(x2m- Iy2n-l+ x2n- Iy2m- I) . 

r=2 m n=1 
m~n 

(58 ) 

Substituting (58) into (57), putting x= 1 and equating th e coeffici.ents of all powers of y to zero, 
or putting x= y = l , we d erive the conditions for w given by (58) to satisfy (57) . This gives 
rise to a system of 2N- 3 equations in N2/4 unknowns, or a system of 2N- 4 equations in 
(N 2- 1)/4 unknowns, according as N is even or odd. The smallest value of N permitting 
nontrivial solutions is seen to b e 7. Therefore, in order to obtain a functi.on of the type (58 ) 
in 'IJHn 9Jc, we have to solve at least a sys tem of 10 equations in 12 unknowns, leaving two 
homogeneous parameters , i. e., essentially only 1 fr ee parameter in a 12-degree polynomial. 

4.3. Weinstein and Aronszajn have developed an approximating m ethod [11], l4 with a 
wid e range of application, which also enables us to calculate upper and lower bounds of eigcn-

" Sec [11] [or a standard list of references concerning this method . 
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values of a certain kind of operators. Although the arguments used in establishing the con­
vergence of their method are theoreti.cally inter esting, it appears that, from the viewpoint of 
practical applications, the essential parts of their method are the procedures leading from 
rough bounds to those that improve as sharply as possible. In this sense their method seems 
to have some similarity to the present one, and hence it will be worthwhile to reveal the mutual 
relations between these two methods and to compare their merits . However, we reserve 
this for some future occasion and remark here only that, with respect to lower bounds of 
eigenvalues in the case of the square plate treated in section 3, the eigenvalue problem of the 
operator 11 can play the role of the" auxiliary problem" in their method, of which the complete 
set of the exact eigenvalues and eigenvectors is required to be known . 
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