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A Computation of Cyclic Cubic Units 1 

Harvey Cohn and Saul Gorn 2 

The paper is a report on a tabulation of u nits perform ed on t he E DV AC at t he U. S. 
Arm y Proving Grounds in Aberdeen , Maryland. The algebraic nu mber fieJds in vol ved 
were 45 cyclic cubic fi e lds of discrimina nt [2 , where I is one of t he prim es of form 3m+ 1 
from 7 through 499. T he object of t he search was t he discover y of unit t hrough a speci fi c 
method, an algorithm based on Minkowski 's geometric num ber t heor y but part icularly 
amenable to a stored-program computer . In the computation, combined use was made of 
integral arithmetic an d decimal a rithm etic but . with careful error analysis . 

1. Introduction 

An essen tial par t of the lure of algebraic number theory consists of tabulations of almost 
unpredictable irregulari ty. The advanced theory has somehow surpassed the scope of numeri
cal data wi thou t percep tibly improving the power to predict such data. As a resul t, for a 
small calculation an algebraic number theorist would not forego the personal satisfaction that 
resul ts from the many ingenious, for tui tous, and deeply meaningful combinations of integers 
that he wo uld encounter . Yet to really appreciate these vital il'l'egwarities he needs longer 
tabulations, with the inevi table requiremen ts of unifo rmi ty and efficiency. H ere the modern 
electronic digital computer can be used profi tably . 

The discussion of the pro blem tha t follows will be primarily f rom the poin t of view of the 
compu tel' program rather than from i ts theoretical development. Thus, for instance, the field 
will have to be regarded not as a set of elemen ts satisfying cCl'Lain axioms, etc., in the manner 
of D edekind and Steini tz, bu t as an algebra with a defini te basis and defini te "structure con
stants" for mul tiplications. As a matter of historical fact the exhibi ting of a basis was gen
erally far from trivial and lagged considerably behind exisLence theorems [1, 10] 3 

2 . Description of Fields 

For any prime I (= 3m + 1) a cyelic cubic field will be defined. Our interest centers around 
algebraic integers of such a field, written as follows (owi ng Lo the presence of the so-called normal 
basis) : 

(1) 

H ere a, b, c are rational integers (or coordinates) , and WI, W2, W3 (or the normal basis) are the 
three roots of the defining (normal) equation [8]. 

F(w) = w3 + w2- m w-n=O. 

H ere n is defined as follow F irst, 41 is decomposed (uniquely) into the combination 

41= A 2+ 27g2, 

where the signs of A and g are specified by the conditions (in integral k) 

(2) 

(3) 

(4a) 

1 The computing time was provided und er contract DA-028- 0RD-12332 with the United States Army Office of Ordnance Research. The 
first namcd author was then at Wayne UniverSity, Detroit, Mich., and thc sccond namcd autho1' was at the Ballistics R esearch Labora tory, 
Aberdeen, Md. The first named author is currently at \Vashingtoll UUiversity, St. Loui" Mo. 

'fhe preliminary report (refcrcnce 15]), was cleared for publication by the Ball istics Research Laboratory on April 26, 1956. The background 
descr iption, the illustrati ve examplcs, and thc final tabulation wcre prep;u'cd at the Nat ional Bureau of Standards. 'l'his work has formed the 
basis for a further calculation curreutly on the SEAG. 

2 Now at Moore School of Electrical Engineering, Ph iladelphia, Pa. 
3 Italicized figures in brackcts indicate the literature references at the end of this paper. 
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Then, finally an integer n always exists, for which 

27n= (A + 3)1- 1. (4b) 

All algebraic integers under discussion are real. 
The most general basis of the field ~would be given by an integral unimodular combination 

!: j= ~aijwJ i,j= 1,2,3, det [a jj[ = ± 1. There is essentially no other basis [9]. 
The particular designation of roots is standardized as 

Thus we can distinguish among conjugates ~ (given i1bove), and ( , ~" given by 

(5) 

(6a) 

(6b) 

(formed by cyclic permutation of WI , Wz, W3), so that (" = ~, etc. As a matter of notation, the 
subscripts denote conjugates only in reference to the basis W i' Later on ~ i shall denote (unre
lated) integers of the field. 

It was mentioned earlier that the discriminant of the field or the determinant 

WI Wz W3 
Z 

Wz W3 WI (7) 

W3 Wt W2 

has the value 12. This fact (which can be verified directly from eq (1)) is not used directly 
in the machine computation but uniquely identifies the field in question [6]. 

The multiplication of any two numbers in the field can be expressed in integral arithmetic; 
e. g. , 

(8) 

then on e can find the explicit representation of ~t~2 in terms of the normal basis by means of 
the structure constants ai, {3j, 'Yj , az, {32, 'Y2 , defined by 

and 

The explicit formula is, then, e. g., 

where 
A = ajata2+ 'Ylbtb2+ {3IClC2 + (32 (atbz+ a2bj) + az (bIC2+ b2Ct) + 'Yz (Cta2+ CZat) , l 
B= (3jataz+ atbtb2+ 'YtCjc2 + 'Yz(atbz+ a2bj ) + (32(btC2+ b2Ct) + a2(Cta2 + c2at ), ~ 

c= 'Ylala2+ (3lb tb2+ a jCjC2+ az(a jb2+ aZbl) + 'Y2(b jC2 + bzcj) + {32 (ctaz+ cZaj ) . J 
This product can therefore be computed in the following tabular form: 

(Ltaz al {3l 'Yl 

b,b2 {3l 'Y\ al 

CICZ 

a\bz+ azb\ 
b\C2 + b2CI 

cja:!+ CL]cZ 

{31 

{3z 

<X2 

'Yz 
(A 
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'Yl al 

'Y2 az 
{32 'Y2 
az (3z 
B 0). 

(9a) 

(9b) 

~ 

I 

J 



These st n lctUl'e constants arc given explicitly by the formulas: 

m + k+ l 
3 1'2 

They are list ed in table 2 (sec p . 166). 

In particular, the norm of ~ is defined for (1) by the integer 

and the Lrace is defined by 
t m = ~+e + ~" = - (a + b+ c), 

so that the defining equaLion of ~, e, or e' is 

e- t (~w+ t(~~'H-NW = 0, 
with th e further des ignaLion 

(9c) 

(lOb) 

(10) 

(lOc) 

Note that if a+ b+ c= O, Lhen NW is divi sible by l . Thus, 3,pplying t his infonnaLion to 

~ - ( = ((a - c), (b- c) ,(C-CL)) , 

we fll1d N(~-n= (~- n(( - e')Ce' - ~) is an inLeger divisible b~· l. 

3. Units 

UniLs arc algebraic in tegers of lI orm equal Lo ± 1. They arc written as 

(11 ) 

where, as before, u t , U2, U3 arc integers. The most gen eral ullit jl as th c form ± 1)~ 1) ~b, where a 
and b arc (positive, negaLive, or zero ) inLegers, wh ereas 1)0 is a specially des ignated fundamental 
unit [6, p. 19] . The only fundamental units arc ± 1)~\ ± ( 1) ~)±1, ± ( 1)~ ) ± 1. In whaL follows, 
units will be normalized (by a change of sign ) to have, convenienLly, only norm + 1. 

If we take eq (lOa) a nd set NW = 1 and (a,b ,c)=(Ul,U2 ,U3), we obLain a cubic equaLion in 
t hese three latter unknowns, which we arc in effect solving. Jow su ch an equation (unlike, 
say, tbe Pell equation), has very little intrinsic inLerest. Th e interest in units is derived en
tirely from their role in unique factori zation. 

To give an example, when l= 19, one finds (as a byproduct of the main calculat ion) that 

(12) 

This does not mean that 7 has two different factorizations, although seemingly 

(12a) 

The reason, of course, is t hat the factors can pair off as associates, or 

a unit of the field . To sec this , in (12a) calling one set of factors ~, ~;, ~; and the other 
~2 ' ~;, ~;, respectively, we must verify that one of the ratios b/~l' Wh, ~;/~l is a unit . Thus 
for example, in accordance with t he rules of section 2, we compute 

~; ~;~;~; 
~l ~1~;~'; 

(A *,B *,O*) 
N(~l ) 

157 

(13) 



and find that A *, B *, and C* are now divisible by N(~l)' In practice, the whole computation 
would be performed modulo N(~l)( = 7 h ere), using the structure constants of table 2. 

Thus th e preliminary step in understanding factorization in fields becomes the r ecognition 
of units. Traditionall y, one cr eates, by trial and error, combinations su ch as (12a), and one 
hunts for units, usually with better luck than one can completely explain [4]. 

The m ethod used here will be very systematic. It is an algorithm for cr eating a surfeit 
of algebraic integers with small norms (including norm unity). In the process, a unit, indeed 
a fundamental unit, is inevitably produced . (Unfortunately, machine limitations forced the 
weakening of the method, as is explained in section 6. ) 

4. The Sign-Discrimination Algorithm 

One operates wit h so-called reduced 3 X 4 matrices of algebraic integers [2, sec tion 4] : 

(14a) 

The columns represent conjugates of algebraic integers of sum zero 

~ 1 + ~2 + ~3+ ~"= O (J 4b) 

and such that a ny tlu-ee of th e four ~ i form a basis. The further , a nd most vital, condition is 
that the sign patt ern be 

(J 4c) 

+ 
either as 1> now stands or under some r earrangement of columns. 

The algorithm is a m ethod of generating such matrices in chains. A. matrix 1>1 is sa id to 
be a neighbor of 1> if it is formed by adding one column of 1> to another column of 1> and at th e 
same time subtracting it from a third column of 1> (the three columns being different). Thus 
there are 4! possibilities t o consider corresponding to the distinct triples (jti2j3) , wh ere 1 "5,j "5, 4 . 
For instance, t he operation 

(15a) 

can b e understood to m ean that the " third column of 1> is incr eased b y the four th column, which 
in tUTn diminish es t h e first ," or, writing just the first rows, 

1> = (~1' ~2' ~3' ~4) } 

1>1 =(~1-~4' ~2' ~3+ ~4' ~4)' 
(15b) 

(The relation (l5a) can b e read backward as an operation on 1>1' ) Of the 4! possible neighbors, 
either 3,4, 5, or 6 will b e reduced, depending on inequalities satisfied by the elem ents [2, section 
10]. 

W e next define the conjugate 1>' of a matrix 1> to be the matrix formed by replacing th e 
first row ~ i by its conjugate ~~ and forming th e remaining rows from ~ ; instead of ~i ' The 
conjugate 1>' will not b e reduced as it stands, but a r earrangemen t of the columns (in this case 
the interchange of first and second) will render it r educed. Likewise, we define 1>/1. N ote 
1>/1' = 1> again. Finally, two matrices 1>1 and 1>2 u,r e said to be proportional to one another if, 
for 1>t = 1>l , 1>;, or 1>'1' , and numbers 11 , 11' , 11 /1, 
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o 

(16) 

o 

It is eas ily SCC lt t ha t TJ , TJ ' , TJ" are necessarily the conjugates of a unit , possibly 1, having 
norm + 1. (In some cases cf>! is proportional to itself, leading to interesting possibiliti es r elated 
to ramifi ed primes but beyond th e scope of the present discussion [2, section 22J. ) In all cases, 
proportional matrices will have the same set of norms (possibly under rearrangem ent). 

Th e algorithm operates as follows: The initial matrix is taken for conveni ence (writing 
only th e first row) as 

(17a) 

wi t b norms I'cspecti vely 

(n,n,n, 1), (17 b) 

or as 

(17c) 

with norms rcsp ec tively 

(- n + m, - n + m, - n, 1) . (17d ) 

Branchin g out from CPo , one forms all redu ced n eighbors of matriccs prcsc11t , l crminating a 
branch wh en th e matrix is proportional to one already prese nt. Ind eed, th c numbc r of r edu ccd 
matri ces is fin ite to with i n proportionali ties [2, section 8J. Thc fadors of propor t ionali ty 
TJ are units among "' hich can always b e found thc fundamental unit [2 , scc lion 18J. 

5. Modified Algorithm 

Th e original algorithm, as just descr ibed, is a branching a lgo ritbm in ",lli clt each cf> may 
have more than one successor, and each cf> is compared with all thosc prcceding. Bccause 
each cf> contains 12 componcnts and t hcre could b e morc than 50 produced, the intcrnal storage 
of the EDVAC would bc taxed before t he algorithm had gon e vcry far. The bra nching 
algorithm was th erefore modified to a for:n in which only one successor is chosc n for eac h cf> , 
and the comparison (J6 ) is always b etween cf>o a nd the most rccent cf>. 

Th e modifi cat ion consisted in trying only on e-third of the 4! possible ncighbors, namely , 

[123], [132], [423], [432], l214], [241], [314], [34 1J (I8) 

characterized by t he fact that t he second and third indiees are either 2,3 or 1,4 in somc ordcr. 
Ei ther one or two neighbors of this type occur, but the EDVAC takes onl y the first that occurs 
in the program, thus we h ave a chain-ty pe algorithm rather than a branching algorithm , with 

4 

the further property t hat ~I ~il decreases at each step [2, section 17], wh ereas the correspo ndin g 
1 

sums for the second and third row (conjugates) incr ease or r emain the sam e. This assurcs 
us that when the inevitable proportionality occurs, the unit will not be 1 (bu t it need not bc 
a fundamental unit either ). 

As an illustration (see table 1) 4 the matrix sequence cf> , is r eproduced for l= 19. It is 

The EDV AC discovered t hat cf>o is proportional to (some rearrangement of) cf> J2 ' The specific 
numerical valu es are of som e interest. vVe therefore calculate 

• A fu ll explanation of iable I is gh'cn in scction 7. 
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WI = 2.507 018 643 
w2=-1.221 876 162 
w3=-2.285 142 481, 

which (except for minor modifications in sect lon 7) is the accuracy presented by the EDV AC. 
Thus 

4>0 = ((1,0,0) (0,1,0) (0,0,1) (- 1,- 1, - 1)) 

or 
( 2.507 018 643 - 2.285 142 481 - 1.221 876 162 1 ) 4>0 = - 1.221 876 ] 62 2.507 018 643 - 2.285 142 481 1 

- 2.285 142 481 - 1.221 876 162 2.507 018 643 1 

4>12= ((7,5,5) (4, - 3,6) (2,6, - 1) (- 13, - 8, - 10)) 

or 
( 0.014 037 286 - 0.017 151 828 - 0.032 on 205 0.035 191 747 ) 4>12 = - 7.443 752 324 17.010 034 653 - 18.661 625 853 9.095 343 524 

- 9.570 284 962 - 23.992 882 825 11.693 703 058 21.869 464 729 

The EDV AC then "recognized" that the first column would serve as a proportionality factor, 
i. e., if we rearrange the columns of 4>12 to form 

4>f2 =((- 13, - 8, - 10), (2,6, - 1) , (4, - 3,6), (7,5,5)) , 
t hen 

where 7] = 0.014 037 286,7]'=-7.443 752 34, and 7] 1/=- 9.570 284 962. In this case the 
decimal accmacy would be easily sufficient for "recognition," but integral arithmetic was used 
(see section 8). 

The unit produced, 7] = (7,5,5), is not fundamental, but, early in the course of t he compu
tation, for 4>1, ~2 happened to come out as 710 = (- 1, - 1 ,0), a fundamental unit (see section 10) . 
Actually, 

This can be easily verified from the multiplication scheme (9), e. g., (71~)2=(-6 , - 3, - 5) , 
(7]~)-1= (2,2,1) . 

6. Numerical Accuracy 

As the algorithm was first conceived and applied in experiment [2, section 11], decimal 
accmacy seemed sufficient because the symmetric functions could be correctly evaluated by 
the nearest integer when necessary. In a long computation, however, the algorithm can go 
astray in many ways: 

(a) The algorithm may incorrectly discriminate the reduced neighbors from the others. 
This is bound to happen because the subset of the reduced neighbors chosen by the modified 

4 

algorithm just mentioned has 2::: I ~ il approaching zero monotonically. The error in the quanti-
1 

ties ~ i can soon be bigger than the quantities themselves, making a simple discrimination in 
sign untrustworthy. 

(b) It may make uncertain the decision as to whether cf> and 4>* are proportional ; for 
example, it may have to be decided that (using an obvious notation), ~1 /~~ = ~2/~;= ~3/ ~~= ~4/~;' 
in which all the quantities involved are in error. 
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(c) It may of course make the approximations to the all-important resulting units untrust
worthy; for these are the ratios discussed in (b). 

A vital and desirable modification, to control the accuracy of the computations, consisted 
in carrying out all arithmetic operations exactly by using integral arithmetic; (explicit formulas 
for the integral arithmetic operations on two such integers are given in section 2). Furthermore, 
all quotients were removed from the algorithm (see sect ion ). 

It would also have been quite easy in principle to have handled the sign discriminations 
in integral arithmetic. For instance, to tell if two algebraic numbers ~l and ~2 agree in sign , 
all we need have done is test to see if the three conjugates ~l~2 ' rl~;' and ~~~~ are each positive 
(total positiveness), which, by Descartes' law of signs, is a matter of seeing that the defining 
eq (10) for (~l~2) has (integral) coefficients with alternating sign. At the time, however, the 
EDV AC internal storage was not sufficient to handle the enormous integers, so that an auto
matic error analysis was used instead. This was the only departure from integral arithmetic_ 

7. Input-Output and Error Controls 

'Vith tbe exception of the following operations, the problem was run completely internally , 
with no human intervention : 

(a) For each L, the structme constants in table 2 were computed in advance by hand 
(merely to save space in thc memory) through the £x2 column. (The entire table is given for 
convenience of hand checking. ) 

(b) For each l , the zeros (and maximum errors) of the polynomial (2) were computcd in 
advance by machine. The polynomial was scalcd by dividing its zeros by m and carrying 
through th e computation in fLxed point. The root-finding metbod for the scaled polynomial, 

( w)3 1 (w)2 1 (w) n j (w)= - +- - - - - - - , 
m m m m m m3 (19) 

is the bisection method (Horner's method in binary), for appropriaLe isolating intervals. The 
maximum eITor in the coefficien ts of the scaled poly nomial, for EDVAC, is 2- 4\ whence the 
maximum error in evaluating the scaled polynomial is 7 X 2- 44; if, then, ,ve use ~= 2 -4 l, the 
machine will provide an automatic error analysis in solving for W i by finding th e zeros rt of 
f(w) + 2€, r i ofj(w) - 2€, and setting 

W i rt+ri -=---, 
m 2 

rt- ri 
€' =--2- -

Because the numerical values of the zeros W i arc only used in the main algorithm to discriminate 
the signs of linear homogeneous expressions, aWl + bW2+ CW3, the scaled values wdm and th eir 
error bounds € i were used directly. 

(c) The input and output of the algorithm itself was by means of IBM cards, in decimal. 
(This required internal conversion on input and ontput because the EDV AC arithmetic is 
binary. ) For each l two IBM cards were read in. One contained the integers l , m, g, £X2, n . 
The other contained the integer l together with the (lO-digit) decimals wdm, W2 /m, W3/m, and 
the errors in Wl, W2, W3. 

The output cards were as follows: Fil'st, there were copies of the two input cards; 
seco nd, for each <P i, as soon as it was produced, four cards were punched wiLl] j = 1,2,3,4, 
respectively, indicating the column of <P i (prior to possible rearrangement) being described. 
The algebraic integer ~j was described by the integers l, i, j, a h bj) Cil N(~), t(~), t(~), where N, 
t, t refer to the defining eq (10) and 

Third, there would be a card containing the integers (see (11)) l , i, j(= 5), U l , U2 , U j , N(~)(= 1). 

t(~), tW if the algorithm runs to completion to produce a <P i proportional to <Po with factor 1) . 
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TABLE 1. Inp ut-output cards 

The material in this table is presented in the form in which it is printed out b y EDV A O . 

.. INP UT CA HDS 

Struc- I m g k "'2 n 
ture 
con-
stants 19 6 1 2 3 7 

Roots l wdn~ w,/m W3 /m Error wd111 Error wz/ m Error W3/m 
and ---
errors 
(X 10- 10) 19 4178364406 - 2036460270 - 3808570802 I 1 1 

OUT I' UT CA HDS 

-

( ~i= aiW j + biW2 + CiW3) 
Matrix 1 Matrix Colu mn N(~,) t(~i) W i) 
cards number number 

ai Ii i ei 

(~l) 19 0 1 1 0 0 7 - 1 - 6 
(~2) 19 0 2 0 0 1 7 - 1 - 6 
(~3) 19 0 3 0 J 0 7 - 1 - 6 
(~4) 19 0 4 - 1 - 1 - 1 1 3 3 

(6) 19 1 ] 2 ] 1 11 - 4 - 1 
(~2) 19 ] 2 - 1 - 1 0 ] 2 - 5 
(~3) 19 1 3 0 1 0 7 - 1 - 6 
(~4) 19 1 4 - J - J - 1 1 3 3 

(h) III 2 1 2 2 1 1 - 5 2 
(~2) 19 2 2 - 1 - 2 0 1 3 - 16 
(~3) 19 2 3 0 1 0 7 - 1 - 6 
(~4) 19 2 4 - 1 - ] - 1 1 3 3 

(~l) 19 3 1 2 2 ] 1 - 5 2 
(~2) 19 3 2 - 1 - 2 0 ] 3 - 16 
(~3) 19 3 3 2 3 1 11 - 6 - 7 
(~4) 19 3 4 - 3 - 3 - 2 7 8 15 

(~l) 19 4 ] 2 2 I 1 - 5 2 
(~2) 19 4 2 - 1 - 2 0 1 3 - 16 
(~3) 19 .j. 3 

'" 
5 2 7 - 11 - 4 

(~4) 19 4 4 - 5 -- 5 - 3 11 13 31 

(~l) 19 5 1 2 2 1 I - 5 2 
(~2) 19 5 2 - 1 - 2 0 1 3 - 16 
(~3) 19 5 3 6 7 3 1 - 16 3 
(~4) 19 5 4 - 7 - 7 - 4 7 18 51 

(~l) 19 6 1 2 2 1 1 - 5 2 
(~2) 19 6 2 - 1 - 2 0 1 3 - 16 
(~3) 19 6 3 7 9 3 19 - 19 - 57 
(~4) 19 6 4 - 8 - 9 - 4 1 21 14 
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T ABLE 1. Input-output cards- Con t iJl 1I cd 

OUTPUT CA RDs- con t inll cd 

(~i = aiWI + b iW 2+CiW3) 

Matrix l YIatrix Column N(~i) t (~ i) W i) 
cards number numbe r 

a. b i Ci 

----

( ~I ) II! 7 1 10 11 5 7 - 26 29 
( ~2 ) 19 7 2 - ] - 2 0 1 3 - 16 
(6) 19 7 3 - 1 0 - 1 1 2 - 5 
(~4) 19 7 4 - 8 - 9 - 4 ] 21 14 

(~I ) 19 8 I 9 9 5 11 - 23 75 
(~2 ) 19 8 2 - 1 - 2 0 1 3 - 16 
( ~~) L9 8 3 0 2 - 1 7 - 1 - 44 
(~4) 19 8 4 - 8 - 9 - 4 ] 21 14 

(U 19 9 1 8 7 5 7 - 20 89 

( ~2) 19 \) 2 - J - 2 0 J 3 - 16 
(~J) 19 9 3 ] '1 - ] 11 - 4 - 115 
(~4 ) ]9 9 4 - 8 - 9 - 4 } 2 1 14 

(~I ) 19 10 ] 7 5 5 1 - 17 71 
(~2) 19 10 2 - 1 - 2 0 1 3 - 16 

(~3) 19 JO 3 2 6 - J 7 - 7 - 218 

(~4) 19 10 4 - 8 - 9 - 4 ] 2J 14 

(~I) 19 11 ] 7 5 5 1 - 17 71 

(~2) 19 I 1 2 - 3 - 8 ] 11 ]0 - 353 

( ~3) 19 I L 3 2 6 - J 7 - 7 - 218 

(~.) ]9 11 4 - 6 - 3 - 5 ] 14 21 

(~I) L9 12 I 7 5 5 ] - 17 71 

(~2) 19 12 2 4 - 3 6 7 - 7 -'108 

( ~3) 19 12 3 2 6 - ] 7 - 7 - 218 

(~.) 19 12 4 - 13 - 8 - 10 7 31 200 

(7) = UIWI + 112W2 + U 3W3) 

Un it l l'I'[atri x Indi cator N( 7) t(7) 7(7) 

card 
III u, U3 

19 12 5 5 7 5 1 - 17 71 

The algorithm is t hen applied to the next case automatically . A complete set of input-output 
cards is listed in table 1 for l= 19 . 

On the other hand, error controls could stop a case (or the current value of l ) before it has 
run to completion in the following ways : 

(a) The first error control computes the numerical approximations to ~1 ' ~2' 6, ~4 from their 
components a i> b i> Cj and values of Wi' Thus the maximum error in ~j= ajW l + b jW2+ CjW3 is 
E= lail El + Ibj 1E2+ Ici1E3, so that the (scaled) condition E;jm< E would mark the sign discrimination 
on ~ i as untrustworthy. In this case an extra card was printed containing l , i, 5, H, H, ~ *, ~~ , with 
U being the numerical approximation. Th e computation proceeded to the next l automatically. 
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(b) The second elTor control checked each computed norm to stop the machine if any neg
ative norms appeared or if any cf> i failed to have one of the eight neighbors (18). (Non e did.) 

(c) The third error control check ed the imminence of overflow by t esting to see if the 
largest t erm appearing in the norm calculation, n(a+ b+ c)3, becomes too large (> 244) to 
fit in the registers. In case of this eventuality, th e machine proceeded to the nexL case, 
print ing no signal card . These controls required very little storage. 

8. Neighbor Formation and Comparison 

What remains is now t o describe th e portion of th e program that is strictly internal, and 
which , by itself, would not come to the attention of the machine operator. The two main 
steps of the algorithm are n eighbor formation and comparison . 

Th e neighbor formation consists of th e formation of cf> i+l from cf> i and, ultimately, the replace
m ent of cf>i by <l> i+l . H ere, essentially, each neighbor operation of type (18) was tried in succes
sion on <l> i' and the sign discriminations were made t o t est if the pattern (14c) were valid. 
H ere the num erical estimates were kep t in double precision , the integral and fractional par ts 
being stored separately (each consisting of a t most about 13 decimal digits). 

The comparison of <1>0 and <l> i is more complex. Fir·st of all, the cases l = 7 and 13 were 
excluded b~T virt ue of the fact t hat In l= 1 (so t hat + WI or - WI is a uni t any way). In the other 
cases (l ?::: 19), the set of norms in Wo (see eq (17b,d) contains exactly on e norm of value 1. 
Thu s a <l> i is not conceivably proportional to <1>1 unless some colmnn in CP i is a unit (say) 1). A 
fm ther necessary condition is that all t he norm.s in <l> i match those of <1>0. When this was satisfi ed 
th e m achin e multiplied the top row of <1> 0 by 1) , 1) ', and 1)" , in turn (using (9a,b)) t esting at each 
stage to see if CP i or a conjugat e was obtained . (In this last step , the possible column rearrange
ments arc fewer if t here is only one norm in <1> 0 equal to 1. ) 

It is seen th at the machine par t of the algorithm at no time involved division (even such 
minor calcula tions as division by 2 were performed by shifting the binary numbers). 

9 . Supplementary Hand Computation s 

The r estriction th at the whole process be contained in a memory of 1,024 cells proved to 
be very great. As a result, in t he EDV AC program provision was ma de only for double 
precision numerical esLimates (the integral part and the fractional par t being stored separately) 
and single precision integers. Thus only a few cases ran to completion, but only 18 cases 
failed to produce a t least one unit in some <l> i (with or without giving rise to propor tionali ty). 
In these cases a hand computa,t ion produced units from t he algebraic num.bers aut om.atically 
comp uted. Th e general scheme for t hese hand computations was th e following: Suppose t he 
machine has produced t wo nonconjugate numbers h, ~2 with Sl'ome norm, preferabl y a small 
prime p. 1£ p is uniqu ely factorabl e in the field , then ~l must b e associated with a conjugate 
of ~2, as we can tes t in the m anner described earlier in section 3, completely in integral arith
m etic. If the norm is no t prime, more complicated combina tions must be tried, but t hey are 
no different in principle. 

At least half the hand-computed units were obtained quickly in t his fashion . The cases 
that did not yield t o t his method directly did so when more than t wo integers were used in 
prop er combination . 

10. Fundamenta l Units 

In each case those units 'r] were noted for which 

(20) 

over all uni ts produced in the algorithm was a minimum. III accorcla,nce wi th argum.en ts given 
by H asse [6], this would be the fundamental unit if on e were present in the list. 

By a remarkable coincidence, almost simultaneously with the completion of the runs 
(Aug. 1954) P eter Swinnerton-Dyer kindly communicated an independent t able giving t he 
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traces t, t of the fundamental units for 7 ':::; Z< 300. A comparison of the tables showed perfect 
agreement except in the three cases, 1= 373, 379, 463. In just these cases the (hand) computed 
units had positive traces for t and t , which should have suggested that th o units computed 
from the EDVAC output are squares. 

In tho listing in table 2 , the components and traces of both a unit and its reciprocal are 
shown in each case (here t (rJ) = t(l /rJ». In those cn.ses where the units wore computed by 
hand , (*) is shown. In general, regardless of how tho units were produced or derived, the 
symbol "f" indicates th e fundamental unit (and reciprocal) and " ff" is reserved for cases where 
both fundnmentalunit and reciprocal were produced by machine. In the throe exceptional 
cases, the units, denoted by "s", are squares of fundamental units. 

In order, however , to give some kind of reasonable impression of th e amount of labor, 
particularly in view of 13-digit coordinates (!), we should point out that tho number of trials 
in testing fundamental units is easily 

o {log[max t (rJ ),t ('Y/ )]/log IF (21) 

To sec this yel'y quickly, note that if rJis not a fundame ntal lwil , wc Cil,n write (rccalling 
rJrJ'rJI/ = l ), 

rJ = rJ3 ( rJ ~) b 'I 
rJ ' = (rJ~)a (rJ~)b = rJ ob(rJ~)a-b ~ ) (22) 

rJl/ = (rJ~)arJ ~ = rJob - a(rJ~) -a J 
where rJo is somc (as yet unknown) fund am.ental unit, and (L and b are ration al integcrs. By 
taking rcciprocals, or conjugates if necessary, we can assurc oUl'sclyes that (L '2, b '2, 0. Th en 

(22a) 

where 
(22b) 

(23 a) 

or SIIlCC (a+ b)/Af ':::; 2a/M ':::; 2a/ (4a2/3) = 3/ (2a), 

1-10 .:::; 1-1 (3/2a) • (23b) 

But , by th e coneluciing rem arks of section 2, 

and 

thus 

O< b < a < 3 log 1-1 <IS log 2 [max !t( rJ)! ,!lCrJ)I]. 
- - - 2 log 1-10 - log [L /S] 

This verifies the order of magnitude (21 ).5 
The problem of showing the units rJ to be fundam.ental now resolves itself to checking on 

whether any of the units rJ b( rJ, )a is a perfect .1\dpower, where a and b come from the finite set (24). 
But this ch eck is somewhat laborious, even to program for the EDV AC, and owing to the 
convenience of Swinnerton-Dyer's table, it was never carried out. 

5 Mueh stronger inequalities are given by Hasse [6) using lllore specialized notation and infor mation . 
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Prime 

1 

- -

7 

13 

19 

3 1 

37 

43 

61 

67 

73 

79 

97 

103 

109 

127 

139 

151 

]57 

163 

lSI 

193 

m 

-

2 

4 

6 

10 

12 

14 

20 

22 

24 

26 

32 

34 

36 

42 

46 

50 

52 

54 

60 

64 

k g 

----

0 I 

- 2 1 

2 I 

1 2 

- 4 I 

- 3 2 

0 3 

- 2 3 

2 3 

- 6 ] 

6 1 

4 3 

- 1 4 

- 7 2 

- 8 1 

6 3 

- 5 4 

8 I 

2 5 

- 8 3 

Structure Constants 

n a2 f32 1'2 "' I 

--- -- -- -----

1 I ] 0 - 2 

- 1 1 2 1 - 4 

7 3 2 1 - 4 

S 4 4 2 - 7 

- 11 3 5 4 - 10 

- 8 4 6 4 - 11 

9 7 8 5 - 14 

- 5 7 9 6 - 16 

27 9 9 6 - 16 

- 41 7 10 9 - 20 

79 13 10 9 - 20 

61 13 12 9 - 22 

4 12 14 10 - 25 

- 80 12 16 14 - 31 

- 103 13 17 16 - 34 

123 19 17 14 - 32 

- 64 16 20 16 - 37 

169 21 17 16 - 34 

67 21 22 17 - 40 

- 143 19 24 21 - 46 

TABLE 2. Structure constants and units 

Result of a lgorithm Components of unit produced: 
1],- I = UIWI + U2W2+ U3W3 

Trace of units, -

No. of No. of 
1(1]) , t(1]- I) 

f31 1'1 U I U , U3 
matrices units 

----- ---- -

- I - 2 specia l special 1 0 0 - 1 

I I 0 - 2 

- 2 - 3 sp ecia l sp ecillJ - 1 0 0 1 
1 2 I - 4 

- 4 - 5 12 camp 7ff - 1 - 1 0 2 
2 1 2 - 5 

- 6 - S 30 camp 3f - 5 - 7 - 3 I .') 

1 1 17 21 - 49 

- 7 - 8 13 camp 3ff - I - 2 - 1 4 
2 2 3 - 7 

- 8 - 10 32 over If 9 I) 7 - 25 
- 39 - 47 - 65 151 

- 12 - 15 32 ovor 2f - 13 - 16 - 10 39 
11 14 17 - 42 

- 13 - 16 19 camp If - 6 - 9 - 5 20 
52 51 54 - 157 

- 15 - 18 34 over 2f 17 19 13 - 49 
- 31 - 41 - 47 11 9 

- 16 - 17 39 over 9f - 2 - 3 - 2 7 
3 3 4 - 10 

- 22 - 23 50 over 13f - - 3 - 3 - 2 8 
4 3 4 - lJ 

- 22 - 25 46 disc 3f - 12 - 14 - 9 35 
66 85 93 - 244 

- 22 - 26 37 disc If 521 373 443 - 1337 
449 533 627 - 1609 

- 26 - 28 43 over If - 131 - Sl - 99 311 
14565 15367 19277 - 49209 

- 29 - 30 36 over 8f - 3 - 4 - 3 Ie 
4 4 5 - 13 

- 33 - 36 45 disc If 20 17 IS - 55 
- IS4 - 229 - 243 65C 

- 32 - 36 36 over If* - 10557 - S07 1 - 88S3 27511 
2683 2953 3509 - 914t 

- 37 - 38 46 disc 8f - 4 - 4 - 3 11 
5 4 5 - 14 

- 38 - 43 22 over lf 12 15 10 - 3/ 
199 233 258 - 69C 

- 40 - 43 43 disc Jf 142 171 135 - 4M 
1030 lOS6 121)9 - 34H 



-en 
-..,"J 

">i 

199 

2]] 

223 

229 

241 

271 

277 

283 

307 

313 

331 

337 

349 

367 

373 

379 

397 

409 

421 

433 

439 

457 

463 

487 

499 

66 - -1 

70 4 

74 9 

76 7 

80 - 6 

90 - 10 

92 - 9 

94 - 11 

102 5 

104 - 12 

110 0 

112 - 2 

116 12 

122 - 12 

124- 4 

126 - 10 

132 11 

136 10 

140 6 

144 - 1 

146 9 

152 3 

154 - 8 

162 8 

166 - 11 

5 - 59 21 

5 125 25 

2 256 28 

4 212 28 

5 - 125 25 

3 - 261 27 

4 - 236 28 

2 - 304 28 

6 216 36 

l ' - 371 31 

7 49 37 

7 - 25 37 

1 517 43 

3 - 435 37 

7 221 43 

5 - 365 39 

4 544 48 

5 515 49 

7 343 49 

8 16 48 

6 504 52 

8 220 52 

7 - 343 49 

7 505 57 

6 - 536 52 

25 20 - 46 - 41 - 46 33 over 2f 

25 20 - 46 - 45 - 50 63 over If 

24 22 - 47 - 50 - 52 35 over If* 

26 22 - 49 - 50 - 54 23 over If* 

30 25 - 56 - 50 - 55 27 over H 

33 30 - 64 - 57 - 60 300vcr If* 

34 30 - 65 - 58 - 62 34 over 1 f 

34 32 - 67 - 60 - 62 33 o ' -er If* 

36 30 - 67 - 66 - 72 30 disc If* 

37 36 - 74 - 67 - 68 39 ovcr 4ff 

40 33 - 74 - 70 - 77 30 di sf) Jf 

41 34 - 76 - 71 - 78 39 oyer If* 

37 36 - 74 - 79 - 80 57 over 71f 

44 41 - 86 - 78 - 81 43 over If* 

44 37 - 82 - 80 - 87 35 over 1s* 

46 41 - 88 -- 80 - 85 38 oYer Is* 

44 40 - 85 - 88 - 92 60 disc If 

46 4 1 - 88 - 90 - 95 31 d isc H * 

49 42 - 92 - 91 - 98 31 disc If* 

52 44 - 1) 7 - 92 - 100 50 disc If* 

50 44 - 95 - 96 - 102 49 o ,-er If* 

54 46 - 101 - 98 - 106 47 oyer If* 

56 49 - 106 - 98 - 105 44 over 1s* 

56 49 - 106 - 106 - 11 3 33 over If* 

60 54 - 115 - 106 - 112 56 over If* 

- 45 - 35 
95 105 
17 12 

233 27 3 
- 117735 - 120801 

61785 49591 
5673 6737 

162609 129785 
- 107 - 86 

87 94 
- 37 - 19 
6029 6254 
- 27 - 21 
277 291 

14945 J 7561 
- 38735 - 39631 

- 3988957 - 4265923 
1233880499 1405925741 

- 5 - 6 
6 6 

- 31 - 34 
29 32 

127 144 
5189 5685 

- 6 - 6 
7 6 

10967 12600 
654389 67 1994 

- 863424 - 924319 
- 771297 - 862345 
- 269376 - 304892 
- 258046 - 269967 

37 33 
- 627 - 719 
5133 5330 

495 4 18 
122 130 

1167 1304 
- 111 055 - 120569 

91329 99383 
958722876509 814793743515 
- 2609272963 - 2939073045 

- 47 10533 - 5036695 
2763599779 3040707889 

- 57726 -- 49333 
- 49086 - 51886 

10649 11170 
2607 2904 

4533791744955 5045136467209 
- 3447237 - 3665999 

- - --

- 39 
121 

16 
296 

- 96959 
60217 

7111 
154103 

- 93 
108 

- 28 
7316 
- 23 
337 

14607 
- 46569 

- 3500815 
1503532433 

- 5 
7 

- 28 
35 

116 
6266 

- 5 
7 

10682 
771641 

- 772262 
- 923164 
- 257481 
- 305561 

35 
- 741 
45 lJ 

476 
109 

1381 
- 102055 

107897 
917779916345 
- 3070187671 

- 4281243 
3251216741 

- 52147 
- 57437 

9561 
3046 

4350456032733 
-4)04363 

11 
- 32 

- 4 
- 80 

33549 
- 171 59 

- 1952 
- 44649 

28 
- 28 

8 
- 1959 

7 
- 90 

- 4711 
12493 

1175569 
- 414333867 

- 1 
9 

- 9 
- 38 

- 1714 
1 

- 2 
- 3424 

- 209802 
256000 
255680 

83174 
83357 

- 10 
208 

- 1497 
- 138 

- 36 
- 385 
33367 

- 29860 
- 269129653636 

861853367 
1402847 

- 905552440 
15920 
15840 

- 3138 
- 855 

- 1392938424489 
1121759 

9 

5 
2 
5 
3 

6 

4 
9 

5 
3 
5 
5 
3 
6 
9 
3 
6 
7 
o 

o 
9 
4 

5 
6 
9 
4 
5 
7 
4 
9 
1 
2 
I) 

9 
9 
9 
1 
9 
6 

o 

7 
9 



11 . Conclusion 

The EDV AC produced 176 pages of tabulations, too long to be reproduced here, including 
some 3,500 algebraic numbers with small norms, in less than 6 hours. With the precision 
provided for in the coding, only four cases ran to completion, but 25 of the 43 cases run produced 
at least one unit in the process (for l= 97, 13 units were produced). The remaining 18 cases 
provided enough material to permit the hand computation of at least one unit. (For l= 499, the 
unit required 43 decimal places to check by hand). 

In every case where g= 1 the explicitly lmown fundamental unit (- (k - g+ 1) /2, 
- (k - g+ l) /2, - (k - g- l) /2 was among those produced by machine, as well as the (non
fundamental) unit (- 1, - 2,0), except when l= 37 and 313. 

In addition to units, mentioned earlier, the number of matrices produced after cf>o is shown 
in table 2, with the following symbols denoting the outcome of the computation (see section 7) : 
"comp" meaning completed, "disc" meaning incomplete (by failure of sign discriminat ion), 
"over" meaning incomplete (by overflow in norm formation). 

It is clear, however, that to obtain the fullest benefit of this algorithm one would require 
considerably greater storage, both to perform the unmodified algorithm (guaranteeing a 
fundamental unit) and to permit sufficient decimal (or preferably integral) precision. 
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