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A Computation of Cyclic Cubic Units'

Harvey Cohn and Saul Gorn*

The paper is a report on a tabulation of units performed on the EDVAC at the U. S.
Army Proving Grounds in Aberdeen, Maryland. The algebraic number fields involved
were 45 cyclic cubie fields of diseriminant [ 2, where [ is one of the primes of form 3m-1
from 7 through 499. The object of the search was the discovery of units through a specific
method, an algorithm based on Minkowski’s geometric number theory but particularly
amenable to a stored-program computer. In the computation, combined use was made of
integral arithmetic and decimal arithmetic but with careful error analysis.

1. Introduction

An essential part of the lure of algebraic number theory consists of tabulations of almost
unpredictable irregularity. The advanced theory has somehow surpassed the scope of numeri-
cal data without perceptibly improving the power to predict such data. As a result, for a
small calculation an algebraic number theorist would not forego the personal satisfaction that
results from the many ingenious, fortuitous, and deeply meaningful combinations of integers
that he would encounter. Yet to really appreciate these vital irregularities he needs longer
tabulations, with the inevitable requirements of uniformity and efficiency. Here the modern
electronic digital computer can be used profitably.

The discussion of the problem that follows will be primarily from the point of view of the
computer program rather than from its theoretical development. Thus, for instance, the field
will have to be regarded not as a set of elements satisfying certain axioms, etc., in the manner
of Dedekind and Steinitz, but as an algebra with a definite basis and definite “structure con-
stants” for multiplications. As a matter of historical fact the exhibiting of a basis was gen-
erally far from trivial and lagged considerably behind existence theorems [7, 10]

2. Description of Fields

For any prime [(=3m-1) a cyclic cubic field will be defined.  Our interest centers around
algebraic integers of such a field, written as follows (owing to the presence of the so-called normal
basis):

t=aw,+bw+cws= (a,b,c). (1)

Here a, b, ¢ are rational integers (or coordinates), and w;, w,, ws (or the normal basis) are the
three roots of the defining (normal) equation [8].

F(w)=w?+w®—mw—n=0. (2)
Here 7 is defined as follows: First, 4/ is decomposed (uniquely) into the combination
4l=A24-27¢%, (3)
where the signs of A and ¢ are specified by the conditions (in integral %)

A=3k+1,  ¢>0. (4a)

I The computing time was provided under contract DA-028-0 RD-12332 with the United States Army Oflice of Ordnance Research. The
first named author was then at Wayne University, Detroit, Mich., and the second named author was at the Ballistics Research Laboratory,
Aberdeen, Md. The first named author is currently at ' Washington University, St. Louis, Mo.

The preliminary report (reference [5]), was cleared for publication by the Ballistics Research Laboratory on April 26, 1956. The background
description, the illustrative examples, and the final tabulation were prepared at the National Bureau of Standards. This work has formed the
basis for a further calculation currently on the SEAC.

2 Now at Moore School of Electrical Engineering, Philadelphia, Pa.

3 Ttalicized figures in brackets indicate the literature references at the end of this paper.
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Then, finally an integer n always exists, for which
2Tn=(A+-3)[—1. (4b)

All algebraic integers under discussion are real.

The most general baszs of the field would be given by an integral unimodular combination
Ci=> a0 1,j=1,2,3, det|la,;/=-+1. There is essentially no other basis [9].

The particular designation of roots is standardized as

Wy >y > w3, (5)

Thus we can distinguish among conjugates ¢ (given above), and £, &7 given by
& =cw+ aw,+bws= (¢,a,b) (6a)
" =bw;+ cw;,+ aws= (b,¢,a) (6b)

(formed by cyclic permutation of w;, w,, ws), so that &/=¢, etec. As a matter of notation, the
subscripts denote conjugates only in reference to the basis w;. Later on & shall denote (unre-
lated) integers of the field.

It was mentioned earlier that the discriminant of the field or the determinant

2
Wy Wy wa!
Wy w3 W (7)
w3 w1 wo

has the value /2. This fact (which can be verified directly from eq (1)) 1s not used directly
in the machine computation but uniquely identifies the field in question [6].
The multiplication of any two numbers in the field can be expressed in integral arithmetic;
e. g,
&= (ar,b,e1), &= (ax,b,,¢,), (8)

then one can find the explicit representation of £¢ in terms of the normal basis by means of
the structure constants a;, B8y, Vi, @, B, s, defined by

w% = Ct‘1¢t’1‘+‘ Blw2+ Yiws
and
Wow3z = ClaW; + 62w2+ Y2Ws3.

The explicit formula is, then, e. g.,

EIE‘Z: (A;B;O)y (931)

where
A:a1(11(12+’Ylb1b2+31C102+Bz(albz+0251)+az(b16’2+bz('1)+'Y:(01(12+¢’2(11),
B:ﬂx(llﬂz‘f‘a1b1b2+71clf2+72(01b2+(lzbl)+ﬁ2(b1(’2+b201)+az(01’12+('2(11>;l (9b)
0171010'2‘1‘ Blblb2+a10102+a2(arlbz+02b1)+’Y2(blc2+b201)+62((’1(12+(’:U|)»J

This product can therefore be computed in the following tabular form:

s ay By Y1
b1b2 Y1 23] B
C1C2 Bi Y1 ay

byt ash, B> vs s
bica b, o Be Y2
€A+ a0 Yo ay B

A B 0.
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These structure constants are given explicitly by the formulas:

mtk+1 g+m—a —g+m—a,
az:—ng, Ba=" 5 ? Vo=
. i (90)
ar=ay—m-+1 6129—*—,2_0‘27 71:_'(/_‘;{_&2'J

They are listed in table 2 (see p. 166).
In particular, the norm of & is defined for (1) by the integer

NE)=Et't"=—n(a+b+c)*—1l{(k—g+1)Za?/2+ (k+g+1)Zab?/2+abe}, (10a)

and the trace is defined by

t)=¢+E+E"=—(@+b+o), (10b)
so that the defining equation of & & or &’ is
E—t()E+1(tE)E—N() =0, (10)

with the further designation

1) =tE)=—m(a+b-+c)*+1Zab. (10¢)

Note that if a-+b-+¢=0, then N(¢) is divisible by /. Thus, applying this information to

g'—f/:(((I—C),(b—('),(C—(l)),
we find N(E—&)=(E—&)(E —¢) (¢ —¢) 1s an integer divisible by /.
3. Units
Units are algebraic integers of norm equal to £1. They are written as

="y 01+ Uswy - Uzwy = (U1,Us,Us3), (11)

where, as before, u;, u,, u; are integers. The most general unit has the form +7%,?, where a

and b are (positive, negative, or zero) integers, whereas 7, is a specially designated fundamental
unit [6, p. 19]. The only fundamental units are -£g%' + (n))*', 4+ (5,)*". In what follows,
units will be normalized (by a change of sign) to have, conveniently, only norm 1.

If we take eq (10a) and set N(¢)=1 and (a,b,¢)= (u;,us,u3), we obtain a cubic equation in
these three latter unknowns, which we are in effect solving.  Now such an equation (unlike,
say, the Pell equation), has very little intrinsic interest. The interest in units is derived en-
tirely from their role in unique factorization.

To give an example, when /=19, one finds (as a byproduct of the main calculation) that

N(w)=NQ2w—w,)=T. (12)
This does not mean that 7 has two different factorizations, although seemingly
7= 0w wowy= (20;— wy) 2wy — w3) (23— wy). (12a)
The reason, of course, is that the factors can pair off as associates, or
(20— wg) [wr= (—wr—2w,), (12b)

a unit of the field. To see this, in (12a) calling one set of factors & &, & and the other
&, &, &, respectively, we must verify that one of the ratios &/&, &/&, & /& is a unit. Thus
for example, in accordance with the rules of section 2, we compute
g EEE (A% B50Y
& LEE N(&)
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and find that A* B* and C* are now divisible by N(¢). In practice, the whole computation
would be performed modulo N(£,)(=7 here), using the structure constants of table 2.

Thus the preliminary step in understanding factorization in fields becomes the recognition
of units. Traditionally, one creates, by trial and error, combinations such as (12a), and one
hunts for units, usually with better luck than one can completely explain [4].

The method used here will be very systematic. It is an algorithm for creating a surfeit
of algebraic integers with small norms (including norm unity). In the process, a unit, indeed
a fundamental unit, is inevitably produced. (Unfortunately, machine limitations forced the
weakening of the method, as is explained in section 6.)

4. The Sign-Discrimination Algorithm

One operates with so-called reduced 3 <4 matrices of algebraic integers (2, section 4]:

& & & &
b= & & & & (14a)

£ £y £ O£
The columns represent conjugates of algebraic integers of sum zero
t&ht+&+6=0 (14b)

and such that any three of the four & form a basis. The further, and most vital, condition is
that the sign pattern be
+ - = +
sgn ¢=| — + — -+ (14c)
= = a5 o

either as ¢ now stands or under some rearrangement of columns.

The algorithm is a method of generating such matrices in chains. A matrix ¢, is said to
be a neighbor of ¢ if it is formed by adding one column of ¢ to another column of ¢ and at the
same time subtracting it from a third column of ¢ (the three columns being different). Thus
there are 4! possibilities to consider corresponding to the distinet triples (7,7,7s), where 1 <j <4.
For instance, the operation

¢[341]e, (15a)

can be understood to mean that the “third column of ¢ is increased by the fourth column, which
in turn diminishes the first,” or, writing just the first rows,

¢ = (&, &, &, &) }
¢1:(517E47 22) E3+$4) £4>

(15b)

(The relation (15a) can be read backward as an operation on ¢,.) Of the 4! possible neighbors,
either 3, 4, 5, or 6 will be reduced, depending on inequalities satisfied by the elements [2, section
10].

We next define the conjugate ¢” of a matrix ¢ to be the matrix formed by replacing the
first row & by its conjugate & and forming the remaining rows from £ instead of ¢. The
conjugate ¢’ will not be reduced as it stands, but a rearrangement of the columns (in this case
the interchange of first and second) will render it reduced. Likewise, we define ¢’’. Note
¢'""=¢ again. Finally, two matrices ¢, and ¢, are said to be proportional to one another if,
for ¢¥=¢,, o), or ¢7, and numbers 7, n’, n’’,
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n 0 0)
0 . (16)

0
0 O n ”

It is easily seen that 5, n’, n”” are necessarily the conjugates of a unit, possibly 1, having
norm 1. (In some cases ¢, is proportional to itself, leading to interesting possibilities related
to ramified primes but beyond the scope of the present discussion [2, section 22].) In all cases,
proportional matrices will have the same set of norms (possibly under rearrangement).

The algorithm operates as follows: The initial matrix is taken for convenience (writing
only the first row) as

b= (w1, w3, ws, 1), n_>0, (17a)
with norms respectively
(n, n, n, 1), (17b)
or as
do= (w1t w2, w3+ w;, —wy, 1) n<_0 (17¢)
with norms respectively
(—n+m, —n-+m, —n, 1). (17d)

Branching out from ¢,, one forms all reduced neighbors of matrices present, terminating
branch when the matrix is proportional to one already present. Indeed, the number of reduced
matrices is finite to within proportionalities [2, section 8]. The factors of proportionality
7 are units among which can always be found the fundamental unit [2, section 18].

5. Modified Algerithm

The original algorithm, as just described, is 2 branching algorithm in which each ¢ may
have more than one successor, and each ¢ 1s compared with all those preceding. Because
each ¢ contains 12 components and there could be more than 50 produced, the internal storage
of the EDVAC would be taxed before the algorithm had gone very far. The branching
algorithm was therefore modified to a form in which only one successor is chosen for each ¢,
and the comparison (16) is always between ¢, and the most recent ¢.

The modification consisted in trying only one-third of the 4! possible neighbors, namely,

[123], [132], [423], [432], [214], [241], [314], [341] (18)

characterized by the fact that the second and third indices are either 2,3 or 1,4 in some order.

Either one or two neighbors of this type occur, but the EDVAC takes only the first that occurs

in the program, thus we have a chain-type algorithm rather than a branching algorithm, with
4

the further property that >3/, decreases at each step [2, section 17], whereas the corresponding
1

sums for the second and third row (conjugates) increase or remain the same. This assures

us that when the inevitable proportionality occurs, the unit will not be 1 (but it need not be

a fundamental unit either).
As an illustration (see table 1) * the matrix sequence ¢, i1s reproduced for /=19. It is

6u[241] ¢[132] ¢[314] Gf314] $:[314] ¢5[423] 9o[341] 9:{123] 6[123] G[123] hrol432] bul214] o

The EDVAC discovered that ¢, is proportional to (some rearrangement of) ¢,,. The specific
numerical values are of some interest. We therefore calculate

4 A full explanation of table 1 is given in section 7.
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w; = 2.507 018 643
wy=—1.221 876 162
wy;=—2.285 142 481,

which (except for minor modifications in section 7) is the accuracy presented by the EDVAC.

Thus

Po= ((1:(),0) (0}170> (0y0)1> (—17_1)_1))
or
2.507 018 643 —2.285 142 481 —1.221 876 162 1
do=| —1.221 876 162 2.507 018 643 —2.285 142 481 1
—2.285 142 481 —1.221 876 162 2.507 018 643 1
o= ((77595) (47W316) (2’6’ﬂ1) (“13'“8'—«10))
or
0.014 037 286 —0.017 151 828 —0.032 077 205 0.035 191 747
= —7.443 752 324 17.010 034 653 —18.661 625 853 9.095 343 524
—9.570 284 962 —23.992 882 825 11.693 703 058 21.869 464 729

The EDVAC then “recognized’ that the first column would serve as a proportionality factor,
i. e., if we rearrange the columns of ¢, to form

h d’T‘z:((_lS;_Sa_lo); (2:6)_1>7 (4’-316)7 (775)5))7
en
7 0 0

¢>1k2 =|0 711 0 ¢07
0 0 nll

where p=0.014 037 286, »’=—7.443 752 34, and ”"=—9.570 284 962. 1In this case the
decimal accuracy would be easily sufficient for ‘“recognition,” but integral arithmetic was used
(see section 8).

The unit produced, n=(7,5,5), is not fundamental, but, early in the course of the compu-
tation, for ¢,, & happened to come out as o= (—1,—1,0), a fundamental unit (see section 10).
Actually,

7= (n)*/mo-
This can be easily verified from the multiplication scheme (9), e. g., (50)*=(—6,—3,—5),
(o) ~'=(2,2,1).

6. Numerical Accuracy

As the algorithm was first conceived and applied in experiment |2, section 11], decimal
accuracy seemed sufficient because the symmetric functions could be correctly evaluated by
the nearest integer when necessary. In a long computation, however, the algorithm can go
astray in many ways:

(a) The algorithm may incorrectly discriminate the reduced neighbors from the others.
This is bound to happen because the subset of the reduced neighbors chosen by the modified

4
algorithm just mentioned has > |, approaching zero monotonically. The error in the quanti-
1

ties &; can soon be bigger than the quantities themselves, making a simple discrimination in
sign untrustworthy.

(b) It may make uncertain the decision as to whether ¢ and ¢* are proportional; for
example, it may have to be decided that (using an obvious notation), &/&=§&/&=&/&=&/&,
in which all the quantities involved are in error.
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(¢) It may of course make the approximations to the all-important resulting units untrust-
worthy; for these are the ratios discussed in (b).

A vital and desirable modification, to control the accuracy of the computations, consisted
in carrying out all arithmetic operations exactly by using integral arithmetic; (explicit formulas
for the integral arithmetic operations on two such integers are given in section 2). Furthermore,
all quotients were removed from the algorithm (see section 8).

It would also have been quite easy in principle to have handled the sign discriminations
in integral arithmetic. For instance, to tell if two algebraic numbers £ and & agree in sign,
all we need have done is test to see if the three conjugates £&, ££, and £/£; are each positive
(total positiveness), which, by Descartes’ law of signs, is a matter of seeing that the defining
eq (10) for (£&) has (integral) coefficients with alternating sign. At the time, however, the
EDVAC internal storage was not sufficient to handle the enormous integers, so that an auto-
matic error analysis was used instead. This was the only departure from integral arithmetic.

7. Input-Output and Error Controls

With the exception of the following operations, the problem was run completely internally,
with no human intervention:

(a) For ecach [/, the structure constants in table 2 were computed in advance by hand
(merely to save space in the memory) through the «, column. (The entire table is given for
convenience of hand checking.)

(b) For each /, the zeros (and maximum errors) of the polynomial (2) were computed in
advance by machine. The polynomial was scaled by dividing its zeros by m and carrying
through the computation in fixed point. The root-finding method for the scaled polynomial,

R\ AR (A n \
so=() 4 () = o) "

is the bisection method (Horner’s method in binary), for appropriate isolating intervals. The
maximum error in the coeflicients of the scaled polynomial, for EDVAC, is 2% whence the
maximum error in evaluating the scaled polynomial is 7>2-%; if, then, we use e=2"" the
machine will provide an automatic error analysis in solving for »; by finding the zeros »; of
f(w)+2¢ 17 of f(w)—2¢ and setting

w;  r{+ry i =i

m- 2 9T 2

Because the numerical values of the zeros w; are only used in the main algorithm to discriminate
the signs of linear homogeneous expressions, aw; 4 bw,+ cws, the scaled values w;/m and their
error bounds e; were used directly.

(¢) The input and output of the algorithm itself was by means of IBM cards, in decimal.
(This required internal conversion on input and output because the EDVAC arithmetic is
binary.) For each / two IBM cards were read in.  One contained the integers [, m, g, as, n.
The other contained the integer / together with the (10-digit) decimals w,/m, wo/m, w;/m, and
the errors in w;, wy, ws.

The output cards were as follows: Kirst, there were copies of the two input cards;
second, for each ¢;, as soon as it was produced, four cards were punched with j=123 4,
respectively, indicating the column of ¢, (prior to possible rearrangement) being described.
The algebraic integer & was described by the integers /, 7, j, a, b,, ¢;, N(§), t(£), 1(¢), where N,
t, t refer to the defining eq (10) and

&= ;w1 b jws+cjws.

Third, there would be a card containing the integers (see (11)) [, 7, j(=5), uy, Uy, u;, N(&)(=1),
t(§), (&) if the algorithm runs to completion to produce a ¢; proportional to ¢, with factor ».
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TaBLE 1. Input-output cards

The material in this table is presented in the form in which it is printed out by EDVAC.

JANPUT CARDS

Struc- l m q k a n
ture
con-
stants 19 6 1 2 3 7

Roots ! wi/m o/ m w3/m Error w/m | Error wy/m | Error wy/m
and

errors
(X10-1) 19 4178364406 — 2036460270 — 3808570802 1 1 1

OUTPUT CARDS

(¢i= i1+ biws + ciws)
Matrix l Matrix | Column N(g) t(&) 1(%)
cards number | number
a; bi C;
(8) 19 0 1 1 0 0 7 =1l — @
(&) 19 0 2 0 0 1 7 —1 —6
(&) 19 0 3 0 1 0 7 — il —6
(&s) 19 0 4 — il =1 — il 1 3 3
(&) 19 1 1 D) 1 1 11 — 4 — 1l
(&) 19 1 2 —1l —il 0 1 2 —
(&) 19 1 3 0 1 0 7 — ] —6
(&s) 19 1 4 —1 —1 —1 1 3 3
(&) 19 2 1 2 2 1 1 —5 2
(&) 19 2 ) — 1l —9) 0 1 3 — I3
(&) 19 2 3 0 1 0 7 — il —6
(&) 19 2 4 — 1l —1 —1 1 3 &
(&) 19 3 1 2 2 1 i — 6 2
(&) 19 3 2 — 1 — ) 0 1 3 —16
(&) 19 3 3 2 3 1 11 —6 —7
(82 19 3 4 —§ - —9) 8 15
(&) 19 4 1 2 2 1 1 —5 2
(&) 19 4 D) =1l =9 0 1 3 —16
(&) 19 4 3 4 5 2 7 —lil —4
(1) 19 4 4 — 3 —5 —3 11 13 31
(&) 19 5 1 2 2 1 1 —5 2
(&) 19 5 2 —1l =3 0 1 3 —16
(&) 19 5 3 6 7 3 1 — 1i@ 3
(&) 19 5 4 —F —7 —l 7 18 51
(&) 19 6 1 9 2 1 1 — 5 2
(&) 19 6 7 —1 —0) 0 1 3 —16
(&) 19 6 3 7 9 3 19 —19 —57
(&) 19 6 4 — 8 —9 — 1 il 14
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TABLE 1.

Input-output cards—Continued

OUTPUT CARDS—continued

((i=aiw; + biws 1 ciws)
Matrix l Matrix | Column | N(&;) t(%:) 1(&:)
cards number | number
a; b; c;
(&) 19 7 1 10 11 5 7 —26 29
(&) 19 7 2 =1 —9 0 1 3 6
(&) 19 7 3 — il 0 =il 1 2 —5
(&) 19 q 4| -8 9 . 1 21 14
|
&) | 19 8 1: 9 9 5 1 =03 75
&) | 19 8 2| —1 —2 0 1 3 —16
(&) | 19 8 3| 0 2 =il 7 =] —44
(&) | 19 8 4 — —q) 4 1 21 14
(&) 19 9 1! 8 7 5 7 — ) 89
(&) 19 9 2| —1 —2 0 1 3 —16
(&) 19 9 3j 1 4 1 1| — 4 —115
() 19 9 4 — g —0 =4 1 21 14
| ‘
(&) 19 10 1| 7 5 5 1| —17 71
(&) 19 10 2| —1 —2 0 1 3 —16
(&) 19 10 3 2 6 . 7 7 218
(&) 19 10 4 — 6 —4 — i1 1 21 14
(&) 19 11 1 7 5 5| 1| 17 71
(&) 19 11 D —8 - 1 11 10 —353
(&) 19 11 3 2| 6 ] 7 17 — I
(ts) 19 11 4 —G =8 —f3 1 14 21
(&) 19 12 I 7| 5 5 1 —17| 71
(&) 19 12 2 4| =3 6 7| =4 — 408
(&) 19 12 3 2 6 =1 7 — — il
(%) 19 12 4 = 13‘ —f — il 7 31 200
(1= w101 + Uy + usws)
Unit l Matrix | Indicator | - N(n) t(n) T(n)
card
Uy Uy U
19 12 5 5 7| 5 1 — iy 71

The algorithm is then applied to the next case automatically. A complete set of input-output

cards 1s listed in table 1 for /=19.

On the other hand, error controls could stop a case (or the current value of /) before it has
run to completion in the following ways:

(a) The first error control computes the numerical approximations to &, &, &, & from their
components a;, b;, ¢; and values of w;.
e—a;|e+ |b;|e+ |¢;|es, so that the (scaled) condition e;/m< e would mark the sign discrimination
on ¢ asuntrustworthy. In this case an extra card was printed containing/, 7, 5, £, £, £%, £, with
The computation proceeded to the next / automatically.

£ being the numerical approximation.

432248—57——2
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(b) The second error control checked each computed norm to stop the machine if any neg-
ative norms appeared or if any ¢, failed to have one of the eight neighbors (18). (None did.)

(¢) The third error control checked the imminence of overflow by testing to see if the
largest term appearing in the norm calculation, n(a-+b-¢)*, becomes too large (>2*) to
fit in the registers. In case of this eventuality, the machine proceeded to the next case,
printing no signal card. These controls required very little storage.

8. Neighbor Formation and Comparison

What remains is now to describe the portion of the program that is strictly internal, and
which, by itself, would not come to the attention of the machine operator. The two main
steps of the algorithm are neighbor formation and comparison.

The neighbor formation consists of the formation of ¢, from ¢; and, ultimately, the replace-
ment of ¢; by ¢,.,. Here, essentially, each neighbor operation of type (18) was tried in succes-
sion on ¢;, and the sign discriminations were made to test if the pattern (14¢) were valid.
Here the numerical estimates were kept in double precision, the integral and fractional parts
being stored separately (each consisting of at most about 13 decimal digits).

The comparison of ¢, and ¢, is more complex. First of all, the cases /=7 and 13 were
excluded by virtue of the fact that [n|=1 (so that 4w, or —w; 1s a unit anyway). In the other
cases ([=19), the set of norms in w, (see eq (17b,d)) contains exactly one norm of value 1.
Thus a ¢, is not conceivably proportional to ¢, unless some column in ¢; is a unit (say) n. A
further necessary condition is that all the norms in ¢, match those of ¢,.  When this was satisfied
the machine multiplied the top row of ¢, by 1, n’, and »’/, in turn (using (9a,b)) testing at each
stage to see if ¢, or a conjugate was obtained. (In this last step, the possible column rearrange-
ments are fewer if there is only one norm in ¢, equal to 1.)

It is seen that the machine part of the algorithm at no time involved division (even such
minor calculations as division by 2 were performed by shifting the binary numbers).

9. Supplementary Hand Computations

The restriction that the whole process be contained in a memory of 1,024 cells proved to
be very great. As a result, in the EDVAC program provision was made only for double
precision numerical estimates (the integral part and the fractional part being stored separately)
and single precision integers. Thus only a few cases ran to completion, but only 18 cases
failed to produce at least one unit in some ¢, (with or without giving rise to proportionality).
In these cases a hand computation produced units from the algebraic numbers automatically
computed. The general scheme for these hand computations was the following: Suppose the
machine has produced two nonconjugate numbers &, & with same norm, preferably a small
prime p. If p is uniquely factorable in the field, then & must be associated with a conjugate
of &, as we can test in the manner described earlier in section 3, completely in integral arith-
metic. If the norm is not prime, more complicated combinations must be tried, but they are
no different in principle.

At least half the hand-computed units were obtained quickly in this fashion. The cases
that did not yield to this method directly did so when more than two integers were used in
proper combination.

10. Fundamental Units

In each case those units 7 were noted for which

max #(n),t(n) (20)

over all units produced in the algorithm was a minimum. In accordance with arguments given
by Hasse [6], this would be the fundamental unit if one were present in the list.

By a remarkable coincidence, almost simultaneously with the completion of the runs
(Aug. 1954) Peter Swinnerton-Dyer kindly communicated an independent table giving the
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traces ¢,  of the fundamental units for 7</<300. A comparison of the tables showed perfect
agreement except in the three cases, /=373, 379, 463. In just these cases the (hand) computed
units had positive traces for ¢ and 7, which should have suggested that the units computed
from the EDVAC output are squares.

In the listing in table 2, the components and traces of both a unit and its reciprocal are
shown in each case (here #(5)=t(1/7)). In those cases where the units were computed by
hand, (*) is shown. In general, regardless of how the units were produced or derived, the
symbol “f”" indicates the fundamental unit (and reciprocal) and “ff”” is reserved for cases where
both fundamental unit and reciprocal were produced by machine. In the three exceptional
cases, the units, denoted by ‘‘s”, are squares of fundamental units.

In order, however, to give some kind of reasonable impression of the amount of labor,
particularly in view of 13-digit coordinates (!), we should point out that the number of trials
in testing fundamental units is easily

0 {loglmex t(n),t(n)]/log 1 }2 (21)
To see this very quickly, note that if 5 is not & fundamental unit, we can write (recalling
m'n’ =1),
=" (n9)"
7= (n0)*(mo)"=n5 " ()" > (22)
0" = (ng) " no=mn5 "~ *(n5)

where 5, 1s some (as vet unknown) fundamental unit, and @ and b are rational integers. By
taking reciprocals, or conjugates if necessery, we can assure ourselves that «>b>0. Then

1" (n")*=ne™, (22a)
where

M=a*—ab- b2 (22b)
Letting max (|q), [n|, [2”[)=H, max (Inol, [nol, [n])=H,, we find
H*H>Ho™, (231)
or since (a+0b)/M<2a/M<2a/(4a*/3)=3/(2a),
H, <H®2, (23b)
But, by the concluding remarks of section 2,

< mo—mo!|m0— 10| [ 10— mo| <8 H?

and
H2 4 (') (0" )=t ()2 — 2% (n);
thus
3log H __ leg 2 [max [(n)].[ ()],
0sb<esoqe m =1 Tog [1/8]

This verifies the order of magnitude (21).°

The problem of showing the units  to be fundamental now resolves itself to checking on
whether any of the units 2°(y")%is a perfect M power, where @ and b come from the finite set (24).
But this check is somewhat laborious, even to program for the EDVAC, and owing to the
convenience of Swinnerton-Dyer’s table, it was never carried out.

5 Much stronger inequalities are given by Hasse [6] using more specialized notation and information.
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TaBLE 2. Structure constants and unaits

Prime

13

19

31

37

43

61

73

79

97

102

109

m

10

12

14

20

22

24

26

32

34

36

42

46

50

52

54

60

64

Structure Constants

27

—41

79

61

=&

—103

125

—64

169

67

=i

9

13

13

12

12

13

19

21

21

19

B2

10

10

12

14

16

17

17

20

17

22

24

0

9

9

10

14

16

=10}

= 11l

—14

—16

—1l(§

=240

=20

—22

—25

=l

—34

—32

=&

—34

—40

—46

= 117

—13

=I5

=i

—22

=09

=29

5520

—99

—33

—32

—37

—38

—40

—10

= Il

=15

=1l

=43

=24

—26

=2

—30

—36

=o{t

—38

—43

—43

Result of algorithm

No. of

No. of
matrices | units
special | special
special | special
12 comp 7
30 comp 3f
13 comp 3ff
32 over 1f
32 over 2f
19 comp 1f
34 over 2f
39 over 9f
50 over 13f
46 disc 3f
37 dise 1f
43 over 1f
36 over 8f
45 dise 1f
36 over 1f*
46 disc 8f
22 over 1f
43 disc 1f

Components of unit produced:

7, 1= Uywy + Usws + Uzws

9
—39
—13

11
—6
52
17
=3Il
=2
3
=8

4

=11%

66

521
449

— 131
14565
=3

4

20

— 184
— 10557
2683
—4

b}
12
199
142
1030

Trace of units,

t(n), ttn™)
Uz Us

0 0 —1
| 0 —2
0 0 1
2 1 —4
—1 0 2
1 2 —5
—7 —3 15
17 21 —49
—2 —1 4
2 5 -7
9 U —25
—47 —65 i5;
—16 —10 39
14 17 —42
—9 —5 20
il 54 —157
19 13 —49
—41]1 —47 119
—3 —2 7
3 4 —10
—3 —2 8
3 4 —11
—14 —9 35
85 93 —244
Bl 443 —1337
533 627 — 1609
—81 —99 311
15367 19277 — 49209
—4 —3 10
4 5 —13
17 18 —55
—229 —243 656
—8071 — 8883 27511
2953 3509 —9145
—4 —3 11
4 5 —14
15 10 —37
233 258 — 690
171 1135 —448
1086 1299 —3415



431

199

211

223

229

241

313

331

337

349

367

373

379

397

409

421

433

439

457

463

487

499

80

90

92

94

102

104

110

112

116

122

124

126

132

136

140

144

146

152

154

162

166

=11l

== 1%

12

=1z

= 10

Lt

10

== 111

256

212

== {25

=gl

—236

—304

216

=87l

49

—2b

517

—435

221

—365

544

515

343

504

220

—343

21

25

28

28

25

28

28

36

31

43

39

48

49

49

25

25

24

26

30

33

34

34

36

37

40

4

44

44

46

44

46

49

20

20

22

22

25

30

30

32

30

36

33

34

36

41

37

41

40

41

42

44

44

46

49

49

—46
—46
—47

—49

—86
—82

—88

—88
92
=)
=
—101
—106
— 106

So

—80

— 80

38

—90

— {0l

=92

=0

=k

—98

= I

— 106

|

—46

=3{0)

—

—54

S00

=60

—62

={i%

— il

=87

=14

=02

=98

=00

— 102

=106

—105

— 113

—112

33 over

63 over

35 over

23 over

27 over

30 over

34 over

33 over

30 disc

39 over

30 dise

39 over

57 over

43 over

35 over

38 over

60 dise

31 dise

31 dise

50 dise

49 over

47 over

44 over

33 over

56 over

2f

1f

i

1l

1f

i

1f

it

1if

4ff

1f

i

7ft

1l

1s*

1s

1f

s

i

1f*

1f*

1f*

1s*

s

1f*

—45

95

17

233

— 117735
61785
5673
162609
=07

87

=&if

6029

=27

277

14945

— 38735
— 3988957
1233880499
={5

6
=il

29

127

5189

=

7

10967

654389

— 863424

— 771297
—269376

— 258046

37

— 627

5133

495

122

1167
—111055
91329
958722876509
—2609272963
—4710533
2763599779
— 57726
—49086
10649

2607
4533791744955
— 3447237

—35

105

12

275

— 120801
49591
6737
129785
—86

94

=11t

6254

=5

291

17561
—39631

— 4265923
1405925741
==

6
=Gt

32

144

5685

=(

6

12600

671994
—924319

— 862345

— 304892
—269967

33

=79

5330

418

130

1304

— 120569
99383
814793743515
—2939073045
— 5036695
3040707889
--49333

— 51886
11170

2904
5045136467209
— 3665999

=Y

121

16

296

= 96959
60217

7111
154103
=25

108

=

7316

—23

337

14607

— 46569

— 3500815
1503532433
=5

7

—28

35

116

6266

=)

i

10682
771641

— 772262
—923164

— 257481
— 305561
35

—741

4511

476

109

1381
—102055
107897
917779916345
—3070187671
—4281243
3251216741
— 52147

— 57437
9561

3046
4350456032733
—4104363

119

—321

—45

—802
335495
—171593
—19521

— 446497
286

—289

84

—19599

il

-905
—47113
124935
11755695
—4143338673
16

=19

93

=96

=S8

— 17140

7

—20

— 34249
—2098024
2560005
2556806
831749
833574
—105

2087

— 14974
—1389
—361

— 3852
333679

— 298609

— 2691296536369
8618533679
14028471

— 9055524409
159206
158409

— 31380
—8557
—13929384244897
11217599




11. Conclusion

The EDVAC produced 176 pages of tabulations, too long to be reproduced here, including
some 3,500 algebraic numbers with small norms, in less than 6 hours. With the precision
provided for in the coding, only four cases ran to completion, but 25 of the 43 cases run produced
at least one unit in the process (for /=97, 13 units were produced). The remaining 18 cases
provided enough material to permit the hand computation of at least one unit. (For (=499, the
unit required 43 decimal places to check by hand).

In every case where g=1 the explicitly known fundamental unit (—(k—g-+1)/2,
—(k—g+1)/2, —(k—g—1)/2 was among those produced by machine, as well as the (non-
fundamental) unit (—1,—2,0), except when /=37 and 313.

In addition to units, mentioned earlier, the number of matrices produced after ¢, is shown
in table 2, with the following symbols denoting the outcome of the computation (see section 7):
“comp’” meaning completed, “dise” meaning incomplete (by failure of sign discrimination),
“over’” meaning incomplete (by overflow in norm formation).

It is clear, however, that to obtain the fullest benefit of this algorithm one would require
considerably greater storage, both to perform the unmodified algorithm (guaranteeing a
fundamental unit) and to permit sufficient decimal (or preferably integral) precision.
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