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A Problem in Self-Heating of a Spherical Body
S. M. Genensky*

An analytic steady-state solution is developed for a spherical body in which heat is
generated according to a first-order unimolecular-reaction law, and lost at the surface in
The temperature within the sphere depends
chiefly on the radial distance from the center, but also on the ambient temperature, the
surface heat-loss coefficient, and the material properties, which are assumed constant.

accordance with Newton’s law of cooling.

1. Introduction

The analysis described was pursued in connection

with an investigation into the self-heating of fibrous
“materials carried on at the National Bureau of
Standards.’
~ Comparison of the results of this analysis with the
experimental results indicated that the assumption of
a single first-order unimolecular reaction was an
oversimplification for the material investigated
“experimentally.  However, the analysis serves to
indicate the relative importance of the various
parameters entering into the problem, and may be
helpful in indicating the kind of data that would be
of greatest use in further investigations in which the
assumptions may be applicable.

A homogeneous sphere of radius B is generating
heat, under steady-state conditions, in accordance
with afirst-order unimolecular-reaction law, Ae~ #/ED)
and losing heat from its surface to an atmosphere at
constant temperature, 7, according to Newton’s
law of cooling. The temperature of the sphere, 7'(r),
is independent of time and depends upon the radial
distance, r, from the center of the sphere. Within
the sphere, transfer of heat by means other than
conduction is considered negligible. The thermal
conductivity, k; gas constant, 2; rate of reaction-
frequency product, A; and activation energy, F,
of the material of the sphere are assumed to be known
constants, as are the temperature, 7}, and gradient
dT/dr=0, at the center of the sphere. The problem
is to find the surface temperature of the sphere,
Tz, at r=B, and the heat-transfer coefficient, A,
between the surface of the sphere and a surrounding
atmosphere.

2. Analysis

Mathematically the problem becomes
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It is further assumed that (a) the temperature
gradient within the sphere exists and is continuous
throughout the interval 0<y<1, and (b) that the
absolute value of the difference between 7'(y),
0<n<1,and 7} is small in comparison to 7. Under
these restrictions, a technique presented by Cham-
bre * proves useful to observe that
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where AV=V,—V. Now, because |AV/V,|<1, the
series converges, and for a sufficiently large positive
e
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integer, N, (1/\@)2@1712,)" is a very good approx-
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imation to 1/V.
Therefore, (5) may be written approximately as
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2 P. L. Chambré, On the solution of the Poisson-Boltzman equation with ap-
plication to the theory of thermal explosions, J. Chem. Phys. 20, 1795 (1952).
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Because (11) is analytic and regular except at n=0,
and further as dV/dn=0 at n=0, the solution of (11)
may be written in the form

V=Vn=2an' (0<9<0). (12)
i=0
Recaliing (6), eq (12) at n=0 yields
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and further differentiating (12) once and considering
(7), it is found that
(14)

Differentiating (12) twice, substituting these first
two derivatives into eq (11) and rearranging terms:
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where D=Ce¢ " and the a; are given by
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for n=0, and 1=2,3,4, . . ..

Using the coefficients obtained from (13), (14),
and (16) and substituting them into eq (12), V can
be computed for 0 <»<1.

In particular, for =1, eq (12) gives the dimension-
less surface temperature V(1), and thus recalling
that 7'(n) =(E/R)V(n), the surface temperature, 7'(1),
which equals 7', is easily found. Differentiating
eq (12) once and evaluating this derivative at n=1,
h can then be found by solving eq (8), for all the
other factors involved in this equation are either
given or have been computed.
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The first six nonzero coefficients have been evalu-
ated and are
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Observe that ay_; (:=1,2,3, . . .) are zero. This

follows from a;=0 and the spherical symmetry of
the problem.

Figure 1 is a plot of V(1), as a function of ' and
1/V,, where € was allowed to vary over the range
1071 <C<10" and 1/V, took on selected values in
the range 5<1/V;,<100. The points were obtained
by using

Vin)= éam" (17)

over its range of applicability for the values of €
and 1/V, within the above limits. e B

In the foregoing, it has been assumed that the
temperature at the center of the sphere 7 is known,
and also that the physical condition indicated by
eq (8) is satisfied.

The more common steady-state problem of finding
the temperature at the center of a sphere that gener-
ates heat according to a first-order unimolecular
reaction law and loses heat according to Newton’s
law of cooling may be solved by using the analysis
described above. In this case, I, B, k, A, h, T,,
Ts, and B are assumed known.

If the sphere being considered really satisfies the
assumptions of the problem, then its temperature
mast satisfy eq (1). Because eq (1) is of the second
order, only two boundary conditions can be pre-
assigned. Further, because the temperature at the
center of the sphere must remain finite, one of these
preassigned boundary conditions must be d7'/dr—=0

at 7=0. This leaves but one free boundary con-
dition. However, at the surface of the sphere both

d h

D) =TT (18)
and

T=T, at r=B (19)

must be satisfied; and because only one of these two
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V (1) as a function of C for selected values of 1] V5.

boundary conditions may be formally assigned, it
must be assumed that the other is consistent with
the problem. Therefore, figure 1, which represents
eq (17), may be used to solve this problem. Because
R, Ik, A, and B are known, both C'and V(1) (recall
that 7=FEV(1)/l) can be computed. Thus, by
using figure 1, 1/V; may be found by interpolation,
provided the point (€ V(1)) under consideration
lies within the region of applicability of eq (17), as
indicated above. Because the center temperature
of the sphere is 7i, that is £V,/R, the problem is
solved.

Here no use was made of condition (18), and as
mentioned earlier, this condition must be satisfied
independently, if the assumptions made are fulfilled.
Thus the degree of consistency between conditions
(18) and (19) serves as an indication of the applica-
bility of the assumptions made in this analysis.

WasmiNgron, March 19, 1954.
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