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Noncrystal Ionic Model for Silica Glass
Leroy W. Tilton

A model was constructed of pentagonal rings of symmetrical tetrahedra so connected
that all five silicons lie in one plane and all angles Si—O-—=8i approximate 180°. From an
initial tetrahedron the rings extend in six directions to include its six edges, and in the
resulting three-dimensional network each ring forms a common interface between dodeca-
hedral cages which necessarily have fivefold symmetry. Such symmetry is incompatible
with formation of a crystal lattice and thus the structure can be extended in three dimensions
only to a very limited degree and with unavoidable stress and distortional strain. A stressed
network cluster of such dodecahedral cages is here called a ViTRON.

If the scale in this model for silica glass is taken as 1.6 A, from silicon to oxygen, the
model is found to be in accord with other radial distances computed from diffraction data
and the density is correct within 10 percent. The apertures of the pentagonal interfaces
are of suitable size to explain data on the diffusion of noble gases through silica. Shared
penta faces and intermittent oxygen bridges connect neighboring vitrons and constitute
an interstitial tissue of relatively weakened structure that accounts for the observed low
tensile strengths of silica glass and provides channels for viscous flow.

The proposed cages would be less pliable at low temperatures and so the interstitial
tissues between vitrons should expand in volume on cooling. This “negative’” expansion
would counter the normal expansion and account for the known extremely small (net)
expansivity of silica glass. The accompanying changes in strength and volume of the glass
at its weakest places, the interstitial tissues, can account for a number of known “anomalies”
in thermal behavior of silica glass with respect to its volume, compressibility, elastic moduli,
and viscous flow.

The vitron concept reconciles the erystallite and the network theories of glass by pro-
posing nuclei that cannot grow extensively and a distribution of localized stresses that may
constitute an acceptable degree of randomness and provide effective modulations in con-
tinuity. This concept of definite but limited microregularity in structure suggests that
other nonerystal symmetries should be studied for possible interest in other fields such as
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liquids and high polymers.
1. Introduction

Evidence from X-ray data shows that glasses and
even liquids have some degree of ordered arrange-
ment, although it definitely differs from that in
crystals.  Also, in studies of liquids and plasties it
is recognized that limited ordered arrangements,
often called “crystallinity,” can exist without forma-
tion of macroscopic crystals.  Under these circum-
stances two important theories of the glassy state
have developed. The erystallite theory was stated
by Randall and coworkers [1]' in 1930. The
presence of submicroscopic crystallites or erystalline
nuclei in very large numbers in undercooled glasses
was inferred, soon after the X-ray reports published
by Clark and coworkers [2] in 1929, in order to
account for the breadth of the observed diffraction
rings.  The acceptance of this idea proved difficult
because many investigators found no evidence of a
normal growth in the size of such crystallites under
conditions that do promote growth whenever nuclei
of crystals are known to be present.

The network theory resulted largely from the work
of Zachariasen [3] and his coworkers in the field of
chemical crystallography, and some associated ideas
were more definitely formulated by Warren [4] and
his coworkers in analyzing their X-ray data to estab-
lish interatomic distances and in interpreting the
breadth of the diffraction rings from glass as con-
trasted with the well-defined rings from ecrystals.
This continuous random network theory of glasses

1 Figures in brackets indicate the literature references at the end of this paper.

has been stimulating and fruitful in the field of in-
organic glasses. A very limited degree of short-
range order of arrangement of nearest neighbors and
next nearest neighbors among the ions in glass is
now definitely determinable by X-ray and electron
diffraction, but the unbroken continuity and the
very considerable randomness that is often assumed
at longer distances seem incompatible with some
experimental data.

W. A. Weyl [5] has considered that the network
theory “in its present form” is not satisfactory to
account for some existing data, and he wrote a
paper “to show the need for a revision in our present
approach to the constitution of glasses.” In this
paper he says: “One of the most important proper-
ties of glass, its mechanical strength, seems to resist
all attempts to unvell its secrets”; again, “We have
no plausible explanation yvet for the thermal expan-
sion of glasses as a function of their composition’;
also, “It 1s customary to talk about ‘flow units’ in
describing viscosity about association-disasso-
ciation equilibria in any discussion of the effects
which thermal history has upon the properties of
glass. . . . Nobody, however, has vet given an
accurate description of a ‘flow unit’ nor pre-
sented a reasonable concept of the unit which
disassociates. J

Confining attention to the simple case of silica
elass, one finds numerous and well-established data
that characterize this material as unusual or even
unique in respect to some of its properties, such as
expansibility, compressibility, rigidity, and varia-
tions therein as effected by temperature and pres-
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sure. These relationships have been discussed in
detail by Babcock, Barber, and Fajans [6], who say,
“ .. Use of the random network theory . . . has in
general been unsuccessful in interpreting the proper-
ties of silicate glasses. . . .””  Spinner [7], who meas-
ured elastic moduli at elevated temperatures, says:
“It seems clear that the usual picture of the
structure of silica, as a random 3-dimensional net-
work of SiO; tetrahedra, needs to be amended or
modified to explain the various phenomena asso-
ciated with the material.”

Evidence of somewhat long-range order in silica
glass was found by Melkonian [8], who wrote,
“Fused quartz . . . was expected not to show micro-
crystalline interference effects because of its supposed
lack of long-range crystalline structure. Thus, it
was expected to show a transmission nearly inde-
pendent of neutron energy and hence to be suitable
for use as a secondary standard . . Fairly large
interference effects are evident which make this
particular sample useless as a secondary standard.”
In accord with this, Milligan, Levy, and Peterson
[9], in their neutron-diffraction studies on vitreous
silica, found 5 or 6 well-defined maxima and 4 or 5
others that were less well defined. Hoffman and
Statton [10] used the low-angle scattering of X-rays
in glass and found evidence of spacing in fused
silica of 30 A or larger. In brief, there is evidence
that the short-range order should be extended at
the expense of longer-range randomness.

In order to study possible extensions of the
accepted short-range order in simple silica glass, a
three-dimensional model was constructed starting
with silicon-oxygen tetrahedra connected at their
corners by the sharing of their oxygens. This
model, described in this paper, gives the correct
density for silica glass within 10 percent, provided
the scale is determined in accord with the established
average distance of 1.6 A from silicon to oxygen as
found [11] for silica and the silicates. It will be
shown that the interatomic distances are in very
good agreement with all radial distances computed
from X-ray, electron, and neutron-diffraction data,
and the apertures are of suitable size to explain
Norton’s [12] data on the diffusion of noble gases
through silica.

The proposed model is a network of pentagonal
rings of tetrahedra with 12-sided regular cavities,
as 1n figure 1 (approximate diameter, locus of silicon
centers, 8 A). It cannot grow extensively without
peripheral tensional distortions that ultimately pre-
vent further maintenance of the silicon-oxygen
bonds. A cluster of such dodecahedral cavities or
ages, such as shown in figure 2, is here called a
VITRON, a new concept that may have application in
other fields such as rheology and high-polymer
studies where noncrystal order may be evidenced.

Aside from the fundamental conceptual difference
between a vitron and a crystallite, the proposed
model does in many respects accord well with the
crystallite hypothesis. It is also essentially the net-
work hypothesis with a modulation of its continuity,

Frcure 1. View along fivefold axis of a single-element vitron
constructed of 20 tetrahedra representing 20 silicon atoms at
their centers and 30 oxygen atoms al their connected corners.
(Twenty outer corners are available for attachments.) Only one-quarter of

each Siand one-third of each (connecting) O belong to this cage as an element or

unit of a larger vitron. In other words, 5 (SiO2) constitute a single element or
cage of a vitron on a continuum basis.

vitron

Frcure 2.

Off-axis view of completed four-element
(type 4, tetrahedral).

Coiled wire springs indicate extra O— charges and vacant tetrahedral corners
indicate Si+charges available for attachments to other vitrons by oxygen bridges.
At center foreground is a reentrant three-face that can unite with another vitron
presenting a convex three-face. See appendix.
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a reduced randomness, and an added feature of
localized stress distribution.

Partial unions and attachments between adjacent
vitrons form interstitial channel tissues that are less
regular and weaker than the intravitron structure.
These tissues, together with the Jlocalized stress
distributions  within vitrons, are important in
qualitative explanations of the peculiar effects of
heat and pressure on the volume characteristics of
silica glass; also in understanding viscous flow and
conductance. Preliminary studies indicate that the
proposed model will permit semiquantitative in-
ferences concerning possible cavity-saturation limits
for nonsilica that correlate with property-composi-
tion curves of solubility, chemical attack, volatiliza-
tion, and specific volume for binary alkali-silicate
olasses.

2. Pentagonal Dodecahedral Model

Silica glass is here considered to have a high-tem-
perature arrangement of connected silicon-oxygen
tetrahedra that has been cooled so quickly that the
conditions at high temperature have been “frozen”
by rapid increases in rigidity. It is therefore
assumed that the connected tetrahedra will have
minimum density, and this can obtain only if the
bonds form angles Si-O-Si of 180° and the rings,
if any, are circular and planar so that the tetrahedra
‘an have maximum distention. (See fig. 3.)  Under
these circumstances, probability greatly favors the
formation of pentagonal rings, as mentioned by
Poncelet [13], because the interior angle of a regular
tetrahedron is 109° 287 and differs so little from 108°,
the interior angle of a regular pentagon.

Growth of this structure of minimum density pro-
ceeds uniquely in 6 directions from an initial tetra-

hedron to form a network containing dodecahedral
holes or cavities, each separated from its 12 some-
what-distorted neighboring cavities by 12 planar
interfaces of very slightly stressed penta rings. An
important property of this model is its many axes,
15 of twofold, 10 of threefold, and 6 of fivefold
symmetry. Each of the 15 twofold axes makes an
angle of 36° with each of its 4 neighbor axes, and
similarly the 10 axes are equidistributed at angles of
41° 48" and the 6 axes at 63° 26”. These features
mean close relation to crystal symmetry and a high
probability of approximate alinement of different
portions of the structure even if separated by less
well alined interstitial regions or tissues.

The most important property of this proposed
model is its fivefold symmetry, which precludes
formation of crystals. Just as penta tiles fail where
hexagons succeed in covering a floor, so do regular
penta dodecahedra fail to fill space completely and
extensively. The interior dihedral angle of a
dodecahedron is, however, 116.6°, and thus not far
from 120°, which would be exactly right for filling
space without stress and distortions. If one regular
dodecahedron is attached or joined on each face to
12 like structures, none in the outer shell can touch
any of its 5 neichbors. By radial compression these
neighbors may meet and the requisite tangential
tension in the peripheral bonds may not be excessive
for the first shell. Further increase in cluster size
by the addition of 32 cages in the second shell would
require much higher tensions in the outermost bonds,
and some defective attachments or broken bonds
might result in order for bonds to hold elsewhere on
the periphery. Thus the great strength of the
silicon-oxygen bond is the factor that should cause,
and vet automatically limit, the growth in size of

Ficure 3.

View of regular pentagonal dodecahedral cage formed of planar

pentagonal rings of tetrahedra as shown at lower center.

The high-temperature low-density planar ring proposed for silica glass contrasts with the nonplanar
hexagonal elemental rings in the denser silicas tridymite (left) and cristobalite (right).
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vitrons. The automatically limited ability to grow,
and a distribution of stresses localized and balanced
within each vitron, are features that may distinguish
a vitreous substance from a crystal.

Silicon ions are situated at each of the 20 vertices
of a pentagonal dodecahedron, and oxygen ions at
the midpoint of each of the 30 edges. An isolated
unit of this sort would consist of 20 silicon atoms and
30 of oxygen with 20 plus charges, and thus be repre-
sented as (SiyOs)**. A cluster of 7 such units is
(Sig:0145)°°" but it is decidedly nonspherical. With
13 such cages there is again an approximation to
sphericity with a diameter of 20 A (see fig. 7). This
13-cage cluster can be represented as (Sij30230)* ", and
the plus charges are distributed over the whole
surface in 12 pentagonal groups. Upon addition of
the next shell, consisting of 32 dodecahedral cages,
to form a 45-cage cluster the diameter increases to
30 A and the formula is (SizOg20)*". The plus
charges indicate the degree of attachability of these
vitrons to their neighbors through oxygen bonds.
In addition, or alternately, they may actually unite
or grow together with neighbors to limited extents, as
further discussed in the appendix.

Figures 4, 5, and 6 (also 9 and 10) are helpful for
visualizing the arrangement of atoms in the proposed
model. With dimensions based on the average
X-ray datum of 1.60 A for the Si-O distance (be-
tween centers), an element or cage can be inscribed
in a sphere of 9 A diameter, and a sphere of 7 A

<

Frcure 4.  Schematic projection of pentagonal dodecahedral
element of a wvitron on plane perpendicular to two of its
pentagonal faces.

Ficure 5. Schematic dodecahedral element viewed along one
of its six axes of fivefold symmelry through pairs of opposite
and parallel faces.

diameter can be inscribed inside a cage. Only a
central cage of a vitron can be truly regular and
svmmetrical. The surrounding cages must be de-
formed in order to contact their neighbors. Hence
it 1s interesting to recall that Warren [14] estimated
8 A as the maximum dimension of the region of
periodicity in fused quartz, and that Valenkov and
Poray-Koshitz [15] estimated 12 A as the extent
of perfect ovder, with surrounding regions of inter-
mediate degree of order. Also, measurements on
thermal conduction in glasses have made it possible,
as shown by Kittel [50], to estimate 8 A as the mean
free path distance over which plane elastic heat
waves (phonons) may travel in silica glass at room
temperatures before distortional scattering.

Ficure 6.  Dodecahedral element viewed along one of ils six
axes of fivefold symmetry.

Some outer atoms are omitted.

Ficure 7. View along one of 15 identical twofold axes of
symmetry of a 13-element vitron (type 1, spherical).

In this model a tetrahedron is represented by two wires bent at an angle of
109.5° and soldered at their symmetrical crossing to represent silicon. Oxygen
is represented by friction-tight couplings. Two other axes of twofold symmetry
lie normally to the line of sight,
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Aside from densification through such a decrease
in the unit volumes of the outer and distorted cages
of vitrons, there would be a variation in the effective

3. Density of Vitreous Silica s | R
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as computed on the continuum basis. In other
words, the interstitial tissues can be denser than the
internal portions of vitrons, even if the bonds therein
be fewer, less regular, or unconnected, because these
tissues cannot share in the extreme degree of rare-
faction in space that characterizes silica in dodec-
ahedral structure. .

The results of a study of vitrons of various sizes
are given in table 1. It is considered that at the high
temperatures of formation the vitrons grow simul-
taneously in situ throughout a melt and that smaller
vitrons will grow in every sizable region that might
otherwise remain undeveloped between larger vit-
rons. All these vitrons of various sizes and perhaps
of somewhat irregular shapes can be actually, if im-
perfectly, united with neighbors at some common in-
terfaces, and by multiple oxygen bridges across inter-
vening channels can be more or less securely attached
to each other.

It appears from table 1 that the maximum effective
density exceeds the constant internal density of 2.0
by various amounts depending on the size of the
vitron and the degree in which its shape approximates
the sphericity assumed in the estimates. It will be
evident that nonspherical clusters must have greater
peripheral areas than assumed, and hence their esti-
mated effective densities must be too high. However,
there are several clusters for which the estimated
maximum density is less than 10 percent above 2.20,
the known density of silica glass. Further details
concerning vitrons and their aggregation are given
in the appendix.

4. Diffusion of Gases in Silica Glass

An important feature of a model for the network
of glasses with high silica content is the minimum or
limiting aperture through which atoms must pass
when gases diffuse through glasses and when 1ons
migrate under the influence of an electrical field.

Experiments concerning the diffusion of gases
through glass may not, in general, be considered
solely on a mechanical basis, as a process of the
squeezing of molecules through molecular holes or
cracks. The more reactive hydrogen diffuses slower
than the inert helium when oxygen is present, but
their rates are about the same in a solid without
oxygen anions.

However, in the case of diffusion of noble gases
it is probably valid to consider dimensions as much
more important than chemical nature, and in seek-
ing to understand the very marked diminution in
the permeability of silica glass to argon, in compari-
son with that for neon, it seems tenable and sufficient
to regard size only. As measured by Norton [12],
the diffusion rate for neon with atom diameter 2.4 A,
was found to be more than 100,000 times as high as
the rate for argon, atom diameter 3.2 A. Figure 8
shows how well the penta faces of the elements of
vitrons in silica are adapted to pass neon and smaller
atoms such as deuterium, hydrogen, and helium, but
obstruct argon, oxygen, and nitrogen, which have
larger diameters.

Norton found, also, that the rates for helium at

Ficure 8. Limiting aperture for diffusion of gases through
stlica glass.

o l}o clear aperture of the pentagonal faces of the vitron elements is comparable

in diameter with the neon atom which is the largest that rapidly diffuses in

quantity.

100° C are decreased by a factor of 1,000,000 as the
percentage of modifiers is increased from glass to
glass. It is here suggested that this difference is
caused mainly by the physical presence of nonsilica
packed inside the elemental cages of the vitrons.
It does not seem necessary to look to the interstices
between vitrons as the only channels for permeability
in silica glass.

5. Radial Distribution of Atoms

All atoms in this model are found to be distributed
in accord with published data on the radial distribu-
tion of atoms with respect to any one ion in vitreous
silica. That is, for very short distances to their
nearest neighbors both Si and O atoms are so situated
that the arrangement is not distinguishable from that
formerly assigned to high cristobalite. Warren [16]

ras a leader in applying the radial-distribution
method to the analysis of X-ray diffraction patterns
obtained from glasses. The concept of a random
network required such treatment instead of the
simpler computation of Bragg-d values as is done for
crystals. Hartlief [17] also reported such distances
for fused silica from X-ray data. More recently,
neutron diffraction data for fused silica were treated
in this manner by Milligan, Levy, and Peterson [9];
and Weber [18] et al. have reported similar unpub-
lished data on two samples of silica glass, one of
“high purity” made by the Corning Glass Company
and another of “ordinary” quality. These experi-
mental results are listed in table 2 for comparison
with the atomic separations as computed from the
model made by the writer. (The scale value of
(Si-0)=1.60 is, of course, assumed in the computa-
tions.)
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TaBLE 2.  Radial distribution of atoms in silica glass

Distances to neighbor atoms in angstroms

|
|
From O to: | From Sito: | Neutrons X-rays
| |
' Proposed P ; [ ) - | R
| modi‘l Mulligan, Weber [19] 1954
o N B Levy, & . - - __|Warren [15] | Hartlief [17] NG O
i [ Peterson [9] ot al, 1936 1938 RNOLLLE
No. | Kind No. Kind 1951 Corning |{*‘Ordinary”
R - - B |
| =2 ‘ si 4 0 1.58 156 | L5 162 | 17 1. 64
| 6 0 o . 2.56 2,62 ol b (2.65) b (2.7) 2,67
. 4 Si 3.02 3.32 oo 3.2 3.1 3.14
[ 6 Si 12 0 | 4.0 3.94 4.2 4.1 4.17
| 6 [8) : ‘ ) 446 )
| 3 Si 6 o | |
| 12 [8) [ [t 51 5.08 5.2 5.3 5.25
1 12 Si | {
[ 12 0 ‘ -
12 Si 24 0 O
o 0 \ } 6.6 6.3 6.5
12 6] | |
6 Si ‘ 12 0 \ ‘
12 o L 7.4 | 7
| 24 Si ] ‘
12 Si 24 0 |
12 o | i 1
3 o | 12 Si \
| 24 Si |
6 Sio|o12 0 ‘ \
|8 Si ‘ | 1 |
| | |
1 ‘ 4 Si 897 | 9.0 | i

» Read in 1956 from ‘“uncorrected’ curves in Prof.

Warren’s laboratory.

A letter received from N. Norman of Oslo,

Norway, just as this paper goes to press, lists his “uncorrected” and still unpublished values as 1.62, 2.62, 3.05, 4.08,

and 5.02.
b Not resolved.

No™fattempt is made to compute the angle
Si—O—->Si from the diffraction data. The departure,
a, of this angle from 180° might be estimated by
means of the equation

cos (a/2)=(Si-Si)/2(Si-0),

but the precision is much too low, and even for
averages there must be residual error because the
peak corresponding to the O-O distance of 2.6 A is
usually imperfectly resolved, and that makes the
reading for Si-Si systematically too low and the com-
puted departures from 180° too large.

The proposed model agrees with the experimental
data of table 2 somewhat better than does a random
network model. A random orientation around bond
axes soon leads to indefinite predictions of the radial
distances. The first uncertain case is the oxygen to
second-oxygen distance. For random orientation
there are 18 oxygens that might be found anywhere
within the range 4.2 to 5.2 A. The last fixed dis-
tance would be silicon to 12 second-silicons at 5.2 A.
Thereafter 18 third silicons might vary from 4.9 to
6.5 A from an oxvgen, and 36 third oxygens be
found anywhere within the same limits of radii from
any silicon. (Incidentally the uncertainties start
with nearer neighbors and rapidly become much
greater if values other than 180° be assumed for the
angle Si—0—Si.)  Weber [19] was evidently sur-
prised to find only 6.9 instead of 18 oxygen atoms at
446 A from an oxygen, and he remarks, A
random orientation of these outlying tetrahedra
probably causes 1 oxygen of each 3 to be closer in

vielding 6 as the number of oxygens at the O-2d O
distance.” In table 2 it will be seen that the pro-
posed model predicts that 6 of these second oxygens
should be found at 4.19 A and 12 of them at 4.99 A,
very close to 3 other distances, so that only the high
radial density near 5.1 to 5.3 A is noticed by most
observers.

6. Planar Distribution of Atoms and Values
of Bragg-d

Computations of values of Bragg-d are not usually
made for glasses if it is assumed that their structure
is random. When a considerable degree of order is
assumed, it then becomes pertinent to consider such
tests. In contrast with the simplicity of crystal
spacings, those in this model are very numerous and
multivalued. Within a single dodecahedron, which
seems useful as a unit volume, one finds the atoms
all distributable in 6 equivalent sets of 7 planes, each
set perpendicular to one of the 6 axes of fivefold
symmetry. Also, the same atoms are distributable
in 10 sets of 11 planes, each set perpendicular to
one of the 10 axes of threefold symmetry; and in 15
sets of 13 planes, each set perpendicular to one of
the 15 axes of twofold symmetry. Figures 9 and 10
show how the atoms may be projected to locate
these three different systems of planes.

Among the very numerous spacings of figures 9
and 10 there are many duplications, and one finds
only 31 different possible values of plane separations
for a single cage between limits of 0.8 and 4.5 A and
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Frcure 9. Projection of atom centers of doecahedral element on p
The atoms are further projected to determine the spacing of 13 pseudo lattice p

considering all three sets of projections. This can
be compared with about 35 peaks (or indications
thereof) that can be used for computing d-values
from the curves of scattering of neutrons as found
by Weber [18] for a sample that he labels as Corning
fused silica; or 18 peaks for a sample called ordinary
fused silica.

Because of the numerous atoms in intervening
planes, no X-ray values of Bragg-d should be ex-
pected for plane separations exceeding about 3 A,
as judged from analysis of the data in figures 9 and
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lane perpendicular to one of its 10 axes of threefold symmetry.

lanes perpendicular to the 15 twotold axes.

10. Below 3 A it is estimated by a rough process of
atom counting and weighting that about 10 d-values
might be detected by X-ray and electron diffraction,
and 6 or 7 are found from such data.

For vitron clusters, as wholes, there are some
other possibilities which seem chiefly to be distorted
values of the separations as shown in figures 9 and 10.
An example is the d-value near 4.3 A that is not
predicted from the model on the basis of a single
element but is prominent in X-ray data. In clusters
there takes place an overlapping of the vitron ele-



Freure 10.

ments. An important case seems to be the over-
lapping of fivefold and twofold axes, and this was
first noticed in a model of the 13-element vitron as
viewed transversely to any of its fivefold axes. The
distortions are such that approximate coincidence is
forced for the 4.19 A separation along the twofold
axes and the 4.40 A separation along the fivefold
axes. The hybrid “planes” are curved with separa-
tion varying from 4.40 A along the principal five-
fold axes of the whole vitron to 4.19 A at distances
of something like 6 A from the principal axis (see
figure 11).

In brief, because of the limit of precision in the
experimental data one can say only that the number
and values of Bragg-d separations predictable from
the proposed model agree with the diffraction data
about as well as the agreement among different ex-
perimenters or for different samples of silica glass.
It is suggested, however, that the large number of
these distorted pseudo planes has an important effect
on the level of observed scatter and the general
fuzziness of diffraction patterns.

Projection of dodecahedral element on plane perpendicular to one of its 15 axes of twofold symmetry.
The atoms are further projected to determine sets of pseudo lattice spacings of 7 planes perpendicular to the fivefold axes and also spacings of 11 planes perpendicular
to the threefold axes.

7. Potential Flaws and Tensile Strength

The properties that may logically be inferred from
the nature of vitrons, as they have been here defined
and described, seem to offer interesting explanations
of some of the unusual and not satisfactorily under-
stood properties of silica. For example, in the testing
of bulk specimens the actual tensile strength of fused
silica (and other silica glasses) is only a fraction of the
computed “cohesive” strength. The Griffith [20]
crack theory is the usual “explanation,” namely, that
elass is completely riddled with flaws, but there seems
to be no acceptable basis for the existence of the cracks.
Stanworth [21] says that it seems as if the entire
volume of glass may be permeated with cracks.
Cox [22] considers some of the facts as suggestive
of erack propagation in an elastic continuum after
initiation by a flaw, but on the other hand finds
that associated factors lead to an atomic view in-
volving period and energy of vibration and size of
ions in order to explain what may be ‘“macroscopic
manifestations of the discrete nature of glass.”
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Ficure 11.

View perpendicular to one of the 6 fivefold axes
of symmelry of a 13-element vilron.

Strings show locations of prominent curved or hybrid “planes’ in which numers
ous ions are located. The separation of adjacent hybrid planes of like curvature
is 4.4 A along the fivefold axes and 4.2 A along approximately parallel (secondary)
twofold axes at distances of 6 A from such principal axes. A similar forced
approximation to coincidence is found at right and left of center along the 15 axes
of twofold symmetry, to which secondary fivefold axes are approximately parallel.
These separations of 4.2 and 4.4 A are of interest because the most prominent
diffuse ring commonly observed in both X-ray and electron diffraction patterns
indicates a Bragg-d of 4.2 41 A.

According to the vitron concept, the intrinsic
tensions of distortional origin cause weak peripheral
bonds that provide a basis for incipient cracks, and
there are fewer bonds per unit cross section in the
interstitial connective tissues between vitrons than
within them. This explains the low glass strength as
compared to a medium having bonds of uniform
strength uniformly distributed.

Murgatroyd [23] discussed the delayed elastic
effects in glass and attributed the effects to gradual
vielding of weak bonds. He proposed that the con-
stitution of silicate glasses is such that the binding
force between atoms varies from the maximum
possible value to a relatively small value, and “re-
gions occur where numerous bonds of the weakest
tyvpe exist as neighbors.” He concluded that “the
low strength of massive glass is due to the numerous
weak bonds it contains.”

Murgatroyd also mentions the smallness of the
difference in density between liquid silica glass and
cristobalite, and points out that silica resembles a
normal liquid in this respect. He observes that one
way in which the great increase in fluidity may be
accounted for is “the presence of regions of weak
bonds interspersed amongst normally bonded groups
of atoms.”

On the basis of a continuous random network

theory there is no satisfactory evidence that weak
bonds would be sufficiently numerous to account for
the very great discrepancies between theoretical
cohesive strengths and maximum realized tensile
strengths of glasses, and especially so for fused silica,
glass; but the vitron concept, with very numerous
bonds that are seriously tensed and interstitial con-
nective tissues where the bond density is low, seems
definitely satisfactory in this respect.

Much of the testing of glass for breaking tensile
strength has been done on fibers. The values
obtained are higher than for tests on samples with
large cross sections, and especially so if the fibers are
drawn in approved manner and great care taken to
avoid damage to their surfaces. If ambient condi-
tions are favorable during drawing and if average
results are plotted against diameter of cross section,
or formation temperatures as was done by Otto [40],
the curves can be extrapolated toward smaller
diameter or higher temperature for somewhat higher
estimates of the breaking strengths, which however,
are still much below expectations from the computed
cohesive strengths of 2.5 to 5x10° lb/in.? for com-
mercial glasses [39].

Considerable attention has been given to reasons
for higher breaking strengths of fibers as compared
with massive glass. Chilling should introduce com-
pressions in the surface layers and increase breaking
strengths to some extent but this effect must become
less important as diameters are decreased because
there must be interior compensating tensions. Ori-
entation of structure into threadlike alinements,
caused by the drawing process, has been much dis-
cussed, but Otto and Preston [48] found little differ-
ence in strengths whether by tensile or torsional tests;
more recently Otto [40] and Brannan [49] have
reported high values of strength on fibers that do not
show anisotropy; and Goldstein and Davies [47] did
not find anisotropy in silicate glass fibers although it
was present in some others. Additional pertinent
evidence has been presented by Liyneh and Tooley
[46], who find that their observed increases in
strength (up to 629,) by down-drawing under in-
creased load are not eliminated, although materially
reduced, after abrasion of the surfaces of the fibers.

The idea of change in either statistical or spatial
distribution of types of vitron is not analogous to
elongational distortion of a given type of vitron.
The stresses and distortions involved may, however,
be smaller and thus union with neighbors may be
improved. In any event the stress systems would
necessarily be balanced on a vitron-volume level,
and 1t would seem that vitrons at and near the sur-
face could more easily meet the requirements for
strong unions and attachments with neighbors
because of less exacting three-dimensional require-
ments. This would mean a maximum of strong
intervitron connections in all directions near the
surface, and a progressively smaller proportion of
strong connections inside until the distance from the
surface becomes large compared to the vitron size.
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8. Effects of Localized Stresses on Extensive
Properties and Elastic Moduli Above Room
Temperatures

The unusual extensive and elastic properties of
silica glass have been so well discussed by Babcock,
Barber, and Fajans [6] that some details and many
references will be omitted here. In order to explain
these peculiar relationships those authors suggest the
coexistence of two or more different ionic structures
in equilibrium in ratios that vary with temperature
and pressure. Also, they consider that the low-
temperature heat capacity, as well as infrared and
Raman spectra, may “indicate the coexistence of
relatively weak and strong forces.”

An experimental curve showing the temperature
variations in the modulus of rigidity of fused silica
indicates strong thermal variations in stresses within
the components of its structure. This modulus
decreases from 2° K to a minimum near 65° K,
rises to a maximum near 880° !, and then has an
extremely rapid decrease near 1,020° C [24]. Tt will
be noticed that the minimum near 65° K coincides
with the minimum for Young’s modulus of silics
glass, the maximum at 880° C is somewhat higher
than the similar maximum for Young’s modulus
(not far from a broad weak minimum in expansion
coefficient), and at 1,020° C the lower limit of the
annealing range has been reached where viscosity
approximates 10" poises and localized differences
in stress are not maintained indefinitely.

It is here suggested that the localized stress sys-
tems consist of (1) intratetrahedral attractive and
repulsive forces that promote and maintain angular
symmetry within the tetrahedra, and (2) the tensed
Si—O—=Si bonds that make and maintain contact
between tetrahedra through the oxygen bridges-
contacts that cannot exist without internal distortion
in the tetrahedrs

As hot glass cools toward the critical lower limits
of the annealing range, the strain response to stress
has become decidedly time dependent. For silica
glass in particular (free from the complication of
modifiers) the repulsive and attractive forces within
tetrahedra increase and maintain greater symmetry
therein at the expense of greater tensions in the S
O—Si bonds between tetrahedra. This necessitates
more regular and symmetrical dodecahedra which
can obtain only if some connections are broken and
interstitial tissues or fissures are extended or widened.
This is confirmed by the marked decrease in activa-
tion energy of flow (slope of log o versus 1/7) for
silica <rluss at temperatures below its ¢ annealing range
where vise osity increases very slowly above logmn—l 3.

After the mitial rapid increase in cohesive forces
during cooling near 1,020° C has produced increases
in the moduli there are slower progressive changes
or relaxations in the balanced internal stress systems
of vitrons that produce marked but gradual decreases

1__

in the moduli but have very little effect on volume.
In respect to volume the normal contractions of the
units of structure are nearly offset by the expanded
channels between vitrons over a long range in
temperature. Although these contractions permit
some readjustments and relaxations of stresses in the
tetrahedra that in turn check the initially excessive
fissuring effect, there is still progress in the fissuring
(because of increased attraction and consequent
inereased symmetry within the tetrahedra) so that
interstitial  (intrachannel) cohesion can decrease
slowly and the concurrent inerease in intravitron
cohesion be negated by the mere existence of the
weaker channel interstices.

From the above discussion it is evident that the
net coefficients of thermal expansion of silica glass
can be very small and nearly constant between 1,000°
C and room temperatures. Furthermore it is clear
that these net coeflicients at inereased pressure should
be larger because the negative components caused
by stress-induced fissuring would be correspondingly
suppressed by the increase in pressure.

The analysis given also suggests that the compres-
sibility of silica glass should be abnormal and in-
crease with pressure because the tensed bonds<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>