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Slotted-Cylinder Antenna With a Dielectric Coating

James R. Wait and Walter Mientka

Analysis is presented for the fields produced by an arbitrary slot on a circular cylinder

which has a concentric dielectric coating.

Expressions for the far-zone fields are developed
by evaluating the appropriate integrals using a saddle-point method.

Numerical results are

presented for the case of a narrow axial slot for a range of values of cylinder diameters and

electrical constants of the dielectric coating.

There is some evidence that the coating pro-

vides a trap or a duct for surface waves, resulting in an increase of over-all amplitude of the

field in the backward direction.

1. Introduction

Slotted-cylinder antennas are now becoming ex-
tensively utilized in microwave radiating systems.
The great interest in this subject is evidenced by the
great, number of papers on this subject within the
last decade [I to 7].! In most of the previous
theoretical work, the slot is assumed to be cut on a
circular or elliptical cylinder of perfect conductivity
and infinite length. The computation of the radia-
tion patterns is then straightforward, although it can
be very tedious even if special summation techniques
are employed. Usually it is desirable to program the
series formula on an electronic calculator if extensive
numerical data is required [8, 9].

Several years ago one of the authors (J. R. W.)
was asked to consider the effect of covering the slot
with a dielectric coating such as a fabric. A solution
was carried out for an infinitely long axial slot on a
circular cylinder, which itself was covered by a
concentric dielectric coating of constant thickness
[10]. It was shown that, if the coating thickness
approached zero, the pattern approached uniformly
the pattern expected for the uncoated cylinder. It
was then concluded that, if the slot was covered by a
lossless dielectric coating of very small thickness, the
pattern would not be modified to any extent. Some
related experimental work corroborated this con-
clusion [11].

It is the purpose of the present paper to pursue this
matter further. A solution is given for the fields
produced by an arbitrary slot on a circular cylinder
which is covered by a concentric dielectric coating.
Attention is then focused on the special case of an
axial slot where the rather cumbersome formulas
become less foreboding in appearance. Some numer-
ical results are presented for the far field in the
equatorial plane of the slot or in the broadside direc-
tion from the cylinder. It is then possible to give a
more quantitative viewpoint of the effect of the
coating.

It might be mentioned in passing that the plane
wave scattering by a dielectric cylinder with a
metallic core has been considered recently by Adey

1 Figures in brackets indicate the literature references at the end of this paper.
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[12]. Some of the numerical results obtained by him
could have some application to the reciprocal antenna
problem for the case when the slot is circumferential.

2. Formal Solution

The cylinder is taken to have a radius @, and the
concentric dielectric coating has a radius b, as indi-
cated in figure 1. Cylindrical coordinates (p,¢,2)
are chosen to be coaxial with the cylinder. The
electrical constants of the coating are e and p and
those of the homogeneous (air) space outside are ¢
and w. The tangential electric fields? on the
cvlinder are specified, being finite over the area of
the slot and zero elsewhere. Therefore, following
the suggestion of Silver and Saunders [7], the
tangential field 1s written as a combined azimuthal
Fourier series and axial Fourier integral, such that

© + o
Eyla,9,2)— f dh S Palbe=moei (1)
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where the slot is considered to be bounded by
< ¢’ <y and z,<z'<z in terms of the primed
coordinates. A similar relation holds for the
I.(a,¢,2) component with P, (h) being replaced by
Om(h’)'

In the subsequent equations, the double Fourier
representation is considered as an operator to sim-
plify the notation. For example, eq (1) is rewritten,
operationally

Ed,((l,(ﬁ,Z):Fl)m(h), (3)
where the T' signifies the multiplication of P, (k) by
exp[—ihz—im¢] and then integration with respect to
h and summation with respect to m.

In region I, defined by a <p<b, the fields can be
represented as a superposition of TM (transverse
magnetic) and TE (transverse electric) modes [13].

2 I'ne time factor exp(iwt) is employed throughout.
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Therefore, the electric and magnetic field components
are given by
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where J,,=J,(up), the Bessel function of the first
type of order m; where HH,=HS (up), the Hankel
function of the second kind of order m; and where
u=(k*—h*"* and k= (eu)*w. The coeflicients a,,
b, A,, and B, are independent of p, ¢, and z, but
are as yet unknown.

In region 11, defined by p>b, the representation is
also a superposnlon of TM and TE modes, but now
only the Hankel function is needed because it has the
proper asymptotic behavior for large values of p.
Therefore,

E,—TuienH, (10)
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where H,,—=H2 (uop), o= (k23— h?)*t, and ko= (eopo)** .

The coefficients ¢,, and d,, are independent of p, o,
and z.

The £, and £, components in region I must reduce
to the prescribed behavior at p=a, as noted by eq
(1). Furthermore, the FE,, FE., H, and H. com-
ponents are continuous at p=b. Together these
conditions lead to six linear equations to determine

the six unknown coeflicients. Symbolically, this

set 1s

Ay, p(l'm + bm ﬂbm + /1 mp44 m + Bm me + Cn pcm + dm pdm == ‘T’mpa
(16)

where the coefficients with the double suffix are given
conveniently in table 1 for p from 1 to 6. It is now
a simple matter to solve for the coefficients in deter-
minant form. For example:

0o P,

0. 00 Q
0
=" 0 . 0 . 0
0
0 . 0 . 0 0

D
P, 0
0 0 @n 0
0
and Cn— ) 0 . 0 0 0 (17)
0
[ 0 0 0
D

where the dots indicate generally finite factors ob-
tained from the table. D is the six by six determi-
nant of the first six columns in table 1. Expanding
these determinants leads to explicit, although
lengthy, expressions for the fields.

3. Far-Zone Fields

The resulting integrals in region I1 are of the form

[——"! f P WHD (uopye=dh,  (18)

where the dependence of the geometrical factors of
the coated cylinder and the excitation parameters
are lumped mto F,(h). For large distances from
the cylinder such that kp>1, the Hankel and
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exponential functions are rapidly varying so the
~integral can be evaluated by the method of steepest
descents. 'The procedure is straightforward [6] if it
is remembered that the onwmnl contour in the &
plane must be indented abowc the branch point at
h=Fk and below the branch point at h=—Fk. The
result is

—1ikR

I,: girmr/Z {J/

F, (ko sin 6), (19)

where R=(p*+2%)* and =tan"'(p/2).

The far-zone form of the fields in region 11 are then
simply obtained by replacing the Fourier operator
I' by its steepest descent form, such that

—ikR o

Fo(h)=22i ©p 32 Fyllko sin 0)em/%e=m,  (20)

m=0

where terms which
ueglected.

vary as 1/R* 1/R% ete., are

4. Equatorial-Plane Fields

Even after making the far-zone approximation,
the expressions for the fields are very cumbersome.
The situation is simplified somewhat, however, if
the observer is in the equatorial plane (z=0 or =
7/2). This case is considered here and, furthermore,
the slot is considered to be in the form of a narrow
rectangle with its long side parallel to the cylinder
axis. The integration, over the slot coordinates,
indicated by eq (2) then simplifies to

Pl =P 0) | f Ve, e

where the center line of the slot is at ¢=0 and
V(z’) is the transverse voltage along the slot.

The far-field in the equatorial plane is then con-
veniently written

A 7
E,= I: J f V( '\(IV:I p(d’), 22)
where the pattern factor is given by
3 €n (()\ In(j)()l"lvr/)

P(¢)=

)
i s —
D) 7= (Ko 10y 1 H D L

| (23)
with =1, ¢,=2(m 0) and

T, = J,(keb)H, (ea)— J;(ka)H,; ' (kb), — (24)

L, = J,(kb)H,," (ka)— J,(ka) HP (kb).  (25)

The prime over Bessel or Hankel function indicates
a derivative with respect to its argument. As a par-
tial check on this result it can be seen, if b=a or if
e=¢o and k=Fk,, that

€, COS mPe ™2 .
m -, (Zb)

Po—=L >
Yy 11} (o)

which is quite well known [1].

The equatorial-plane field is thus proportional to
the integrated voltage moment along the slot, a
simple radial factor that represents an outgoing
spherical wave and a rather complicated azimuth
factor. The structure of the solution is closely re-
lated to a two-dimensional (scalar) problem carried
out previously [10] for an infinite axial slot with a
uniform transverse voltage, V, throughout its length.
The radiation field for this problem can be written

: A 2\ ki) ~
E,=—160e,0V <7rk0p> et koo—T/DP(p), (27)

which has the form of an outgoing cylindrical wave
with the same azimuthal dependence, P(¢), as for
the finite slot. This two-dimensional counterpart
is of further interest because it has a well defined
acoustic analogy. In this instance, /£, is propor-
tional to the pressure field, in a medium whose wave
number is &y, emanating from a cylindrical radiator.
The source is a rigid eylinder except for the narrow
axial slot where the normal velocity is specified.
Surrounding this eylinder is a film whose acoustic
wave number is £ and a density, relative to the outer
medium, equal to e/e.

Although the prime purpose, stated in the intro-

duction, is to evaluate the effect of the dielectric
coating, does seem worthwhile for the sake of

completeness to consider the effect when u/u is
different from unity. Composite materials can be
produced whose macroscopic permeability differs
from unity so the results may be quite significant
in their own right.

Keeping in mind the above points, numerical com-
putations of [’(qS) were carried for two sizes of cylin-
ders (kja=2 and 3) and for a range of values of

kob, €ler, and u/po.  Of course, a detailed study of
le interrelation between thow parameters would
entail a great deal of numerical work. As a compro-
mise, only a limited number of sets of calculations
were carried out for the amplitude and phase of
P(¢) for intervals of ¢ of 10 degrees, using available
tables of Bessel functions [14]. Case I refers to the
set of calculations where w/uy=1, (¢/e)'=N and
case 11 to the set where e/e,=1, (u/u)*=M. Setting
A ko and B=Fkqb, results were obtained for case l,
taking

=2(0), wtiln /=211,
7\41 5, with B=2.2;
INE=DR 0 with 5=3.2

2.2,2.3;
; and

A
A
A

H H H

2.0,
20
50

Corresponding values were obtained for case 11 with
M replacing N. For sake of comparison, the two
relatively trivial situations, A=B8=2.0 and A=B=
3.0, were also considered.

The numerical results are summarized in tables
1, 2, and 3 with the appropriate values of A, 5, and
N or M at the head of each column of entries. If
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further values of P(¢) are required at smaller inter-
vals of ¢, they can be computed directly from the
following formula

o
>3 D, cos mad

Z
PO= " b 2=

(28)

where D,, is a Fourier coefficient listed in tables 4 and
6 for values of m up to 10. For the uncoated cylin-
der, where A=F5, it is convenient to redefine the
Fourier representation of P(¢) by

de COS M

m=0

o o
PO— o (29)
where d,, 1s tabulated in table 7

The amplitude and phase?® of P(¢) are shown
plotted in figures 2 to 7. The set in figures 2, a,
and 2, b, indicate, in a graphic way, the effect of
varying the thickness of the dielectric coating for a
fixed value of a. Figures 3, a, and 3, b, show the
influence of the dielectric constant of the coating
material and figures 4, a, and 4, b, pertain to a larger
cylinder. It appears from these curves that the
only significant change in the pattern, resulting
from the addition of a dielectric coating, is to enhance
the ripples in the curves. Physically, it may be
supposed that the radiation from the slot travels
around the periphery of the eylinder in both direc-
tions. The coating apparently “traps’ these pe-
ripheral surface waves to some extent and conse-
quently enhances the standing wave pattern. The
fact that the period of this standing wave pattern
does not depend essentially on the dielectric constant
would indicate that surface wave 1s guided, with
considerable leakage, along or just above the di-
electric-air interface. The only essential effect of
increasing the size of the eylinder is to increase the
number of ripples and reduce their magnitude
somewhat.

The set of curves in figures 5 to 7 correspond to a
coating whose permeability relative to free space is
M?. The pronounced effect of wave trapping by a
permeable layer is striking. The ripples in the
pattern are much larger than the corresponding ones
for the purely dielectric coating. Furthermore, it is
apparent that the period of the ripples is modified
by the permeability ratio M? indicating that the
trapped peripheral surface waves are largely con-
fined to within the film. Therefore, their phase
velocity is mainly determined by the wave number
k rather than k.

5. Concluding Remarks
The analytical expressions developed herein are

available for any future calculations of patterns of
slotted cylinder antennas with dielectric coverings.

3 Actually the quantity plotted is the phase la;
of the phase.

g, which is simply the negative

The formulas could probably be programed for
machine calculators if further numerical data are
required. The complexity of the numerical pro-
cedures becomes excessive when the directions are
not in the equatorial plane. It would seem to be
desirable to search for an approximation technique
to supplement this work. At the moment, the
outlook is optimistic, using techniques based on
simplified boundary conditions. In any event the
rigorous calculations presented here should provide
a comparative basis for checking any new approxi-
mate formulations.

On the basis of the limited calculations presented
here it can be concluded that a thin dielectric film
would have only a small effect on the radiation
pattern for an axially slotted cylinder. On the other
hand, a thin permeable film encasing the cylinder
would substantially modify the pattern, indicating
the presence of trapped peripheral surface waves.

We thank R. A. Hurd of the National Research
Council of Canada for his comments and the verifica-
tion of the final formulas in reference 10.
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4 —+0. 069988 —+3. 61684 —+0. 126520 +4. 56540 —+0. 224247 —+5. 78874 -+0. 069761 +3.01377 +14. 6735 +39. 6346
5 —. 728316 -+0. 000862 —. 909943 —+0. 001481 —1.11811 —+0. 002667 —. 601487 —+0. 000810 —13.0184 —+0. 665336
6 —+2.11 X108 —. 125133 —9.3X10-7 —. 155779 —5.06X10-3 —. 187316 —2.2X10-6 —. 010257 —0. 014469 —3.21999
7 =+0. 018472 —6.57X10-7 | 4-0. 022940 —2.48X10-7 | 4-0.027259 —7.99X10-7 —+0. 015030 —6.4X10-7 —+. 708769 —0. 000213
8 —4.38%X10% | 40. 002381 —2.49X10-3 | 4-0.002948 —5.02X10% | 4-0. 003456 0 +-0. 001922 [ +8.4X10-% +.137679
5 —0.000272 0 —0. 000335 —1.15X10-% | —0.000388 —7.4X10~° —0.000217 0 [ —0. 022283 —4.09X10-%
10 0 —2.79X16-3 0 —3.42X10-3 0 | —4.15X10-3 0 —2.2X10 3 ‘ +2.7X10-7 —0. 003674
TaBrLe 6. Real and imaginary parts of D,
Case 1I
S - - - I _
m Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary
0 |—10.1144 +5.17046 —8. 52101 —+7. 38167 —6. 04711 | +7.78317 —8. 06944 +3. 64159 —4. 24158
1 —23. 4645 —+4. 80230 —20. 2125 +10. 7968 —15. 8423 +13.1521 —18.4190 —+2. 76455 —14. 4406
2 | —20.9042 —20. 6570 —27.0293 —9. 50909 —22.7941 —0. 004936 —14.1839 —16. 0117 G —31. 2589
3 |+13.8792 —4.47222 +24. 4545 —14.3722 +18. 3439 —38. 8382 —+12. 1601 —2. 99106 —+10. 0303 —51. 4962
4 +0. 071869 +3. 64883 —+0. 141618 +4. 75266 —+0. 292332 +6. 37791 +-0. 52345 —+2. 74666 +59. 0508 | +43.1818
5 —. 682888 —+0. 000684 —. 816135 -+0. 001061 —. 975191 +0. 001744 —. 520690 0. 000487 ‘ —+1. 23400
6 . 00000177 —. 111720 —. 0000011 —. 128662 —. 000065 —. 146022 —. 0000015 —. 085703 | —3.30210
7 —+. 015869 —. 00000034 —+. 017896 —3.12X10-7 | +.020054 —. 00000064 4. 012221 —. 00000048 3 | —0. 000158
8 —. 0000000344 —+. 001981 —3.51X10% | 4-0. 002203 —. 000000037 -+. 002436 0 —+. 001530 . 0000096 ‘ +.119019
9 —. 0002201 0 —0. 000242 —9.3X10-* —. 000266 —. 0000000053 —0. 000170 0 —. 019108 —. 000045
10 0 —. 000022 0 —0. 0000241 0 —. 000027 0 —0. 000017 —+. 00000026 —. 002903
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Ficure 2. Pattern of slotted-cylinder antenna with a dielectric

coating showing effect of thickness.
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Pattern of slotted-cylinder antenna with a dielectric
coating showing effect of refractive index.
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Pattern of slotted-cylinder antenna with a dielectric
coating for a larger cylinder.
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Pattern of slotted-cylinder antenna with a permeable
coaling showing effect of coating thickness.
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Frcure 7. Pattern of slotted-cylinder antenna with a permeable

BouwLper, Covo., October 25, 1956.

296

coating for a larger cylinder,
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