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Frequency Conversion With Nonlinear Reactance 
Chester H. Page 

A lossless nonlinear impedance subject to a n almost periodic voltage (sum of sinusoids) 
will absorb power at som e frequencies a nd supply power at other frequencies. Necessary 
and sufficient relation among these powers are found . It is shown that simple cubic capaci­
tors (Q 0:: 1/3) are sufficient for produ cing a ny possible conser vative modulation or dis tortion 
process. 

1. General Considerations 

Let th ere be a set of linearly related positive frequencies IJJ /, the relations being expressible as 

(1) 

with the k iJ r ational numbers. Some of these fl'eq uencies (base freque ncie ) can be inde­
pendently chosen , and the remnining ones (derived frequen cies) expressed by 

IJJd/= "L2 m/j lJJ bj, (2) 
j 

or , in matrix no tation, 
fld= MQ b• (3) 

It is possible to ]u\\'e the IJJ t comprise subsets sll ch that 

j = l ... n, (4) 

but this represents iI highly il rLificiill case in pracLice. 
Let the power absorbed by the nonlinear reactor at frequency lJJ i be P i, il nd for cO I1.Yenience 

let i!JI=P t! lJJ i' 
Now 

(5) 

and in the case where the IJJ comprise subsets: 

(5') 

Bu t for a lossless device, "L2P;= O for all choi ces of the independent (base) frequencies, so 

all j (6a) 
and 

'~j)+ lE1 ~j)M(j)= o. all j (6b) 

From (6a), "L2P\j)= O, so power is conserved for each subset of reliltecl frequen cies, as well 
i 

il S in toto. H encefOl'\\'ard \\'e sh all drop the superscript (j ) for convenience, rew~'i ting (6b) as 

(7) 
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Hence the power at each base frequency is determined by the set of powers at the derived 
frequencies. Ordinarily, the base frequencies are taken as the incommensurate frequencies of 
the sources; the derived frequencies, those of the sinks. Hence the distribution of power load 
among the sources is fixed by the power dissipated in the sinks. Expanding (7) into its com­
ponents : 

.cn;+ L:~imij=O 
i 

Expressing all Wj in terms of the base frequencies: 

all j. 

so that the l ij= m i; for Wi a derived frequency, and l i;= 

for Wi a base frequency. 

or 

(8) 

(9) 

(10) 

all j. (11) 

Because the subscript j refers to base frequencies in the above, there are as many independent 
relations (ll) among the P i as there are base frequencies. For the particular case of two base 
frequencies , and the I t; restricted to integers, equations (11) become equations (24) and (25) 
given by lVIanley and Rowe. l The result, however, is a necessary consequence of conser­
vation of energy in any lossless system, and includes subharmonic combination frequencies. 

For further results, it is convenient to re-express the linear dependence among frequencies 
without reference to the choice of base: 

EQ = O 
or 

with all etl integers. 

all i 

(12) 

(l2a) 

If there are B base frequencies , and D derived frequencies , then M (eq (3» is a D X B matrix 
of rational numbers. Let the least common denominator of the first row of M be Ell; of the 
second row, En; etc. , up to EDD. Then, premultiplying (3) by the nonsingular diagonal matrix , 

o 
t1il= 

o 
EDD 

yields 
(13) 

(13a) 
or 

(14) 

I J. M . Manley and H . E . Rowe, Some general propel ties of nonlinear elemen ts. I: General energy relat ions, Proc. IRE 44 , 904- 91 3 (1956). 
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where 
D B 

The matrix lli j li st defined is a minimal matrix of the type E in (12) ; it contains no redundant 
relations among the w. 'Ve make the notational distinction because later on we shall need 
an E containing redundancies. 

Becau se lli l is nonsingular, (13) can be solved for 

and (7) rewri tten as 
J1 b=1~(l lli l lfil2 ' 

Let ~i{ = l!Jdllii- \ a 1 X D (row) matrix. Then 

where 

l~d=~llil 

J1b=~tJl2 

J1=~tJl, 

D B 

J1= 1 1·~ 1 ~ 1 

(15) 

(16a) 

(16b) 

(1 7) 

The relation (17) (with lli defined by (14)) is not only necessary for conservation of power, 
but it is also sufficient for , by (14), 

, 
Equation (17 ) also yields insight into the nature of the frequen cy mixing process, for (17) IS 

equivalent to 

and defining 

we have 

Pi=Wi'L,hn ~ ni' 
n 

(18) 

(19a) 

(19b) 

so that if P in is consi(\ered a the power absorbed at W i in the nth " mixing process," the total 
power P i is the net result of a set of conservative mixing processes. In any particular process, 
power is absorbed at those frequencies for which h n and ~ ni are of the same sign (positive 
resistance presented to the i t,h source) and power is delivered at those frequencies for which 
~ ni is of the opposite sign (negative resistance presented). 
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We also note that if we consider all frequencies involving a given base , the SLlm of the corre­

sponding powers yanishes. For, from (2) , the derived frequencies associated with the jth base­
are 

and from (8) , 

hence 

G'tJ+ ~g;kmij= O , 
i 

O= G'tjWbJ+ ~~imijWbj 
i 

=&1 j Wbj+ ~g;;i wdi.j=Pbj+ ~Pdi,j . 
i 'i 

(19c) 

The equivalent conditions (7) and (17) are not only necessary ill the generation of modulation 
and distortion products by lossless devices, they are also sufficient. That is, for any given 
M and ~, a suitable nonlinear network can be found . To prove sufficiency, we first need 
detailed relations for the behavior of a nonlinear reactor. A capacitor will be used in the 
analysis, but an inductor would be equivalent with suitable changes of notation . 

Let the voltage 

2. The Mixing Process 

J'1 

V=~ai cos (Wit + Oi) 
1 

be impressed on the nonlinear capacitance 

Let f3 t = Wit + Oi for convenience. 
Then 

Applying the polynomial law : 

M 
Q= C2-NN!~ IIaN ei!li+e-i!li)'i/St !, 

8 i= 1 

where ~ indicates the sum over all sets of integers S satisfying 
8 

Si ~ O , ~Si=N. 

Expanding the binomial yields 
s; 

Q= C2 - N N! ~IIa~i~ eJki!lie-J(Si-ki)!li/k ;!(Si-kt) ! 
8 i ki= O 

(20) 

(21 ) 

(22) 

the li appearing in ~ being those integers between - S i and +Si that make Si+ l i even . For 
i 

convenience, let 

(23) 
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Then 
Q=C2-NN!~(IIaji){ II~ejl i~ i/ [si± t i ] } , 

s j i l i 

~md t,he term in bl'fl ces can be rewritten as 

m aking 
Q=C2 -NN!~~IIa~iejfli~i/ [S, ± l i]' (24) 

s I i 

::\ow in summing over l , any se t of values tl, l2 ... lJ\f may be pflired "' ith the set of equal 
and opposite values. Because [si±li] is even, the odd part of the exponential (sin ~li {3 i) will 

i 

not contribute to the sum, and we can write 

Q= C2-NN!~~IIaSi [si± l;] - 1 cos {~li (W' t + 81 } ' 
s I I I 

where w;t+ 8, has been restored for {3i . 

(25) 

The term of frequ ency Wk arises from values of ll ' l2' . . . 1M that make ± w/;= ~t iwi' 0[' 

(26) 

If all the inLegrallinefll' relations among the frequencies are given by lhe "mixing processes, " 

t.he Wk terms a rise from 

and 

(EQ= O), (27) 

+ aNSk±(epk-1)]- 1 cos (wkt + 8,,-~efJj8j) } ' (28) 
j 

Expanding t he cosines, the expression in the braces becomes 

I aic k cos (wkl + 1;') cos (LfePJ8J) { [Sk± (e pk+ 1)] - 1 + [s,,±(epk- 1)]- 1 } 

+a~k sin (wk t + 8k ) sin (LfePJ8j) { - [sk±(epk+1)] -I+ [sk±(epk+1)]-I}. 

Recalling tbe definition (23) of [s± lJ, tb e coefficients in braces can be simplified, making the 
final form of Q become 

{(Sk+ 1) cos (Wkt + 8k) cos (~ epj8j)+elJk sin (wJ+ 8k ) sin ~ epj(J j) } . (29) 
j j 

Differ elltiating for 1= 0" and writing a!k= a!k+l/ak for symmetry : 

with 'fJp = ~epj(J j. 
j 
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If we let 

the summation ~ with ~s;=N is the same as ~ with ~s;=N + 1 and the restriction s~> 
s '/. S' 1 

O. But if we let s~= O , the coeffi cient of sin (Wkt + Ok) vanishes, and [s~ ± epd - l vanishes unless 
ep,=O; but epk= O eliminates the cos (w"t + Ok) t erm. H ence s~=O contributes nothing, and 

with the integers s; ~ 0, ~s;=N + 1. ) 
i I 

Noting that the coeffi cien t of the cosine term can be summed over s' independently; of k, 
we define 

(32) 

the strength of the p th process, and 

B - " , s:/ [' ]_ oAp pk = L...; skIIai Si ± epi - ak---;:;:--, 
8 ' i va" 

(33) 

making 

I=e2-SN!~~W"ak l { Apel)k cos (Wkt + Ok ) sin <{J p- B pl; sin (w,t+ OA) cos <{J p}. (34) 
k p 

The power absorbed at frequency Wk is 

P,,/Wk= ~l-Ipepk 
p 

3. Order of Processes 

(3.'5) 

(36a) 

(36b) 

In eq (32) fo r A p, the nonvanishing terms are those for Iepil '::;s ;, hence ~Iepil '::; ~s;=N+ 1 
i i 

and we define the order of a process to be ~ lePi 1- 1. A Q= e VN device gives rise to processes 
i 

of order N, N - 2, N - 4, etc, because ept must be of the same pari ty as s;. 
The result of a process of given order can be produced by the superposition of processes of 

o ther orders, in trodu cing new frequencies for which P ;= O. That is, high-order processes can 
be indirectly yielded by low-order devices by cascaded modulation, if sui table reactan ce loads 
are added to the cir cuit and d-c bias to ob tain even-order processes from odd. By introducing 
dummy frequencies involving only reactive power , the result of any desired set of processes 
can be achieved u sing only simple nonlinear devices of the form Q= e V 3. A constructive 
demonstra tion of this will consti tute our proof of sufficiency. 

4. Redundancies 

The rela tion (36b ) represents the net effect of all mixing processes, both the minimal se t and 
t he redundant ones. Partitioning in to 

-------

lld= HEI 

llb= HE2 
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leaves redundancies in E1, making it singular, :so that H cannot be found from the given Jd. 
In cer tain specinl case , th e frequencies are such tha t there are no r edundant r ela tions, and 
E=t:, so that H=~='dt:l\ if the processes of t: are all of order N. Then the amplitudes 
a j can be chosen arbi trarily and the A p computed (one process for each derived frequency). 
The sin tpp are then kno\Vn , n,nd a sufficiently large choice of e will make the tpp real. 

Because 
(38) 

the phnses at base frequ encies can be assigned, and the remainder are de te rmin ed by 

(39) 

Equation (34) y ields both current compollen ts, so the sink impedances are readily computed. 
In the general ease of mixed-order t:, the inti'oduction of additional cleri \Tecl frequ encies 

with corresponding null components of ltJa can converL (17) into 

~'=H'E' 1," , (40) 

with E' of (say) Lhird order , but the set of frequen cies will usually allo\V red un dan t processes . 
Our plan of attack is to express the given t: in term of third-order processes alone, and to 
ubdivide th e resulting set of frequencies into subsets not possessing third-order redundancie . 

Then for these subsets, each complete E is also a minimal t:, and the subse Ls of mixing processes 
can be carried out by separate cubic capacitors, using common base-frequency sources. 

The only first-order process (,hat is possible is thr idenLi ty W j = W i , becn,use the W \Vere defined 
to be positive and disLinct. Because a third-order device call produce only first- and third-order 
processes, the pr oblem of enumerating producible processes among a set of Ireq ueneies is 
rclatiyely straigh tforward. Al though a second-order device has the same simplicity, usin g 
Q= eva in th e s ufficiency proof au tomatically extends the sufficiency to (a ) symmetrical 
devices and (b) devices wi th positive slope throughout. 

5. Minimal Third-Order Processes · 

Instead of choosing the source frequeneies ns bases, we take suitable subharmonics of the 
sources, so tha t all derived frequencies will be integral harmonics and combina tions. 'Ve star t 
by expressing harmonics of W in terms of minimal third-order processes, i. e., third-order 
processes defining a set of frequ encies no t possessing any redundan t processes of third order . 

For generating an odd harmonie, OIW, we take a sequence of odd harmonics Onw genera ted by 

(41) 
if integral, and otherwise 

On+! = (On± 1)/2, 

using the sign tlHLc makes On+! odd. This procedure yields a sequence that can be gen era ted 
from W by third-order processes in one and only one way. 

For an even harmonic, we agaitl divide by 3 if possible, and repeat until we have an even 
term no t containing 3 as a factor. We then start an odd series wi th 
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and continue down from O2 to W as before, but add zero (d-c) to the sequence. In reverse, we 
find that 0 1 and E are generated by 

201= 02 ± 1 

E = 01+ 0 2+ (zero). 

For combination tones, Awa+ BWb+ . .. , we partition the sum into a sum of three combi­
nation tones, then repartition these in the same way, etc. A partial sum of two terms can bE' 
partitioned by using the artifice AWa+Bwb=Awa+Bwb+ O, as was done for even harmonics. 
The original combination tone can thus be reduced to nonredundant third-order processes that 
use harmonics of the base frequencies for starting points. These harmonics can then be 
reduced as before. 

6 . Choice of Base Frequencies 

Our procedure for expressing various frequencies by minimal processes was based on those 
frequencies being integral harmonics. In terms of the original arbitrary base frequencies, we 
had 

(2) 

where m ij are rational fractions. For each j , let the L.C.D. of the m iJ be D jj ; then 

(43) 

where r ;j are integers. Let the new bases be WB j =wbjjD jj so that 

(44) 

Some of the frequencies of WB are new frequencies (associated with zero power) and ·some may 
be members of the old sets Wd and Wb' All ,remaining members of Wd and Wb comprise the 
components of a new WD: 

(45) 

By the minimal process procedure of the previous section, the frequencies in WD may be associ­
ated in sets 

(46) 

where m li j are integers, so that the corresponding Iiil as determined by the procedure leading 
to (13) and (14) is 

(47) 

A given frequency may appear in several vectors WDI' 

Let the voltages at frequencies appearing in Wnz be impressed on the lth cubic capacitor, 
Q= 0 1 V 3• For each of these capacitors, the relation (16a) becomes 

and all components are known. Assigning arbitrary nonzero amplitudes to all voltages, the 
A u are readily computed. The phases of the base frequencies can be assigned; for convenience 
we let each OBli=O. Then (39) and (35) yield 

234 

~----



Using zero-impedance generators at all frequ encies involved, their in terconnec tions wi th the 
l capacitors is a Lrivial problem. 

It has been demonstrated tha t any modulation-distortion opera tion tha t satisfi es the neces­
sary conditions for lossless devices can be produced with nonlinear capaci tors, and in par ticular, 
with cubic capacitors. The demonstration of sufficiency, however , u t ilized perfec t generators. 
It would be more sa tisfying to demonstrate the operation using generators at only those 
frequencies at which the net power input is positive, and using passive linear impedances a t 
all sink and null-power frequencies. This can be done for any given set of base frequ encies; 
variation of frequencie may lead to variation of the strengths of the several mixing processes, 
depending on the reactan ce-versus-frequency beh avior of the elemen ts and the particular 
circuit configuration used . 

The discussion is simplest when there is only one base frequency; all sinks are rational 
harmonics of a given source. The procedure we have used fo r generating minimal processes 
was such that if any base harmonic was common to two minimal processes, aHlower frequencie 
involved wer e also common. (Excep t for the d-c bias needed in some processes, which can 
be handled by connecting individual bias batteries immedia tely adj acen t to the capacitors.) 
Thus an ordered tree of generators can be assembled, wi th various capacitors connected at 
appropriate poin ts on the "trunk " or upr igh t "limbs." Equa Lion (34) gives both compOllrn ts 
of curren t at each frequency (for arbitrary assigned vol t.ages), so impedances can be calculated 
for replacing all generators except the power source. The impedances for the null-power dummy 
frequen cies will be purely reactive; those for sink frequencies will have positive resistan ce. By 
associating each sink with one capaci tor only, all common impedances are purely reactive. 
The necessary reactances are computed from the base of the trunk upward, leaving the "termi­
nal twigs" for sink loads find i lldependen t reactan ce adjustmen ts. Such adjustmen ts can be 
made for any given base frequency, bu t cannot be guaranteed for frequ ency variation . 

Because the general combination tones are sums and difference of harmonics of the bases, 
the harmonic-genera ting trees ar c to be in terconn ected with combination-tone sinks and their 
associated capacitors. In the case of harmonics Lhat are both sink frequencies an d steps in the 
development of combination tones, extra branches can be added Lo Lhe harmonic-generating 
trees, so that the harmonic sink loads do no t carry the harmonic curren t used in gen erating 
combination tones. Thus all mutual impedances can be made purely reactive, and all loads 
isolated. Thus the necessary relations among frequencies an d powers are also sufficien t for 
realization with cubic capaci tors, at any set of incommensurate spo t frequencies. 

7 . Regeneration and Stability 

It is apparen t from eq (1gb) that in a given process power is absorbed by the capacitor at 
some frequen cies and delivered at other frequencies, or that in each mixing process the capaci tor 
pre ents positive and negative resistance componen ts at various frequencies. At a given 
frequen cy, some processes may absorb energy, and some may deliver energy. At a frequency 
associated with passive impedance (no generator), any power dissipated in the impedance is 
the net power delivered at this frequency by the capacitor. The total effec tive resistan ce of 
the circuit a t this frequency is zero . The impressed voltage a t this frequency is zero and the 
curren t is uniquely determined by the processes; t he circuit is stable. 

On the other hand, if for some processes the capacitor delivers power at the frequency of 
one of the generators, we call it a regenera tive process; it presents negative resistance to the 
generator. If the total resistance so presented is zero or negative, the circuit is sometimes 
said to be unstable.2 If a circuit is unstable in this sense, i. e., if it can supply power to an 

, Manley & Rowe, op. cit. , p. 908. 

418835- ::; 7- 2 235 



r 

external generator, then there is current at this frequency even in the absence of the generator. 
Hence the unstable frequency is merely anyone of the frequeneies generated by the network. 
If this frequency is a rational harmonic or eombination tone of the other generators, the effect 
is entirely expected. But the unstable frequency may be incommensurate with all the source 
frequencies. In this case the network is said to oscillate. This condition occurs when the set 
of frequencies involved in mixing processes is sueh that the number of base frequencies exceeds 
the number of independent sources. Then by (19c) at least one frequency involving the 
excess base is associated with negative power (unless all sllch frequencies are associated with 
zero power, in which case the extra base is Hot needed) . 

This type of oscillation can occur in systems that are ordinarily considered stable, i . e., one 
that exhibits bounded responses to all bounded driving forces, and possesses no free oscillations. 
The presence of such oscillations is, however, dependent on threshold values of generv.tor 
voltages, because for sufficiently small generator voltages. only integral harmonics and combi­
nation tones can appear.3 

WASI-II~GTON, October 3, 1956. 

3 Unpublished work, to appear in J . Wash. Acad. Sri. 
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