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Frequency Conversion With Nonlinear Reactance

Chester H. Page

A lossless nonlinear impedance subject to an almost periodic voltage (sum of sinusoids)
will absorb power at some frequencies and supply power at other frequencies. Necessary
and sufficient relations among these powers are found. It is shown that simple cubic capaci-
tors (Qcoc V73) are sufficient for producing any possible conservative modulation or distortion
process.

1. General Considerations

Let there be a set of linearly related positive frequencies w;, the relations being expressible as
wl::;kijwll 1)

with the %,; rational numbers. Some of these frequencies (base frequencies) can be inde-
pendently chosen, and the remaining ones (derived frequencies) expressed by

wai:Zj)mwww, (2)

or, in matrix notation,

Qa=MQ,. (3)
It is possible to have the «; comprise subsets such that
QP=MPQP  j=1...n, 1)

but this represents a highly artificial case in practice.
Let the power absorbed by the nonlinear reactor at frequency «; be 7, and for convenience
let _;@EP,'//CO,'.

Now
ZPiEzﬂyiwi:Z'yziwbi+2'72iwr1i (5)
=5 4312
- (%Dv{—l"I{IM) Qb,
and in the case where the » comprise subsets:
P =+ BP M )2 )
i J
But for a lossless device, > ;=0 for all choices of the independent (base) frequencies, so
AP +PPMP)Q,,=0  all § (6a)
and
PO +HPS M P =0. all j (6b)

From (6a), > P =0, so power is conserved for each subset of related frequencies, as well
i
as in toto. Henceforward we shall drop the superscript (j) for convenience, rewriting (6b) as

H,+W M =0. (7)
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Hence the power at each base frequency is determined by the set of powers at the derived
frequencies. Ordinarily, the base frequencies are taken as the incommensurate frequencies of
the sources; the derived frequencies, those of the sinks. Hence the distribution of power load
among the sources is fixed by the power dissipated in the sinks. Expanding (7) into its com-
ponents:

)
Expressing all w; in terms of the base frequencies:
wi:lefwa; 9)
7
so that the [;,=m,; for w; a derived frequency, and /;;=
0 i)
51]':{ 8 J
1 1=y
for w; a base frequency.

Then Py;=>Al; and (8) becomes

O:Ze()bilij+2"//dilij-—“zg‘%lih (10)
or
Zpilij/wizz{Pilij/zlinwbn}:OJ ﬂll j. (11)

Because the subscript 7 refers to base frequencies in the above, there are as many independent
relations (11) among the P, as there are base frequencies. For the particular case of two base
frequencies, and the /;; restricted to integers, equations (11) become equations (24) and (25)
given by Manley and Rowe.! The result, however, is a necessary consequence of conser-
vation of energy in any lossless system, and includes subharmonic combination frequencies.

For further results, it is convenient to re-express the linear dependence among frequencies
without reference to the choice of base:

EQ—0 (12)
> e,0,=0 all 7 (12a)
J

or

with all e;; integers.

If there are B base frequencies, and D derived frequencies, then M (eq(3)) is a D)X B matrix
of rational numbers. Let the least common denominator of the first row of M be €;; of the
second row, e; ete., up to epp. Then, premultiplying (3) by the nonsingular diagonal matrix,

€11
0
?,51:
0
€pD

yields
?19d:§1MQbE_?ﬁ2Qb (13)
T Q4. 2,=0, (13a)

or

Lo=0, (14)

1J. M. Manley and H. E. Rowe, Some general properties of nonlinear elements. I: General energy relations, Proc. IRE 44, 904-913 (1956).
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where

1 =
D] o
Q= |—
B Wy

The matrix % just defined is a minimal matrix of the type E in (12);it contains no redundant
relations among the «. We make the notational distinction because later on we shall need
an E containing redundancies.

Because %, is nonsingular, (13) can be solved for

M=—-%"%, (15)
and (7) rewritten as

P=F BT,

Let H=31,%" a 1 <D (row) matrix. Then

P,=HE, (16a)
P,=HE, (16b)
P=HE, (17)
where
D B

T
w=1[ 44
The relation (17) (with %& defined by (14)) is not only necessary for conservation of power,
but it is also sufficient for, by (14),
> Pi=Ho=HEQ=0.

)
Equation (17) also yields insight into the nature of the frequency mixing process, for (17) is

equivalent to
I)i:wizhnenh (18)
and defining ’
Pin Ehnfnzwh
we have
P,=>"P,, (19a)
n

2.P:,=0, (19b)

so that if P;, is considered as the power absorbed at «; in the nth “mixing process,” the total
power P;is the net result of a set of conservative mixing processes. In any particular process,
power is absorbed at those frequencies for which £, and €,; are of the same sign (positive
resistance presented to the ith source) and power is delivered at those frequencies for which
€,; 1s of the opposite sign (negative resistance presented).
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We also note that if we consider all frequencies involving a given base, the sum of the corre-
sponding powers vanishes. For, from (2), the derived frequencies associated with the jth base
are

Wz, =Ny Oy
and from (8),
%ﬁz.%mn:&
hence

OZ:%]ww—FZ-‘%mmijww (19¢)
1

:-ygjwh]+2-%diwdi, j:I)hj+Zl)di,j-

The equivalent conditions (7) and (17) are not only necessary in the generation of modulation
and distortion products by lossless devices, they are also sufficient. That is, for any given
M and ¢, a suitable nonlinear network can be found. To prove sufficiency, we first need
detailed relations for the behavior of a nonlinear reactor. A capacitor will be used in the
analysis, but an inductor would be equivalent with suitable changes of notation.

2. The Mixing Process

Let the voltage
M
V=2 a; cos (w;t+8;) (20)
i

be impressed on the nonlinear capacitance
(/N
R=CV", >0.

Let B, =w;t+6; for convenience.
Then

M N M N
Q=Cv=0(2 s 005 ) =0 Sa(ePite ) 2) - @)
1 1
Applying the polynomial law:

M
Q=C2"VN'>" M ai(ei-te~#i)i/s;!;
i=1

8 1=

where > indicates the sum over all sets of integers s satisfying
8

Si 20, Zsi:Z\’Y.
Expanding the binomial yields

$i
Q=02 NS TMayi > efibie i obiffe, (s, —F,)!
8

i ki=0

Let 1;=2k;—s,, so that
Q=C2""N!> Ia} ‘2 ejzm/<8_1;li>'(§%li>!, (22

s i li=—3;

the /; appearing in > being those integers between —s; and —+s; that make s;+/; even. For
7

st =) (23)

convenience, let
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Then )
Q=C2 VN3 (laj) {12 " #/[s; + 1]},
s J i i

and the term in braces can be rewritten as

2327, Z‘,He”'"/s 1l ]~Z Ze’ O, 1]

L b Iy i=1

Q= N'ZZH(I i3 Bils, 1 1] (24)

making

Now in summing over /, any set of values /;, [, . . . [,y may be paired with the set of equal
and opposite values. Bocause [s;£14] is even, the 0(1(1 part of the exponential (sin Zl B,) will

not contribute to the sum, and we can write
Q:(VYQ—‘V]V!ZZH(IS" [Sij:/i]‘l CcOoS {Z[,(wlt+01}, (25)
R 7

where w;i-}+6; has been restored for g;.

The term of frequency w; arises from values of 1, Ly, . . . [ that make =+ = 2/ w0y, OF
2o b+ (£ 1w =0. (26)
i=k

If all the integral linear relations among the frequencies are given by the “mixing processes,”
t =} { l t=) . t =) )
260 =0  (EQ=0), (27)
i

the w; terms arise from
li=eps, 1=k

lk:epk:tly
and
D=1 ‘N'ZZEII(! ils;epi] H{akspE (eppt+1)] 7" cos (Wit +0+ > e,,0,)
s p oiEk J

Fa*[siE(e,p—1)] 7! cos (wkf+0,;—]_2(:,,10,) 1. (28)
Expanding the cosines, the expression in the braces becomes
ay cos (wil +-0;) cos (;ﬂ,,ﬂj){ [set(epp+1)] 14 [sE(ee—1)] 71}
~“ajk sin (wpt +6,) sin (;pmﬂj){ — sk (et 1] [set(eppt-1)] 71}

Recalling the definition (23) of [s4-/], the coefficients in braces can be simplified, making the
final form of @ become

(g) (“) \A” ZZZ{ [ ([,'/[\ j:(’pl]} k[(sk+1)ifllk]—1
{(sx11) cos (wpt +0;) cos (D5 e€,,0,)+ € sin (wpt4-6;) sin D e, 0,)}.  (29)
J J
Differentiating for =@, and writing a*=a%*'/a, for symmetry:

[ p) \A”ZZZLOK(IA II(II/[‘Q :tepl]} k+1[(8k+1):{:pi)k]—-1

{ ey cos (wrt40,) sin @, —(s,+1) sin (w,t+86,) cos ¢, }, (30)
with ¢,= E(,,, b
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If we let
S= L #k

Sllc:sk+17

the summation Z with Zx =N is the same as Z with Zw N+1 and the restriction s, >

0. But if we let sr=0, the coefficient of sin (wkt+0k) vanlshcs, and [s;=+e,:] 7" vanishes unless
=0; but ¢,,=0 eliminates the cos (w;t+0;) term. Hence s;=0 contributes nothing, and

I:OQ“VN!ZZEMCI;‘{Ha‘?f’/[s;iqi]} { e, cos (wit +0;) sin ¢, —s; sin (wet +-6,) sin ¢, },  (31)
k) D) Vst i

with the integers 520, 33/ =N+1.
i

Noting that the coefficient of the cosine term can be summed over s” independently; of £,
we define

A, =3 Td} [[si%e,], (32)
s’ i /
the strength of the pth process, and
resl e 04, .
B=>s;1lay /[ [siEe,]=a a[ (33)
s’ i / Ay
making
I1=C02"SN13 > wpai H{ A e i cos (wt+6;) sin ¢,— By sin (wit+6;) cos ¢, }. (34)
k D

The power absorbed at frequency w; is

P,=1C02""Nlw, D> A e, sin o, (35)
AT »
and if we write H,= g\\HA sin ¢,
Prfor=2H e (36a)
2
J=HE. (36h)

3. Order of Processes

In eq (32) for 4,, the nonvanishing terms are those for |e,;| <si, hence >Je,,| <> si=N-+1
and we define the order of a process to be >3le,;|—1. A Q=CV" device gi:fos rise 0 processes
of order N, N—2, N—4, ete, because e, n{llst be of the same parity as s;.

The result of a process of given order can be produced by the superposition of processes of
other orders, introducing new frequencies for which 2,=0. That is, high-order processes can
be indirectly yielded by low-order devices by cascaded modulation, if suitable reactance loads
are added to the circuit and d-c¢ bias to obtain even-order processes from odd. By introducing
dummy frequencies involving only reactive power, the result of any desired set of processes
can be achieved using only simple nonlinear devices of the form @=CV? A constructive
demonstration of this will constitute our proof of sufficiency.

4. Redundancies

The relation (36b) represents the net effect of all mixing processes, both the minimal set and
the redundant ones. Partitioning into

¥.,=HE, (37a)

13,,: H Ez (37 b)
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leaves redundancies in E,, making it singular, 'so that H cannot be found from the given 3,.
In certain special cases, the frequencies are such that there are no redundant relations, and
E=7% so that H=H=31,%" if the processes of T are all of order N. Then the amplitudes
a; can be chosen arbitrarily and the A4, computed (one process for each derived frequency).
The sin ¢, are then known, and a sufficiently large choice of ' will make the ¢, real.

Because
¢:E9:E19d+Ezeb, (38)

the phases at base frequencies can be assigned, and the remainder are determined by
Bd:Efl(qD—E29b):Eflfb+Meb. (39)

Cquati 34) yields both current components, so the sink impedances are readily computed,
Equation (34) yields botl t ts, so tl I la il buted

In the general case of mixed-order %, the introduction of additional derived frequencies
with corresponding null components of 3, can convert (17) into

Y—=HE’, (40)

with E” of (say) third order, but the set of frequencies will usually allow redundant processes.
Our plan of attack is to express the given T in terms of third-order processes alone, and to
subdivide the resulting set of frequencies into subsets not possessing third-order redundancies.
Then for these subsets, each complete E is also a minimal &, and the subsets of mixing processes
can be carried out by separate cubic capacitors, using common base-frequency sources.

The only first-order process that is possible is the identity w,= w;, because the o were defined
to be positive and distinet. Because a third-order device can produce only first- and third-order
processes, the problem of enumerating producible processes among a set of frequencies is
relatively straightforward. Although a second-order device has the same simplicity, using
Q=CV? in the sufficiency proof automatically extends the sufficiency to (a) symmetrical
devices and (b) devices with positive slope throughout.

5. Minimal Third-Order Processes

Instead of choosing the source frequencies as bases, we take suitable subharmonics of the
sources, so that all derived frequencies will be integral harmonics and combinations. We start
by expressing harmonics of « in terms of minimal third-order processes, i. e., third-order
processes defining a set of frequencies not possessing any redundant processes of third order.

For generating an odd harmonic, 0w, we take a sequence of odd harmonics 0, generated by

if integral, and otherwise

0n+1:(0n:t ])/27

using the sign that makes 0,,, odd. This procedure yields a sequence that can be generated
from w by third-order processes in one and only one way.

For an even harmonic, we again divide by 3 if possible, and repeat until we have an even
term not containing 3 as a factor. We then start an odd series with

E41
3

01: ) OQZE_OI
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and continue down from O, to w as before, but add zero (d-¢) to the sequence. In reverse, we
find that O, and E are generated by

201: 02:i: 1
E=0,+0,+ (zero).

For combination tones, Aw,+Bw,+ . . ., we partition the sum into a sum of three combi-
nation tones, then repartition these in the same way, etc. A partial sum of two terms can be
partitioned by using the artifice Aw,+Bw,=Aw,+Bw,+0, as was done for even harmonics.
The original combination tone can thus be reduced to nonredundant third-order processes that
use harmonics of the base frequencies for starting points. These harmonics can then be
reduced as before.

6. Choice of Base Frequencies

Our procedure for expressing various frequencies by minimal processes was based on those
frequencies being integral harmonics. In terms of the original arbitrary base frequencies, we

had
wdi:Zmijwbjy 2)
J

where m,; are rational fractions. For each 7, let the L.C.D. of the m;; be D,;; then

wai =2 115055/ Dy;, (43)
o

where 7;; are integers, Let the new bases be wg,=w;;/D;; so that
Qd:RQB, Qb:DQB. (44)

Some of the frequencies of wy are new frequencies (associated with zero power) and some may
be members of the old sets w; and w,. All remaining members of w; and «, comprise the

components of a new wy:
QD:ﬁqQB. (45)

By the minimal process procedure of the previous section, the frequencies in w, may be associ-

ated in sets
Qpi=M,Qp, (46)

where m,,;; are integers, so that the corresponding %, as determined by the procedure leading
to (13) and (14) is

A given frequency may appear in several vectors wp,.

Let the voltages at frequencies appearing in w;, be impressed on the /th cubic capacitor,
Q=C, V3. For each of these capacitors, the relation (16a) becomes

?Hl:lgm

and all components are known. Assigning arbitrary nonzero amplitudes to all voltages, the
Ay; are readily computed. The phases of the base frequencies can be assigned ; for convenience
we let each 65,,=0. Then (39) and (35) yield

Op=%,
Opi=sin~! 24F,,,/31C, Ay
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Using zero-impedance generators at all frequencies involved, their interconnections with the
{ capacitors is a trivial problem.

It has been demonstrated that any modulation-distortion operation that satisfies the neces-
sary conditions for lossless devices can be produced with nonlinear capacitors, and in particular,
with cubic capacitors. The demonstration of sufficiency, however, utilized perfect generators.
It would be more satisfying to demonstrate the operation using generators at only those
frequencies at which the net power input is positive, and using passive linear impedances at
all sink and null-power frequencies. This can be done for any given set of base frequencies;
variation of frequencies may lead to variation of the strengths of the several mixing processes,
depending on the reactance-versus-frequency behavior of the elements and the particular
circuit configuration used.

The discussion is simplest when there is only one base frequency; all sinks are rational
harmonics of a given source. The procedure we have used for generating minimal processes
was such that if any base harmonic was common to two minimal processes, all lower frequencies
involved were also common. (Except for the d-¢ bias needed in some processes, which can
be handled by connecting individual bias batteries immediately adjacent to the capacitors.)
Thus an ordered tree of generators can be assembled, with various capacitors connected at
appropriate points on the “trunk’ or upright “limbs.” Equation (34) gives both components
of current at each frequency (for arbitrary assigned voltages), so impedances can be calculated
for replacing all generators except the power source. The impedances for the null-power dummy
frequencies will be purely reactive; those for sink frequencies will have positive resistance. By
associating each sink with one capacitor only, all common impedances are purely reactive.
The necessary reactances are computed from the base of the trunk upward, leaving the “termi-
nal twigs” for sink loads and independent reactance adjustments. Such adjustments can be
made for any given base frequency, but cannot be guaranteed for frequency variations.

Because the general combination tones are sums and differences of harmonies of the bases,
the harmonic-generating trees are to be interconnected with combination-tone sinks and their
associated capacitors. In the case of harmonics that are both sink frequencies and steps in the
development of combination tones, extra branches can be added to the harmonic-generating
trees, so that the harmonic sink loads do not carry the harmonic current used in generating
combination tones. Thus @/l mutual impedances can be made purely reactive, and all loads
isolated. Thus the necessary relations among frequencies and powers are also sufficient for
realization with cubic capacitors, at any set of incommensurate spot frequencies.

7. Regeneration and Stability

It is apparent from eq (19b) that in a given process power is absorbed by the capacitor at
some frequencies and delivered at other frequencies, or that in each mixing process the capacitor
presents positive and negative resistance components at various frequencies. At a given
frequency, some processes may absorb energy, and some may deliver energy. At a frequency
associated with passive impedance (no generator), any power dissipated in the impedance is
the net power delivered at this frequency by the capacitor. The total effective resistance of
the circuit at this frequency is zero. The impressed voltage at this frequency is zero and the
current is uniquely determined by the processes; the circuit is stable.

On the other hand, if for some processes the capacitor delivers power at the frequency of
one of the generators, we call it a regenerative process; it presents negative resistance to the
generator. If the total resistance so presented is zero or negative, the circuit is sometimes
said to be unstable.? If a circuit is unstable in this sense, i. e., if it can supply power to an

2 Manley & Rowe, op. cit., p. 908.
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external generator, then there is current at this frequency even in the absence of the generator.
Hence the unstable frequency is merely any one of the frequencies generated by the network.
If this frequency is a rational harmonic or combination tone of the other generators, the effect
is entirely expected. But the unstable frequency may be incommensurate with all the source
frequencies. In this case the network is said to oscillate. This condition occurs when the set
of frequencies involved in mixing processes is such that the number of base frequencies exceeds
the number of independent sources. Then by (19¢) at least one frequency involving the
excess base is associated with negative power (unless all such frequencies are associated with
zero power, in which case the extra base is not needed).

This type of oscillation can occur in systems that are ordinarily considered stable, i. e., one
that exhibits bounded responses to all bounded driving forces, and possesses no free oscillations.
The presence of such oscillations is, however, dependent on threshold values of generator
voltages, because for sufficiently small generator voltages, only integral harmonies and combi-
nation tones can appear.®

WasniNaToN, October 3, 1956.

3 Unpublished work, to appear in J. Wash, Acad. Sci.
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