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Theory of Dielectric Relaxation for the Three-Dimensional
Polar Rotator: Lattice Models Leading to Bimodal Loss

Curves

John D. Hoffman and Benjamin M. Axilrod

The characteristics of the dielectric relaxation spectrum associated with some simple
three-dimensional lattices consisting of polar molecules of specified shape have been investi-
gated with the object of determining whether dielectric loss curves with two distinet maxima
(bimodal loss curves) could be predicted on a theoretical basis for such systems. For the
types of lattice and molecular shape considered, each dipole has one stable and four meta-
stable orientations.

The calculations show that under certain circumstances bimodal loss curves may arise
for pear-shaped molecules in both the body-centered orthorhombic and tetragonal systems.
All of the models lead to a single loss peak if the barrier system is sufficiently isotropic as in
the body-centered cubic lattice. The changes with temperature of the shape of the loss
curves, the static dielectric constant, and the configurational entropy are discussed. The
abrupt changes in these properties that will occur at phase transitions due to cooperative
interaction are also considered. Qualitative predictions concerning the expected behavior
of bimodal loss curves for three-dimensional lattices, in which each dipole has only a single
stable orientation, are compared with experiment.

Using an argument based on the fact that broadened loss curves in monophase molecular
crystals become narrower with increasing temperature, it is concluded that fluctuations of
structure are not the principal cause of the broadening of loss curves. The present theory
leads to the correct type of temperature dependence, and this strengthens the view that the
origin of multiple relaxation times in molecular crystals is the anisotropy of the crystalline

field.

1. Introduction

It is well known that for many molecular crystals
in which the polarization decay mechanism is the
result of the reorientation of permanent electric di-
poles the dielectric relaxation spectrum is best repre-
sented by a set (or distribution) of relaxation times
rather than by a single time constant. This is indi-
cated by the fact that when the experimental values
of the dielectric loss factor for such a material are
plotted in the usual manner as a function of the log-
arithm of the measuring frequency, a bell-shaped
loss curve is usually obtained which is considerably
broader than that predicted on the basis of a single
dielectric relaxation time. In some instances, a
plot with two distinet maxima (bimodal loss curve)
1s found.

One of the main objectives of this paper is to show
how an extremely wide set of relaxation times capable
of leading to a bimodal loss curve can be predicted
theoretically for systems that, for reasons of lattice
symmetry and molecular shape, may reasonably be
assumed to consist of three-dimensional polar rotators
with five orthogonal orientations.  Hitherto, cal-
culations on the three-dimensional polar rotator
have not been closely related to details of molecular
shape and lattice structure, and have yielded only a
rather narrowly spaced set of relaxation times leading
to a somewhat broadened loss curve [1],* or a very
general type of information not concerned with the
details of the shape of the loss regions [2]. Bimodal
loss curves have been predicted for one special type
of single-axis rotator [3].

! Figures in brackets indicate the literature references at the end of this paper.
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Another objective is to deduce from the theory the
general characteristics to be expected of bimodal
loss curves in molecular crystals. These qualita-
tive predictions, which are not in general sensitive
to a special choice of models, are compared with
experiment.

A quantitative comparison of theory and experi-
ment is considered to be unwarranted at the present
time. In the first place, for reasons of simplicity of
treatment, we are forced to deal with the body-
centered orthorhombic (beo) and  body-centered
tetragonal (bet) systems, whereas the best dielectric
relaxation data now available for three-dimensional
polar rotators are for the face-centered orthorhombie
(feo) and face-centered tetragonal (fet) forms of the
hydrogen halides. Nevertheless, with certain ap-
proximations to be mentioned, the results for the

feo and fet lattices are practically identical with those

obtained for the bco and bet types. The second and
more serious complication is that the question of
the exact position of the hydrogen atoms in the
hydrogen halide structure is unsettled, with the re-
sult that even the most stable dipole orientation is
uncertain.

Several specific three-dimensional models are dis-
cussed. All are based on pear-shaped polar molecules
situated in a beo or bet lattice. The time-dependent
dielectric properties of each of these models are
illustrated by predicting the shape of the loss curves
for certain specified arrangements of the activation
energy barriers hindering reorientations between the
various possible positions (sites) that each dipole
may occupy by rotating about its lattice point.
In addition, an equilibrium dielectric property,
namely, the total orientational polarizability, is



calculated for each of the models. This provides
information concerning the behavior of the static
dielectric constant. Consideration is also given to
the effect of change of temperature on the shape of
the loss regions, the static dielectric constant, and
the configurational entropy.

The methods used to calculate the molecular
relaxation times and the orientational polarizability
associated with each relaxation time have been dis-
cussed in considerable detail for three-dimensional
lattice models in an earlier publication [1].> There-
fore, after deseribing each model and setting down
the differential equations pertaining to it, the relaxa-
tion times and polarizabilities are cited without
giving the details of the calculations. The loss curves
were calculated from these quantities with the help
of eq (2b) of the following section.

The results obtained in reference [2] regarding the
general properties of the relaxation times were used
to check the results quoted in this paper. In addi-
tion, the general formulas valid for orthogonal six-
site models given in the appendix of reference [2]
were used to check the calculation of the total
orientational polarizability.

2. Preliminary Relationships

If a substance has a single macroscopic dielectric
relaxation time T, its dielectric behavior in a sinusoi-

dal electric field is described by the Debye [4]
equation

¢ Ae 0T

( )—FTZ (1)

where €’(w) is the dielectric-loss factor as a function
of angular frequency o, and Ae is the increment of
dielectric constant associated with the relaxation
process. A plot of ¢’ as a function of log;, w, using
eq (1), yields a narrow and symmetrical loss curve
with a maximum at «T=1. As has already been
indicated, the loss curve observed for many sub-
stances is broader than that predicted by the Debye
equation. For present purposes, it is convenient to
think of such data as being represented by a super-
position of Debye-type loss curves, each of which
possesses its own relaxation time and magnitude.
Therefore, [1, 5]
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where T, with =12, ., 1s the set of macro-
scopic relaxation times, and Ae is the increment of
dielectric constant associated with each mode of
decay.

Calculations on molecular models of the type to
be discussed here characteristically lead to a set of
discrete molecular relaxation times 75, and a corre-

2 A misprint in a general formula used in the polarizabﬂity caleulations oceurs
in reference [1]. The last term in eq (11), the expression forw e F should be cos
£{cos £ and not cos £: cos 6. The correct expression was employed in making all
calculations.
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sponding set of molecular orientational polariz-
abilities o5, where f=1,2, As in previous
papers, it is assumed that the macroscopic and mole-
cular relaxation times are approximately equal, i. e.,
Ts~75 and that each increment of dielectric con-
stant i1s proportional to the corresponding orienta-
tional polarizability so that Aes~Kag where K is a
constant. The lack of an exact proportionality in
each case is a result of the fact that the electric field
at a molecule (internal field) is not identical to the
applied field for condensed phases. With the ap-
proximations mentioned above we have the working
equation [1,5],

¢’ aszﬂ
=K (P (2b)
for estimating the details of the loss curves. In

cases where the quantity KZso>~TsAe=¢e,—e, 1S
small (e, and e, are the static and high frequency
dielectric constants, respectively), eq (2b) is an excel-
lent approximation. Kurthermore, in cases where
the Onsager expression for the ratio of the internal
to the applied field is valid, there are reasons for
believing that eq (2b) holds with sufficient accuracy
for the purpose at hand tor any value of e—
[5,6,7].

All of the types of loss curves mentioned here and
in section 1 can be reproduced by inserting the ap-
propriate 75 and @z into eq (2b). In partlculal if
two relaxation times (or sets of relaxation tlmes)
are very far apart, and the corresponding polariz-
abilities are of comparable magnitude, a bimodal
loss curve is generated.

In the special case where only two active relaxation times

exist, we have been able to deduce the following useful con-
dition for the appearance of clearly apparent bimodal loss

curves:
(Gez)>e

In this equation 7; and 7, represent the longer and shorter
relaxation times, respectively, and apa.x and an;, the larger
and smaller polarizabilities. Relaxation times and polariz-
abilities conforming with this equation will yield loss curves
that exhibit a perceptible minimum between the two loss
regions.

€x

Zmin 3)

Qmax

3. Pear-Shaped Molecules in a Body-
Centered Orthorhombic Lattice (0-1, 0-2)

3.1. Basic Model

In this section the manner in which a structure
consisting of pear-shaped molecules situated in beo
lattice may give rise to a bimodal loss curve is con-
sidered. The unit cell of the molecular model to be
discussed is shown in figure 1 (a). KEach molecule
in the lattice is supposed to consist of a large sphe-
roidal part on which a smaller more or less hemi-
spherical protuberance is attached. The protuberance
is shown in black in figure 1 (a). The dipole moment
ris along the line connecting the center of the larger
spheroid and the center of the protuberance.
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(a) Lattice structure.
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The symbols a, b, and ¢ represent the dimensions of the unit cell.

tion probabilities for reorientations between the various types of sites in model 0-1.

The first step is to single out a typical molecule—it
is convenient to consider the central one shown in
figure 1 (a)—and select a reasonable set of equilib-
rium orientations (sites) and relative site energies
as the central dipole is permitted to rotate with its
neighbors held fixed. 'This will determine many im-
portant features of the crystalline field. In the
present case, it is postulated that the protuberance
on the central dipole may fit between the four nearest
neighbors comprising each face of the unit cell so
that the possible dipole orientations are orthogonal.

In the face-centered orthorhombic (fco) structure there
are 14 rather than 6 gaps between the nearest neighbors in
which the protuberance might conceivably fit. The six most
pronounced sites, which are in the directions of the next-
nearest neighbors, are orthogonal to one another; thus these
sites resemble those postulated for models 0-1 and 0-2 (sec-
tions 3.2 and 3.3). The eight unstable sites are a result of
the protuberance fitting into triads of nearest neighbors. If
it is assumed that these eight sites are sufficiently unstable
to be ignored, the site model for the fco lattice becomes iden-
tical to that for the beco. Under these conditions, the results
quoted here for the beo lattice with pear-shaped molecules
will hold for the fco lattice as well.

The assumption is made that there is one most
stable orientation for the central dipole, and this
deep site is designated “1.” In the beo lattice,
where a<b<c¢ for the unit cell, the equilibrium site
energies in the z and z" directions (sites 3 and 5)
must be the same, and similarly, the pair of sites in
the y and 7" directions (sites 2 and 4) must have the
same energy. However, since in this lattice the
nearest neighbors in the ac faces are somewhat more
compactly arranged than those in the be faces, the
pair of sites 3, 5 is less stable than the pair 2, 4.
Hence, sites 3 and 5 are referred to as “high’ sites,
and 2 and 4 are designated as “intermediate’ sites
(fig. 1 (b)). It has been assumed that the dipole
cannot point in the 2z’ direction owing to the re-
pulsion of the protuberance on the central molecule
with that on the body-centered molecule below it;
this idea has been borrowed from the work of Powles
[8] on molecules of similar shape.
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Details of the beo lattice with pear-shaped molecules.

(b) Orientational site arrangement. (¢) The barrier system and transi-

(d) Same as (c¢) for model 0-2.

In antiparallel dipole arrays of the type shown in
figure 1 (a) where a>~b~¢, the orienting torque on the
central dipole due to the electric field exerted by its
neighbors will generally be small. In bee lattice
where a=b=¢ this torque is actually zero. In such
situations it i1s safe to ignore the effect of dipolar
interaction on the site energies, but in strongly tetra-
gonal or orthorhombic unit cells, or certain parallel
dipole arrays, an appreciable contribution to the
site energies may arise from dipolar interaction.

Many of the equilibrium properties of the site
model shown in figure 1 (b) can be obtained without
introducing further information. For instance, the
total orientational polarizability can be calculated in
terms of w, the absolute temperature, 7', and the
equilibrium energy differences between the sites.
However, the relaxation times of interest here de-
pend on the activation energy barriers arising from
the crystalline field that control the rate at which
dipoles turn from one site to another. The local
free energy barrier W,; between two adjacent sites
2 and 7 determines the elementary process transition
probability (unimolecular rate constant) k,.; as
kin;=A expl—Wy/kT], where Kk is Boltzmann’s
constant, and A a constant.®* In a similar manner,
kjwi=A exp[—W,;/kT]. In turn, certain sets of
combinations of the various transition probabilities
prove to be related to the set of relaxation times that
characterize the system. In order to obtain the
required molecular relaxation times, it is therefore
necessary to determine or assume certain properties
of the activation barrier system in such a manner as
to fix at least the relative values of the various
transition probabilities.

Certain simple considerations greatly limit the

3 In assuming that each transition probability is controlled by the free energy of
activation, we follow the ideas expressed previously by Kauzmann [Rev. Mod.
Phys. 14, 12 (1942)] concerning the elementary dipole orientation process in a
dielectric. In the text, the term “‘energy’’ is sometimes used to replace the more
cumb;'rson};e “local_free energy,” especially in discussing the equilibrium proper-
ties of a site.



possible choices of the relative transition probabili-
ties for any model:

(a) The only elementary process is the turning of a
dipole to an adjacent site (single-jump hypothesis,
S-J). The S-J hypothesis has been used in all
previous calculations [1, 2, 3, 5].

(b) If © and 7 are adjacent sites of equivalent
equilibrium energy, then k,;=k;.; as the activation
barrier is the same for each process. This also
follows from the principle of detailed balance.

(¢) Let the probability that a dipole will turn from
a deep site to a high site be denoted £geep—nien, and
the probability for the corresponding reverse process
be Fknignodaeep- 1t follows from the fact that the
activation barrier for the process deep—high must
be greater than that for the process hich—deep that
kdeep—’hlgh<khlgh—>deep~

(d) The transition probabilities for the turning of
a dipole from a certain site to any of a number of
adjacent sites that possess equivalent equilibrium
energy must be identical for reasons of symmetry
of the molecule and of the crystal lattice.

Even with the above, the general orthorhombic
model with pear-shaped molecules is excessively
complicated and difficult to deal with from a mathe-
matical standpoint. Hence we have introduced the
assumption that reorientations in the z-y plane are
much more difficult to make as elementary processes
than other allowed transitions, i. e., k,_,<k,_. or
k,_; this condition merely requires W,_, to be a few
times W,_, and W,_.* Then for purposes of cal-
culation we pass to the limit and set k,_, equal to
zero. As a result of this assumption and subsequent
limiting procedure, processes of the type 2—3
are forbidden, but it should be noted that a dipole
may turn from one site to another in the z-y plane
as the result of a succession of elementary processes
by first entering site 1. The above-mentioned
simplification was first introduced to render the
problem more tractable, but further considerations,
discussed below, suggest that this condition is
physically not unreasonable under certain circum-
stances.

Assume that the repulsion between two pro-
tuberances virtually in contact is more severe than
that between the body of the molecule and a pro-
tuberance under the same conditions. First, note
that this assumption is consistent with the forbidding
of site 6 as a possible orientation. Second, in turn-
ing the protuberance on the central molecule in the
z-y plane, observe (fig. 1 (a)) that when it is
turned half-way to the next site it comes into close
contact at a right angle with the protuberance on a
nearest neighbor, thus leading to a situation much
like that used to forbid site 6. It would, therefore,
appear to be permissible on a trial basis to forbid
this activated state and hence elementary processes
in the z-y plane. Note finally that the stated
repulsion hypothesis permits the necessary elemen-
tary processes between the sites in the z-y plane and
site 1. It was not found possible to justify clearly
the forbidding of reorientations in the z-y plane on

¢ The assumption that kz,))kz. or k,. will also lead to 'bimodal loss ‘curves for
the beo lattice (see section 3.4).
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the basis of a simple “hard sphere” model without
introducing special shapes for the protuberance.

The “hard sphere” model is useful in indicating possible
sites. However, we find this concept is not very helpful as a
guide for determining relative site energies and transition
probabilities. For reasons of simplicity, suppose the neigh-
bors are held fixed while the central molecule is reoriented.
Then with the simplest approximation the following is found:
first, either an orientational site is possible, or there is inter-
ference and it is not allowed; second, all allowed sites have
the same energy; and third, with regard to the barrier heights,
either a transition is allowed and the associated barrier
negligible, or the transition is forbidden and the energy barrier
is infinitely high. As a second approximation in using the
“hard sphere” or rigid, incompressible molecule picture, it
might be assumed that a site is not forbidden if a small overlap
occurs, but rather that the site energies relative to the most
stable site are indicated roughly by the degree of overlap and,
similarly, the heights of the free energy barriers that must be
surmounted are indicated by the amount of volume overlap.
The second approximation could be modified by permitting
the neighbors to be displaced and to rotate slightly when the
central molecule is reoriented, a probably more realistic rep-
resentation than that previously assumed. However, this
relaxation of perfect crystalline structure would greatly
complicate the problem.

An alternative to the “hard sphere’” method of estimating
equilibrium orientations and activation barriers is to use a
potential law of the form wu(r)= — A/r®+ B/r», where different
values of A, B, and n are assigned to the body of the molecule
and the protuberance. Such calculations are hampered by
a lack of information concerning the exact repulsive law
(i. e., the value of n) that should be used. In addition, if
directional attractive forces such as evidently exist in the
hydrogen bond are present, this further complicates the
situation. Nevertheless, it is believed that if further math-
ematical labor is to be invested in this problem, it will prob-
ably be most profitable to employ a method that involves
attractive and repulsive potentials which vary with distance.

Within the limits imposed by items (a) through
(d) above and the absence of elementary processes
between sites in the z-y plane, two basic types of
barrier system are still possible for the postulated
arrangement of sites and equilibrium energies. The
first type, denoted 0-1, has a smaller barrier for
jumps of the type intermediate—deep than for
high—>deep, while the second, 0-2, has a larger
barrier for intermediate—deep than for high—deep.
Specific examples of these two types are considered
separately below.

3.2. Model 0-1

The simplest way to study the properties of the
beo lattice with pear-shaped molecules for the special
case where the barrier for the process intermediate—
deep is smaller than that for the process hich—deep
is with the help of a specific example. The specific
barrier system chosen to illustrate the behavior of
this model is shown in figure 1 (¢). As has been
noted previously for the orthorhombic lattice, the
sites in the z-y plane must, taken pairwise, differ in
equilibrium energy. Hence the intermediate sites
are taken to have an energy V above the deep site,
while the high sites are set at 5V/4 above the deep
site. Although these assignments are arbitrary, it
is emphasized that similar results are obtained for
models where the equilibrium energy of the high
sites is set in the range V to roughly 2V above the
deep site. The model is so arranged that as V is
taken to be zero, all barriers have the value W;.



The transition probabilities for the elementary
processes are defined as follows:
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As a result of the aforementioned simplification
regarding reorientations in the z-y plane, ki, —nign=
Fnign—ime.=0. It is noted further that the assign-
ments given in eq (4) conform with considerations (c)
and (d) mentioned in section 3.1, page 62. In
accord with (¢) ky >k, and ky >ks, and in accord with
(d) the same transition probability is used to describe
the elementary processes occurring between the
pail(\d sites of equivalent energy and the deep site,
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In the above equations g=#k/k;=e¢ VT and ¢=
14-2g-+g2—4g*/4+12¢™3/4 4 dg2,

The details of the loss curves for this model are
most readily ascertained by calculating the orienta-
tional polarizabilities and relaxation times numeri-
rally from eq (6) for various values of the parameter
g=exp(—V/kT), inserting these in eq (2b), and plot-
ting the loss curves. The relevant data are given in
table 1, and the loss curves obtained from these data
illustrated in figure 2.
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cause there are no adjacent sites with the same
equilibrium energy.

It i1s now a simple matter to write down the differ-
ential equations that govern the rate processes. Let
Ny, N, , 1(\])10%011‘5 the number of dipoles in
sites 1, 2, . . . at any time {. Then, bearing in
mind the S-J hypothesis, which forbids j jumps of the
type 3—5 or 2-—>4 as an elementary process, the net
rates at which dipoles enter and leave each site are

dATI/dt: _2<k1+k3)2\r1+k:b o +ksN3 ko Ny +-k N5
(]47\’r2/(]t: _kgANr-z‘Jf_klArl

3

([Z\ /(]tf_k.i]\ +A1A 1 >(5)
dN, /(lt = l('g;\‘:%‘klj\vl
dN;/dt= —kN;+Fk3N,. )

The relaxation times may readily be obtained by
solving the above equations using the methods given
in previous papers and the polarizabilities > may be
obtained by using the method outlined in reference
[1].

The results for 0-1 are as follows:
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It is seen that for small values of g a strongly bi-
modal loss curve is produced which 1s characterized
by a high-frequency peak which is larger than the
low- ﬁcquen( v one. Both loss maxima are actually
composed of two distinet peaks which are very close
together with the result that, considered individually,
each of the two loss peaks is very nearly of the Debye
type. As g increases the peaks tend to come closer

5 The polarizabilities given in the paper are derived on the assumption that the
medium is polycrystalline.



TaBLE 1.

Relaxation times and polarizabilities for model 0-1
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together and finally coalesce, but even at g=1 the
loss curve is still somewhat broader than a Debye-
type peak. As may be seen from the expression
g=exp(—V/kT), the trends just noted for increasing
¢ hold as well for the case of rising temperature.

To the approximation used here, the static dielec-
tric constant is given by e, ~ e, -+ K oq1, Where o i =
Jss. A simple analysis shows that ey (and hence
e;) will rise with increasing temperature until g
reaches a value of 0.17; at this point the explicitly-
shown 1/7 term in the expression for a;.. in eq (6)
overcomes the increase with temperature of the term
containing ¢ inside the brackets. Thus de/dT is
positive for 0<g<0.17 and negative for 0.17<¢g<1.
It should be noted that the loss curves are strongly
bimodal only in the region 0< ¢<0.06, i.e., where
de/dT 1s positive, and conversely, that only a some-
what broadened loss curve is obtained when de/dT
has a strongly negative value, as for g~1.

3.3. Model 0-2

This is the model shown in figure 1 (d) where the
activation energy barrier for reorientations from
high—deep is less than that for intermediate—deep.
For this case the transition probabilities are defined
as follows:

Fdeep— int, =k,=Ae~ Wot2V)IKT

kint.— deep=lh,=Ae— Wt V) kT

(7)

Fedeeps nigh="H,= Ae~Wots VIO kT

]Chigh—»deep = k4 ZAB —Wik T,

It will be noted that the assignments listed above
are consistent with the considerations regarding the
relative values of the transition probabilities men-
tioned in section 3.1. The differential equations are
identical to those given for 0-1, except that eq (7) is
used rather than eq (4) to define the transition prob-
abilities. The relaxation times and polarizabilities
are found to be
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Ficure 2. Shape of the dielectric loss curves for model 0—1 for

vartous values of g.

The loss factor €’ is given with K (u?/3kT) normalized to unity. The shortest
relaxation time has been set at 10-6 scc. in each diagram. The component loss
peaks associated with each relaxation time are shown as light lines and the result-
ant loss curve is the heavy line.
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Values of the polarizabilities and relaxation times

computed with eq (8) are given in table 2. The loss
curves calculated for some of the g values are plotted
in figure 3.
Tt is seen that this model leads to strongly bimodal
loss curves which differ from those obtamed with
model 0-1 primarily in that the largest loss peak is
now on the low frequency side. Noting that g=
exp(—V/kT), it is seen that the two loss peaks con-
verge with rising temperature and coalesce into a
single broadened and asymmetric peak, which then
becomes narrower with a further increase of tempera-
ture. The total polarizability varies with ¢ in a
manner identical to that found for 0-1, with the
result that the loss curves are strongly bimodal only
in the region where the dielectric constant is low and
des/d T positive.

where g=k,/k,=¢
445741 —

TABLE 2.

Relaxation times and polarizabilities for model 0-2

Orientational polarizabilities & Relaxation times b

it

7 ‘ ] Ciotal | T2 | T3 | T4 75
1 0.4 0.4 0.16 0 0. 96 1 110.20 1
0.1 1524 . 0857 . 0798 .1016 . 4195 10 1|.871| 8.49
.01 | . 0] 949 | .00616 | .00612 | .01886 | .05064 | 100 1|.996] 98
.001| . 001994| .000355| . 000355| . 001992 . 0046951000 1 [1.000[998

a In units of u2/3kt.

b Tn units of 1/ks=1/Ae. 0L,
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various values of g.




3.4. Alternative Approximation Leading to
Bimodal Loss Curves in BCO Systems

At this stage, it is of interest to point out that
another type of approximation concerning elemen-
tary processes in the z-y plane will lead to bimodal
behavior for pear-shaped molecules in. the beo lattice.
As will be seen in section 4, model T-1, bimodal loss
curves can be obtained for pear-shaped molecules in
the bet lattice by permitting reorientations in the
2=y plane to be more rapid than for all other ele-
mentary processes. It can be shown for the analo-
gous bco case where reorientations in the a-y plane
are very rapid compared with the other possible
elementary processes that bimodal loss curves are
generated. Detailed calculations are not given, but
this result is readily seen for the limiting case where
the beo lattice is assumed to be nearly tetragonal so
that results closely similar to those quoted for model
T-1 are obtained. Bimodal loss curves can be ob-
tained with this approximation which have peaks of
equal magnitude, or alternatively, similar to those
calculated for O-1. Loss curves with the type of
symmetry depicted for O-2 cannot be obtained when
1t is assumed that reorientations in the z-y plane are
more rapid than all other elementary processes.

It is clear from the foregoing that bimodal be-
havior can arise in the beo lattice with pear-shaped
molecules under widely different circumstances.
While it is at present impossible to state with any
certainty which of the two approximations (very
fast or very slow reorientations in the -y plane)
will hold for any particular real system, it does seem
reasonable to suppose that either one or the other
should be valid for some substances. It is therefore
considered possible on theoretical grounds that some
real systems consisting of pear-shaped molecules in
the bco lattice will exhibit bimodal behavior, par-
ticularly at low temperatures.

4. Pear-Shaped Molecules in a Bedy-
Centered Tetragonal Lattice (T-1)

In a search for lattice models that led to bimodal
loss curves, pear-shaped molecules in a bet lattice
were naturally considered. The molecular model is
essentially the same as that depicted in figure 1(a)
except that a=b<c. Following the type of argu-
ment given in section 3, one obtams the site energies
and orientations shown in figure 4. In the et
lattice, all of the sites in the -y plane have the same
energy and are designated “high” sites. In order
to carry out a general treatment of this model let

k deep—ﬁhlgh:k ]
ke highﬁdeep:k, t (9)
k highahlgh:k’,' J

Because site 1 is deep, k’>k, but the transition
probability for reorientations between the equivalent
high sites, &'/, may in the general mathematical
model have any value.
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with g=k/k’=e¢=V/kT where 1" is the equilibrium en-
ergy difference between the deep and high sites.

Mode 4 is inactive in the dielectric relaxation
spectrum owing to a compensatory motion of the
dipoles.

Remembering that k' >k, and that 7, is inactive,
it is seen from eq (11) that the active relaxation
times are always close together except for the case
k'"">k k' 1. e., where the transitions in the z-y plane
are considerably more rapid than all other elemen-
tary processes. It is worth while to consider the
nature of the loss curves for small values of g (ordered
lattice with low dielectric constant) and values of ¢
close to unity (disordered lattice with liquidlike
dielectric constant). When k’">kk’, and ¢ is small,
two widely separated loss curves of almost identical
magnitude are obtained in contrast to the unequal
p(\:lh obtained for models 0-1 and 0-2. On the
other hand, if the lattice is rotationally disordered
(g=~1) so 1]1(11 all of the sites have nvul\' the same
equilibrium energy, it would appear to be unreason-
able to assume generally that the activation barriers
will differ 01(‘11]\' Henece, in a disordered lattice of
the type consult-l('(l the condition k"> k" may be
regarded at least tentativ ely as being physically un-
lil\(l_\ with the result that bimodal behavior is not
ordinarily to be expected in such a system.

It may be concluded that pear-shaped molecules
in the bet lattice will exhibit bimodal behavior
provided the condition k’/>>Fk k' is attained. Such a
condition is most likely to arise in an ordered phase
where the dielectric constant is relatively low and
deg/d T positive. Thus, whereas the beo lattice yields
bimodal loss curve with either very rapid or very
slow reorientations in the z-y plane, the correspond-
ing effect can be obtained for the bet lattice only when
transitions in the z-y plane are very rapid.

As may be seen from the (‘\])l(‘\\l()ll I‘UfAl exp

(—Wy/ET), the quantities £, k', and £’ will tend
to converge with rising temperature. Thus, the

two loss peaks comprising a bimodal loss curve will
tend to converge as the temperature is raised. As
may be seen from a comparison of the quantities
ay+ay and «a;, the two loss peaks in a bimodal curve
will be of very nearly the same magnitude when ¢ is
small, but as ¢ is increased, i. e., as the temperature
is increased, the peak associated with 7., becomes
larger than that associated with Ts.

The results for the bee lattice may be obtained by
passing to the limit g=1 for the model discussed
above. For this highly isotropic lattice it is consid-
ered improbable that the condition k'/>>k k" could
hold generally, and it is therefore anticipated that
bimodal loss curves will not commonly arise in such
systems.  The behavior of the static dielectric
constant for such a system will resemble that of a
polar liquid, i. e., e will be relatively large and
de./dT strongly negative.

5. Discussion
5.1. General

It has been demonstrated that, given certain stated
conditions that depend on the details of the crystal-
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line field, bimodal loss curves can arise in systems
consisting of polar three-dimensional rotators with
assumed equilibrium orientations and site energies
that are consistent with certain types of lattice
structure and molecular shape. The basic cause of
the set of relaxation times is the anisotropy of the
crystalline field in which the molecules are situated.
This anisotropy gives rise to different temperature-
dependent transition probabilities (unimolecular rate
constants) for reorientations between adjacent sites,
and the equations describing the net rate at which
dipoles enter and leave each site in terms of these
transition probabilities then lead in a natural way to
the set of discrete relaxation times. Only a single or
narrowly spaced set of relaxation times appears if the
transition probabilities are all identical as is assumed
for a highly isotropic lattice. The relaxation times
are generally most widely separated in a lattice with
a high degree of anisotropy.

It appears from these studies that rather special
forms of the crystalline field are required to produce
bimodal behavior. KEven after postulating reason-
able equilibrium orientations and relative site ener-
gies, and applying the rules outlined in section 3.1
concerning the permissible range of transition
probabilities, it was generally found that parameters
concerned with the nature of certain activated states
remained. It will be recalled that at this stage it was
noted that particular choices of these parameters led
to the widely divergent relaxation times necessary
for bimodal behavior. We emphasize that it was
generally difficult to really justify these particular
choices on the basis of lattice structure, molecular
shape, or special types of interactions. Therefore,
despite the fact that the above-mentioned special
choices concerning the height (or relative height) of
the activation energy barrier between certain sites
did not seem to be excluded for any physical reason,
it was impossible to state with any certainty whe ther
any real system with the designated crystal structure
and molecular shape would necessarily show bimodal
behavior. It should be remarked that the conclusion
that highly disordered (isotropic) lattices will not in
general exhibit bimodal behavior rests on the validity
of the idea that in a lattice with equivalent equilib-
rium site energies, it is improbable that the barriers
between the various sites will differ greatly.

It is interesting to note that the g(\mml molecular
explanation for bimodal loss curves in polyerystalline
specimens is consistent with the suggestion of Cole
and coworkers [9, 10, 11, 12] that the bimodal effect
is associated with the dielectric anisotropy of each
single erystallite. In their view, the polarization of
a single crystal of a substance with a bimodal loss
curve should probably be described by two or three
principal dielectric constants, some of which may be
presumed to decay after the abrupt removal of the
electric field at a different net rate.  As may be seen
especially in earlier papers [1, 3, 5], this is exactly
the situation that prevails for single crystals in the
present type of theory. In the process of calculat-
g the orientational polarizabilities, the polarization
for each mode of decay was resolved in the z, 7, and
z directions, and it was always found that a given



mode was much stronger along one or two of these
axes. This holds for all of the models leading to the
bimodal effect investigated in this paper.

5.2. Effect of Temperature on the Dielectric Relaxa-
tion Spectrum

In common with almost all of the models studied
earlier [1, 3, 5] the relaxation times converge with
increasing temperature. The fundamental reason
for this is that each of the set of relaxation times is
given by the theory in terms of elementary process
transition probabilities defined as k;;=A4 exp(—W;,/
kT); clearly the k;; must converge with increasing
temperature, and noting that the theory usually
shows that the active relaxation times converge as the
k;; converge, the result quoted above follows. As a
natural result of the convergence of the active
dielectric relaxation times, the two loss peaks in a
bimodal loss curve tend to merge with rising tem-
perature. If the loss is confined to a single but some-
what broadened peak, the peak will tend to narrow
further with rising temperature. It will be noticed
for the models treated that, as a result of the special
way in which the activation barriers were defined, it
was possible to express the relaxation times in terms
of the parameter g=exp(—V/kT). Noting that the
active relaxation times for these models always con-
verge as ¢ goes from zero to unity, and remembering
that V is the equilibrium energy difference, the con-
vergence of the relaxation times with increasing
temperature in these specific cases may be regarded
as a direct consequence of the Maxwell-Boltzmann
distribution law.

An analysis of the shift with frequency of the two
loss peaks in a bimodal loss curve as a function of
temperature for all the models studied indicates that
the low-frequency loss peak shifts more rapidly to-
ward higher frequencies than the high-frequency one.

5.3. Effects of Cooperative Interaction and Phase
Trarsitions

Cooperative interaction will in general tend to ac-
celerate the convergence of the relaxation times with
increasing temperature, because such interaction
may be thought of as causing the barrier system to
become more uniform [3, 5, 9]. For the models
given in this paper this effect may be seen on a
qualitative basis by letting V' tend to decrease with
temperature. This leads to a more rapid increase
of g than if V were invariant with temperature, and
the net result is the aforementioned acceleration of
the convergence of the relaxation times.

Cooperative interaction can lead to the existence
of sharp phase transitions, where V' drops abruptly
and ¢ increases from a small value to one near unity
(fig. 5). This corresponds to the rapid equalizing
of the barrier system at the transition temperature.
With regard to the change of V' with temperature,
examples close to the present case may be found in
the literature [13].

It is of interest to discuss the changes to be ex-
pected in the loss curves, static dielectric constant,
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Ficure 5. Behavior of V (solid line) and g dashed line as’a

function of temperature in the vicinity of a sharp phase
transition at T; (schematic).

crystal structure, and in the configurational entropy
above and below such a sharp transition for models
like 0-1 and 0-2.

Consider first the loss curves. It is clear from the
sharp change in ¢ at the transition that an abrupt
change may take place in the shape of the loss curves.
This change will be especially marked if the phase
just below the transition has a bimodal loss character,
but may be much less so if the loss curve below the
transition is quite narrow. The calculations also
indicate that an abrupt decrease is to be expected
in the “average” relaxation time as the temperature
is raised through the transition, and this will cause
the loss curve to shift toward higher frequencies.

In the simplest situation, the phase below the
transition for models 0-1 and 0-2 will be beo, and
that above it bce, the latter corresponding to the
highly disordered lattice where the protuberance
points at random in the five possible sites. As
indicated previously, the beco phase could be bimodal
(particularly at low temperatures) but it is unlikely
that the isotropic bee phase would exhibit such
behavior. For all the models discussed in this paper
the configurational entropy at the absolute zero of
temperature is zere, because each dipole has but one
possible orientation. Above the transition where
the phase is rotationally disordered, the configura-
tional entropy assumes the value R In 5 entropy
units. Hence the transition bco—bece would involve
a maximum entropy of transition of R In 5 entropy
units.® The actual value will be slightly less than
this due to the slight premonitory increase of dis-
order below the transition [note the slight increase
of ¢ in figure 5 below the transition].

A more complicated set of phase transitions is
possible for the bco lattice: the entropy might be
gained in the steps beo—bei—bee.  In such a case the
sum of the entropies of transition would still be
~R In 5 entropy units. Furthermore, it is to be
expected that, if bimodal loss behavior should
occur, it is most likely to be found in the ordered
bco phase (compare models 0-1, 0-2, T-1). Bimodal

6 This refers to the entropy change for a constant volume process. Experi-

mental entropies may contain a fairly large contribution due to the expansion of
the crystal.



loss curves might possibly appear for the bet phase
if it 1s sufficiently ordered above the transition, but
such behavior is not to be expected for the bee form.

The static dielectric constant tends to increase
below the transition even if V is held constant. In
the cooperative case, it will tend to do so more
rapidly, and will rise abruptly to a liquidlike value
at the transition owing to the sharp increase of ¢
at that temperature. The above holds for the
transition bco—bee, where V=0, g~1 above the
transition, but in the case of the more complicated
sequence bco—bet—bee, an abrupt rise in dielectric
constant may take place at either transition depend-
ing on the relative stability of the deep site in the bet
form.

The remarks in the above paragraphs pertaining
to the behavior of the dielectric constant, configur-
ational entropy, crystal structure, and shape of the
loss curves in the vicinity of cooperative phase
transitions apply to the corresponding face-centered
systems provided the eight sites due to the triads of
nearest-neighbors are sufficiently unstable so that
they may be ignored in comparison with the five
orthogonal sites where the central dipole may point
toward next-nearest neichbors (see section 3.1).

5.4. Qualitative Predictions and Comparison With
Experiment

t is considered that the work with three-dimen-
sional models with one deep site is sufficiently com-
plete and general to cite certain qualitative predic-
tions concerning the nature of the bimodal loss
curves which can arise in such systems. With
certam qualifications which will be noted, the pre-
dictions mentioned below hold for all such models
which have been studied (many unpublished).
The basic reasoning leading to these predictions
is mainly to be found in the preceding discussion.
In general, the theory indicates that:

(a) Bimodal loss curves are most apt to be found
at low temperatures in anisotropic phases (such as
the orthorhombic) where the dielectric constant is
relatively low and deydT is positive. They are
unlikely to arise in highly disordered and isotropic
systems, especially where the dielectric constant is
relatively high and has the negative temperature
coeflicient typical of a polar liquid.

(b) The two loss peaks will tend to converge with
increasing temperature, and the loss peak connected
with the longer relaxation time will shift toward
higher frequencies more rapidly than that associated
with the shorter relaxation time.

(¢) The relative magnitude of the two loss peaks
will change with temperature, but in a few special
cases this effect may be quite small (see model
T-1).

These predictions may easily be extended to
include the changes expected in the vicinity of
solid-state phase transitions. If the low-temper-
ature phase is bimodal just below the transition,
it is commonly to be expected that only a sngle
(though perhaps highly broadened) loss peak will
appear in the more isotropic high-temperature
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form, and that the mean relaxation time of the
latter will be as short or shorter than that obtained
for either of the peaks below the transition. If the
two peaks of the bimodal loss curve have already
coalesced prior to the transition, a further narrowing
may take place at the transition, but the most
marked effect in this case will probably be an abrupt
shift of the loss maximum to a higher frequency. It
should be noted, however, that the persistence of
the bimodal effect above a phase transition is not
rigidly excluded by the theory: a possible example
would be the bco—bet transition where the bet
phase remained ordered.

Some aspects of the general validity of the theory
may be examined by comparing the predictions
given above with what has been found experimentally
for the fco, fet, and fee structures in the hydrogen
halides. It 1s believed that such a qualitative com-
parison is permissible, even though the calculations
on which the predictions are based refer directly
only to the beo, bet, and bee structures.”  First, it will
be recalled that under certain circumstances (section
3.1) the results for the body- and face-centered lat-
tices may be identical. Second, the predictions listed
are just those that are insensitive to the particular
three-dimensional single deep site model chosen, and
we have been unable to uncover any reasonable
models of the type mentioned above where these
predictions failed generally. Finally, even if the
hydrogen halides are hydrogen-bonded, so that the
protuberance (hydrogen) points toward a mnearest
neighbor, thus forming sheets of zigzag chains [14]
where the sites may be nonorthogonal, there seems
to be no valid reason for abandoning the orthogonal
orientational model with one deep site as a useful
first approximation. In the hydrogen-bonded “‘site”
model, the deep site would simply be the primary
hydrogen-bonded position.

A summary of the dielectric investigations of
Cole and coworkers [9, 10, 11, 12] on the solid
hydrogen halides is given in table 3. Insofar as
the necessary data can be obtsined from their
work, the general qualitative predictions given
above appear to hold. Note that bimodal behavior
is found in the most anisotropic (orthorhombic)
phases 1 accord with (a), and that the two loss
peaks undergo changes with temperature of the
type mentioned in (b) and (c).

As mentioned in section 4, bimodal behavior is
not to be expected for a tetragonal lattice that is
disordered to such an extent that the static dielectrie
constant behaves in a manner similar to that of a
}i‘quid (e. g., e is large and deydT is n{ogati\‘fc').
The tetragonel forms mentioned in table 3 exhibit
negative values of de/dT, and insofar as the nature
of the loss curves has been elucidated, only single
loss peaks are found. It should be mentioned,

7 HCN possesses a beo structure similar in appearance to that depicted in figure
1 (a) except that the dipoles are all parallel to one another [see W. J. Dulmage
and W. N. Lipscomb, Acta Cryst. 4, 330 (1951)]. Fortunately, the same model
(fig. 1 (b)) holds for both the parallel and antiparallel cases. At higher tempera-
tures, HCN has a bet structure. The parallel dipole bet structure leads to the
site model shown in figure 4, so that the theory given for model T-1 may well
apply to this phase. Hence, a direct application of the theory to body-centered
systems may be possible when sufficient dielectric data are available for such

systems. An application should not be attempted if the parallel case leads to
ferroelectric behavior, but this is not antieipated in the case cited.



Tasre 3.  Dielectric behavior of the hydrogen halides (after Cole and coworkers)
Substance l Low-temperature fco form (phase I1I) Intermediate-tempelrlature fet form (phase } High-temperature fee form (phase I)
- | , | :
‘ Bimodal at low temperatures. The two loss | This phase absent in HCI; feo form con- | Dielectric loss not investigated. Di-
|| peaks converge with rising temperature with verts directly to fec form at transition. electric constant similar to that of
\ a change in relative magnitude, coalescing | a polar liquid (e large, de./d T nega-
HCI ¢ |} just prior to the first-order transition. The | tive).
"""""""""" low-frequency peak shifts toward higher fre-
|| quencies with rising temperature more rapidly | |
| than the high-frequency one. e low, de/dT | |
|\ positive. 1 |
| [
| (Bimodal at low temperatures. Relative magni- | Debye-type on low-frequency side of loss | Dielectric loss not investigated. Di-
| tude of the two loss peaks change with tem- curve, but high-frequency data insuffici- electric constant similar to that of a
perature. May be bimodal up to transition. ent to fully determine shape. Loss max- polar liquid (e large, de/dT nega-
HBr 0.2, DBrii______ Low-frequency peak shifts toward higher imum is at higher frequency than in fco tive).
frequencies more rapidly than high-frequency | form. e unusually high near A-transi-
ones. e unusually high near A-transition, but |  tion, de/d T' negative. |
des/d T positive. |
|(Loss curve highly broadened but not bimodal | Debye-type over considerable frequency | Dielectric loss not investigated. Di-
HIY, DIV ____ . in temperature range studied. e low, de./dT range but shape of loss curve not fully electric constant similar to that of
|l positive. | defined on high-frequency side. Loss | a polar liquid (e large, de./d T nega-
| maximum is at higher frequency than | tive).
L in feo form. Dielectric constant liquid- |
‘ like (es large, de./d T negative).

however, that any such qualitative comparison
may well be invalid in the immediate vicimity of
the lambda transition between the feo and fet phases
in HBr and DBr where the dielectric constant
reaches very high values. These high dielectric
constant values indicate a strong dipolar correlation
effect not taken into account in the polarizability
calculations. Such an effect does not occur near
the first-order transition in hydrogen chloride, and
is small near the lambda transition in hydrogen
iodide. The substitution of deutertum for hydrogen
sometimes leads to large increases in the observed
relaxation times [11;. Such a phenomenon can be
understood qualitatively if it 1s assumed that
quantum tunnelling affects some of the transition
probabilities.

It is worth pointing out that the properties of fco
hydrogen chloride [9] are similar to those of model
0-2. The loss curves are of approximately the type
depicted in figure 3, and the static dielectric constant
rises with increasing temperature. Also, the entropy
of the first-order transition has been listed by Powles
[8] as R In 4.7 entropy units, which is consistent with
that suggested for model 0-2 (section 5.3).

The general type of theory proposed here and in
earlier work may be checked further by examining
the properties of substances that possess loss curves
with only a single maximum. The theory indicates
that the relaxation times will generally converge with
increasing temperature, and this leads to the predic-
tion that broadened loss curves confined to a single
maximum should become narrower with increasing
temperature.® In the cases known to the authors
where sufficient data are available to test it, this
prediction is generally borne out by experiment;
there appear to be no cases where a loss curve
broadens with rising temperature.

8 Results of dielectric investigations are frequently reported in the form of an
Argand diagram (Cole and Cole semicircular arc plot). In terms of this presen-
tation the prediction is that if the center of the circle describing the experimental
points is depressed below the ¢’ ordinate, it should rise toward it as the tempera-
ture israised. Stated in another way, if the Cole and Cole parameter « is initially
greater than zero, it should decrease with rising temperature.
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5.5. Bimodal Loss Curves Due to Other Causes

It seems necessary to mention that bimodal loss
curves in real materials can arise from a trivial cause,
namely, that two distinct phases, each with its own
relaxation time, may coexist during the measure-
ment. Under equilibrium conditions such a two-
phase system will, of course, not occur except at
melting or first-order transition temperatures, but it
is well known that two phases (at least one being
metastable) have a tendency to coexist over a wide
range of temperatures in certain compounds. It is
therefore clear that if bimodal loss curves are found
experimentally, it should not be assumed that they
are a property belonging to a single phase without
conducting proper checks aimed at detecting a second
phase. X-ray diffraction experiments can often
distinguish between monophase and two-phase sys-
tems. Also, if at any given temperature the relative
magnitudes of two loss peaks depend markedly on
the thermal or mechanical history of the sample, it
is quite likely that two or more phases may be
present. There is no indication that any of the
experimental bimodal loss curves mentioned in this
paper are due to the presence of two phases.

Resonance absorption due to oscillatory motions
of dipoles may occur at microwave or higher fre-
quencies in polar solids. If a material shows absorp-
tion due to this effect, and further exhibits a typical
dipole absorption at lower frequencies, a bimodal
loss curve will result. The present theory ex hypoth-
esi deals only with dipole orientation, and does not
account for bimodal loss curves where a high fre-
quency peak is due to the resonance effect. Reso-
nance absorption will lead to a loss peak that is
narrower than that predicted by the Debye equation,
and is restricted on theoretical grounds to frequencies
corresponding to relaxation times which are ~1072
sec or shorter. The validity of a site model, as well
as that of the S-J hypothesis, depends on the presence
of barriers which are in excess of the prevailing
thermal energy k7. 'To be on the safe side, it is



best to assume that each of the W, is at least 5k7.
With the expression 7= (h/kT)exp (W ;/kT) one then
obtains the rough estimate that the present theory
is valid for systems with relaxation times of ~1071°
sec or longer. Another way of estimating the range
of validity of the present theory is to observe that
the shortest relaxation time which one might expect
due to dipole rotation must certainly be somewhat
longer than that calculated for free rotation [5]:
this again leads to the suggestion that the theory
should be valid for relaxation times which are ~10-1°
sec or longer. Thus, an incorrect application of the
theory resulting from the intrusion of resonance ab-
sorption can generally be avoided simply by dealing
with data obtained at frequencies not much in excess
of 10° or 10" cycles per second. In many cases it
should be possible to establish the absence of reso-
nance absorption and thus treat data obtained at
somewhat higher frequencies.

5.6. Fluctuations

It has been assumed in the present type of theory
that, as the selected central dipole undergoes re-
orientations, the nearest neighbors remain fixed.
This is considered to be an excellent approximation
as long as the temperature is low and most of the
molecules are in the ground state, and such a state
of affairs should prevail for values of the parameter
g=exp (—V/kT) that range from zero to roughly
0.01 or 0.1. However, when one of the nearest
neighbors to the central molecule is itself out of
position owing to thermal agitation, it is no longer
strictly correct to maintain the same set of transition
probabilities for processes involving jumps past this
particular neighbor. The approximation implicitly
used here and in earlier papers in dealing with this
situation is equivalent to assuming that such fluctua-
tions of structure can be “averaged’ for the central
dipole, which is reminiscent of the Bragg-Williams
approximation commonly used in equilibrium order-
disorder [15] and orientational disorder [13] theory.
The effect of fluctuations of this type would be most
marked in disordered crystals at high temperatures;
this condition corresponds to g=~1 where almost all
of the molecules are in “wrong” orientational posi-
tions.

There are good reasons for believing that fluctua-
tions of structure of the type described above lead
to only second-order effects in the dielectric relaxation
spectrum of monophase molecular crystals, and that
it is therefore misleading to attribute to this cause
alone the broadening of loss curves in such systems.

In the first place, it is clear that if fluctuations of
structure played the predominant role in causing
the broadening of loss curves, rising temperature
would cause an inereased broadening of the loss
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curves. As is brought out in section 5.4, this is
contrary to all the presently available experimental
evidence concerning the temperature-dependence of
the shape of dielectric loss curves. Second, if it is
assumed that fluctuations are the sole cause of the
broadening of loss curves, it is very difficult to see
how bimodal loss curves could arise in monophase
crystals. A third point is that a few crystals ex-
hibit a Debye-type loss curve (single relaxation time)
at all temperatures. Such a phenomenon can be
understood, at least to a first approximation, in
terms of an isotropic crystalline field (or certain
special site models), but adopting the fluctuation
viewpoint, it would appear to be necessary to arbi-
trarily postulate the total absence of fluctuations at
all temperatures to explain such a result.

Noting that the present theory leads in a natural
way to the correct type of temperature-dependence
of the shape of the loss curves, and that it can yield
both bimodal and Debye-type curves, it is our
conclusion that it is generally more satisfactory to
attribute the existence of multiple dielectric relaxa-
tion times in monophase molecular crystals to the
anisotropy of the erystalline field in which the
dipoles reorient.

The authors thank F. Buckley, S. G. Weissberg,
J. I. Lauritzen, and A. D. Franklin for making a
number of helpful suggestions during the course of
this work.
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