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Influence of a Ridge on the Low-Frequency
Ground Wave

James R. Wait and Anabeth Murphy

The problem of a plane wave incident on a semielliptical boss on an otherwise perfectly
conducting flat ground plane is considered. A solution in terms of elliptic wave functions is
obtained. Numerical values of the field on the near and far side of this idealized ridge are
given for a base width of about two-thirds of a wavelength and various ellipticity ratios.

It is now relatively straight forward to make predictions of ground wave propagation on a
smooth, homogeneous, spherical earth.!»? Some progress has also been made recently in de-
vising techniques to calculate the fields over an inhomogeneous and nonsmooth earth. For
example, at high frequencies, the effect of mountains or ridges obstructing the transmission
path can be treated by methods of physical optics.® Another approach, disclosed very re-
cently, simulates the obstacle by four spherical surfaces.! The transmission loss over each
segment is then added, being an approximation valid at very high frequencies in most cases.

At Jow frequencies (less than 1 Mec) obstacles such as ridges are, no longer, large compared
to the wavelength, and it is necessary to use a different approach. A suggested model to study
the effect of a nonsmooth ground for low frequencies is a semielliptical boss on an otherwise
flat ground plane. Assuming that the source of vertically polarized waves is at a distance from
the elliptic cylinder, large compared to the wavelength, it is sufficient to consider the incident
wave to be plane. Furthermore, at low frequencies the attenuation of the incident wave is
negligible for a distance of several wavelengths on either side of the ridge. For this reason, the
ground plane and the surface of the ridge is considered to be perfectly conducting.

The semielliptical perfectly conducting boss is shown in figure 1.  With reference to a carte-
sian coordinate system (z, 7, z) the ground plane is =0 and the surface of the boss is 2?/b*4-
y?/a*=1, where b and @ are the semimajor and semiminor axes of the ellipse, respectively.
Elliptic-cylinder coordinates (u, », z), which are confocal with the elliptical boss, are connected
to the cartesian coordinates by

z=c¢ cosh u cos »

y=c¢ sinh u sin » (1)

~
where ¢, the semifocal distance, is given by
c=(b*—a?)™
The magnetic field of the incident wave has only a z component and is given by
Hinc. — Hoeiﬂx,

where H; is the amplitude and B=2w/wavelength. Employing an addition theorem,’ this can
be rewritten in terms of a particular solution of the wave equation in elliptic-cylinder coordi-
nates as follows:
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Fraure 1. Semzelliptical boss.

where Se,, is the even angular Mathieu function, Je,, is the even radial Mathieu function of
the first type, and Ny, is the normalization constant for Mathieu functions of order m.

The secondary or scattered field, /%%, is now chosen to satisfy the boundary condition that
the normal derivative of the total field is zero at w=wu,, the surface of the elliptic cylinder, and
at v=0 and =, the surface of the ground plane. Furthermore, the secondary field must contain
the radial Mathieu function He,? of the fourth type to comply with the radiation condition at
infinity. It then follows that

oJe,(c,u)
sec. — ___ Spm(c Z/) au
= B Z:') lole) | OHeD (c,u)
U i

He2 (e esals (3)

The Mathieu functions are not tabulated directly but must be calculated from series expansions
whose coefficients are available in tabular form.® In the present notation

S(fgrﬂ(c,r):g Dey. ., cos [(2k—+p)v] (4a)
and
J()2,+,,(c,u):<—g> 2(—1)’ IZ:‘,J (—1)*Degys pef i1 (€ cosh w), (4b)

where 7 is an integer, p=0 or 1, Jx., is the Bessel function of the first type or order 2k-p, and
Dey.., are coefficients that are functions of 2r4p and ¢.  An expansion for fHe,; is obtained by
replacing /5, on the right-hand side by the Hankel function /33, , of the second type. As it
turns out, however, this latter expansion is very poorly convergent for the present problem,

and it 1s better to utilize the relation
He;? (u,l') - Jem(“; l‘>—’L.N€,n(U,?)),

along with the expansion for the radial Mathieu of the third type, given by (see footnote 6)

Nealea=(=1y () 33 SV Peeld B 5
and
Neor p1(c,u)=(—1)" <7§r> Z —1)* Dg;k+1 Y 1@ Ju(B)+Y (@) i (B)], (6)

where a=ce*/2 and f=ce */2. The functions J; and Y} are Bessel functions of the first and
second kind, respectively, of order k. The corresponding expansions for the derivatives of the

6 Tables relating to Mathieu functions (Columbia University Press, New York, N. Y., 1951).
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radial function are obtained in a straightforward way by differentiating with respect to u and
then making use of various recurrence relations for Bessel functions. Therefore,

aJ(“ﬂ(" ”>] <2> 1 35 (= 1D ltanh w2k p) Ty sinb oy pii], (D)
Uu— 7[]

where the argument of the Bessel functions is ¢ cosh %;.  Correspondingly,
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where the prime over the Bessel functions indicates a derivative with respect to its argument.
Using the above formulas, the amplitvde and phase of the field is computed for several
cases. The results are normalized so that

Aei®=(H e FHsee)/H,,

where A and ® are the amplitude and phase of the total field relative to the incident field at
2=

In figure 2 the functions A and ® are shown plotted along the ground plane in front of
the ridge at P (1. e., 2>>b, y=0), above the obstacle at Q (i. e., x=0, y >a), and to the rear
of the obstacle at R (i. e., x<C—b, y=0). In each case, the quantity d indicates the distance
measured from the elliptical surface to the points P, Q, and R, as illustrated in figure 1. The
curves in figure 2 refer to the case where Bb=pa=2, so the elliptical boss has degenerated to a

3



20 T T T T

02 I | | |

Bd

06
(A)
05 -
04 | ! | |
0 2 3 4

Bd

Ficure 4.

A, Amplitude of field to rear of semielliptical boss.

B, Phase of field to rear of semielliptical boss.
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Fiaure 3.
A, Amplitude of field in front of semielliptical boss.
B, Phase of field in front of semielliptical boss.
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circular boss whose height is 1/7 wavelengths. The broken curves in both figures 2,A, and
2 B, correspond to the trivial situation where the boss is absent.

It is interesting to note in figure 2 that behind the obstacle, the amplitude of the field is
reduced in amplitude by about 30 percent and gradually approaches the unobstructed value
as the observer proceeds away from obstacle. The obstacle imparts an additional phase lag
of the order of 60° directly behind the obstacle and this value diminishes to about 15° at two
wavelengths behind.

In front of the obstacle, the amplitude and phase of the field oscillates about the unob-
structed value as the observer proceeds toward the source as a result of the interaction of the
incoming plane wave with the reflected wave. At a distance greater than a wavelength or
s0, the amplitude varies in the manner of a damped sinusoid with a period of one-half wave-
length and a magnitude varying inversely as the square root of the distance. In the proximity
of the obstacle, the structure of the field is quite complex and no simple physical interpretation
seems possible. 1t is interesting to note, however, just in front of the obstacle (i. e., z=b, y=0)
the value of the field is almost twice the value of the incident field. This would be expected
on the basis of geometrical optics, which predicts a value of exactly two.

Directly above the obstacle, the field oscillates about the unobstructed value with a
period approximately equal to a wavelength. The amplitude of the oscillations decreases
approximately as the inverse square root of the distance.

To illustrate the effect of changing the cross-sectional shape from circular to elliptical,
values of A and ® are plotted as of function d both in front (fig. 3) and in the rear (fig. 4) of
the elliptical boss. Various values of the ellipticity a/b are shown. Of course, when a/b
approaches zero the field values approach the unobstructed values. 1t is interesting to note
that the qualitative features of the curves are similar, although there is a strong dependence
of the amplitude and the phase on the ellipticity ratio. In all the calculations, the width of
the base of the boss (i. e., 2b) has been fixed such that 8b=2 or 2b is (2/7) of a wavelength.

The extension of these results to oblique incidence is simple. For example, if the angle
of the wave front makes an angle 0 with the axis of the elliptical boss, the preceding results
are applicable if 8 is replaced by g sin 6.

BourLper, Coro., August 23, 1956.
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