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Response Function of Thallium-Activated Sodium-Iodide
Scintillation Counters*

Martin J. Berger and J. Doggett

Measurements of gamma rays with Nal(TIl) crystals yield pulse height distributions
related to the true energy spectrum by an integral equation whose kernel (response function)
is the probability that an incident photon of energy E will give rise to a pulse of size E’.
The response function has been calculated by the Monte Carlo method for photons with

energies from 0.279 to 4.45 Mev.

Results are presented for cylindrical crystals ranging in
size from 0.25 (radius) by 0.5 inch (length) to 2.5 by 9 inches.

They are based on the

analysis of 50,000 photon histories sampled with the use of the Standards Electronic Auto-

matic Computer (SEAC).

1. Introduction

The response function of a Nal(Tl) crystal spec-
trometer relates the observed pulse height distribu-
tion to the true gamma-ray spectrum. 'The primary
means of determining this function is, and pre-
sumably will remain, experimental. But a good
theoretical understanding will contribute toward
improving scintillation spectrometry.

While the theory of the diffusion of gamma radia-
tion in an infinite medium is now well developed, the
calculation of the response function is a boundary
problem whose exact solution is beyond the scope of
theory in its present state.

The subject of this article is a Monte Carlo calcula-
tion of the response function, i. e., an experiment
carried out on paper. While this falls short of an
analytical theory, it is relatively simple to do, and
has important advantages compared to a physical
experiment. One is not hampered by the limited
availability of monoenergetic sources nor by acci-
dental disturbing effects such as background radia-
tion.

Exploratory Monte Carlo calculations of the
response function have already been made by Camp-
bell and Boyle ! for energies £=6 Mev, and by Foote
and Koch? for E=4.45 Mev. An approximate
analytical calculation for £=1.3 Mev was carried
out by Maeder, Miiller, and Wintersteiger.®> These
authors computed the effect of the first interaction
of the incident photon in the crystal exactly and made
an elaborate estimate of the effect of multiple inter-
actions. This approximation limits the validity of
their considerations to small crystals not much larger
than one mean free path of the incident radiation.*
They confined their attention mostly to cylindrical
crystals whose radius equals their length. In view

*This work was supported by the United States Atomic Energy Commission.

1J. G. Campbelland A.J. F. Boyle, Australian J. Phys. 6, 171 (1953).

2 R.S. Footeand H. W. Koch, Rev. Sci. Instr. 25, 746 (1954).

3 D. Maeder, R. Miiller, and V. Wintersteiger, Helv. Phys. Acta 27, 3 (1954) .

4 Maeder et al. also attempted a calculation for an ““infinitely large” crystal,
i.e.,for a semi-infinite scattering medium, by considering the first two interactions
exactly, and estimating the effect of subsequent interactions. As we shall show
in section 4.1, this procedure was inaccurate (except at low energies) so that it
does not provide a good basis for extrapolating their results from small to large
crystals.

Analytical corrections were made for the escape of annihilation
radiation and bremsstrahlung from the crystal.

of the complexity of their “orders of scattering”
calculation and of the approximations whose con-
sequences cannot be easily surveyed, a direct re-
calculation of their results seemed of value. More-
over, one would also like to know more about the
influence of the crystal shape on the response
function.

Monte Carlo calculations have been made of the
response functions of cylindrical crystals of diverse
shapes ranging in size from small to very large for
radiation incident with energies of 0.279, 0.661, 1.17,
1.33, 2.62, and 4.45 Mev.

The absorption and Compton scattering of photons
in the crystals were calculated by random sampling,
the computations being carried out on the SEAC.
Approximate analytical corrections were applied to
the Monte Carlo results to account for the escape of
secondary bremsstrahlung and annihilation radiation
from the crystals.” These corrections were quite
small at 1.17 and 1.33 Mev, but appreciable at 2.62
and 4.45 Mev. Because of the approximate nature
of the corrections, the most important and accurate
parts of this work are those pertaining to the four
lowest energies where the corrections were negligible.
Most of the results are for collimated sources, while
some sample calculations pertain to broad beams,
point-isotropicsources, and off-axis collimated sources.

The main results of this investigation are: (1) The
confirmation and expansion of the results of Maeder
et al. for small crystals; (2) the extension to large
crystals in which multiple interactions are impor-
tant and to higher energies; (3) last but not least,
the creation of a SEAC code by means of which re-
sponse functions for source and crystal geometries
peculiar to a given experimental situation can be
readily computed with a modicum of effort.

5 One of the reasons for this approximate procedure was the temporary non-
availability of SEAC during the latter part of this investigation. It would
have been better to carry through the entire calculation on the automatic com-
puter. This is particularly easy for quanta resulting from the annihilation of
positrons produced in a first interaction of the primary photon. The source
distributions of these photons within the crystal can easily be calculated, and
their subsequent history traced by means of the existing SEAC code. We hope
to change the SEAC code in the future so that it can handle the escape of all
secondary radiation, and to extend the calculations above 4.45 Mev. In the
meantime, there was some merit in reporting the present results for 2.62 and 4.45
Mev, since calculations in this energy range have not been reported previously.
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2. Method of Calculation

2.1 Formulation of the Problem

The response function can be expressed in the form
E
R(E, E"):f L(E,ENg(E’,E")dE’ (1)
0

where L(E,E")dE’ is the probability that a photon
of initial energy £ will deliver to the crystal—as the
result of one or more interactions—an amount of en-
ergy between £ and E’+dE’; and g(E’', K" )dE"" is
the probability that upon delivery of energy £’ to
the crystal, the light output as amplified by the
attached photomultiplier will indicate an apparent
energy (pulse height) between £/ and E’/+dE"’.
It 1s an experimental fact that

g(E' E")=2raE") " exp{ —(E'—E""Y/2E'}. (2)

The value of the parameter a depends on the physical
characteristics of the crystal-photomultiplier system.
We shall consider this parameter as determined ex-
perimentally, and concentrate on the calculation of
the loss function L(FE,E").

To clarify the physical picture, it is useful to break
the loss function up into a number of component
parts, writing

LEEN=Y(E){K(EE)+pE)s(E—LE")}. 3)

Y (F) is the efficiency, i. e., the probability that a
photon incident with energy £ will have at least one
interaction (scattering or absorption) in the crystal.
For a collimated source

Y (E)=1—exp [—u(E)L] 4)

where £ is the length of the crystal, and u(F) the
narrow beam linear absorption coefficient.

K(E,E")dE" is the probability that an interacting
photon will emerge from the crystal after one or
more Compton scatterings, leaving behind an
amount of energy between £’ and E’+4dE’. The
function p(F) represents the probability that an
interacting photon will be absorbed (possibly after
a number of Compton scatterings), while the delta
function §(//—FL’) indicates that the entire energy
FE is delivered to the crystal in a photon history
terminating in absorption. We note the normaliza-
tion

fo "B K(E, E)+p(E)=1. 5)

For a wide range of conditions the shape of the loss
function depends largely on the ratio of the numbers
of absorbed and emergent photons, and only rather
insensitively on K (/). In a rough approxima-

tion, the shape can therefore be characterized by
p(F), which—following Maeder—we shall call the
photofraction. In experimental terms,

area under the “photopeak’ of the pulse
height distribution

area under the entire pulse height distribution’
(6)

Knowledge of the photofraction is useful in other
connections. Thus if one wants to use a crystal for
counting photons in the presence of a high back-
ground, it may be desirable to count only the large
pulses resulting from complete photon absorption.
The required ‘“photoefliciency” of the crystal is
Y(E) p(E). Counting of photons in the ‘“photo-
peak’ only 1s particularly useful for disentangling
complex spectra containing several lines.®

p(E)=

2.2. Random Sampling

For the calculation of the loss function, a direct
stochastic analog method paralleling the physical
processes in all respects, has been chosen. Scintilla-
tion crystals are very efficient detectors; hence the
efficiency of an analog Monte Carlo calculation is
also high, and the computational cost of statistical
and analytical refinements would be out of proportion
to the possible gain in efficiency.

The calculation proceeds along the following lines.
We start a photon at a specified position on the
crystal surface with specified energy and direction.
The position of the first interaction is determined
as if the photon moved in an infinite scattering
medium; the distance traveled to the point of inter-
action is distributed exponentially, the mean of the
distribution being the inverse of the total linear
narrow beam absorption coefficient. If the inter-
action occurred outside the region occupied by the
crystal, the photon is recorded as having had no
interaction, and another photon history is begun.
If the interaction is inside, we determine by random
sampling whether it is an absorption or Compton
scattering, the relative probabilities for these contin-
gencies being proportional to the respective cross
sections. In case of an absorption, the photon
history is terminated, and another begun. In case
of a scattering, the new energy and direction of the
photon after the collision are sampled from the
Klein-Nishina distribution, whereupon the location
of the next interaction is sampled in the same manner
as before. If this interaction occurs outside the
crystal, the photon is considered to have escaped,
and the energy left behind in the crystal is recorded.
If the interaction was inside, we proceed as before,
deciding whether it was an absorption or scattering,
ete. The procedure is repeated until the photon
has either left the erystal, or has reached an energy

W, E. Kreger, Phys. Rev. 96, 1554 (1954); see also footnote 3.
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lower than 50 kev, in which case the photon is
considered as absorbed. The bias introduced by
this cutoff is negligible because of the steep rise of the
photoelectric absorption cross section for Nal at
energies below 50 kev.

The detailed equations for carrying out the
sampling procedure have been presented elsewhere,
together with an account of the numerical manipula-
tion required to adapt the various cross sections to
computation on a high-speed computer.”

The required absorption coefficients were obtained
from the tabulation of G. White.®

2.3. Machine Computation

In the SEAC program, the calculation was set up
for the simultaneous consideration of nine crystals
of different sizes. For the sake of convenience, these
sizes were chosen so that the crystals formed a nested
sequence, each erystal containing completely the next
smaller one.  When a photon in the random sampling
experiment escaped from a crystal, the history was
continued for all crystals of larger size. This pro-
cedure resulted in great economy of computing time.?
Beyond that, it increases the statistical efficiency of
comparisons of the response functions of crystals of
different shapes.

The output of a SEAC calculation consists of the
following information for each of nine crystals:

a. The efficiency Y (F). This information is in a
sense redundant since it can also be easily obtained
by a direct analytical calculation (eq (4)). But a
comparison between analytical and Monte Carlo
efficiencies provides a useful check that the computer
operation was error-free.

b. The spectrum (in histogram form) of the energy
packets supplied to the erystal by photons which
eventually escape:

n+1
E(E)= | * K EYdE

1
iy
32

o=, . - o &L

¢. The photofraction p(/f7).

1t was convenient to generate and process photon
histories in groups of 1,000. For photons with an
initial energy of 660 kev, this took about 35 to 40 min
of SEAC time; for higher energies the running time
was a little longer.

2.4. Escape of Secondary Radiation

In the Monte Carlo calculations it was assumed
that the entire energy released in the successive
scatterings or final absorption of the incident photons

7 M. Berger, J. Research NBS 56, 343 (1956) RP2640.

8 G. White (private communication).

9 There is another obvious way of increasing the efficiency of the computation,
namely, by treating the first interaction analytically, and sampling only subse=
quent interactions. This procedure avoids photon histories which result in no
interaction at all, and thus contribute only information on the efficiency (which

remained in the crystal. Actually this is the case
only at low energies. At energies above the threshold
for pair production, annihilation quanta may escape
from the crystal; additional energy can be lost in the
form of bremsstrahlung. In the energy region of
interest (up to 4.45 Mev) the effect of bremsstrahlung
was found to be minor compared to that of annihila-
tion radiation. Not only is the latter greater
quantitatively, but it also affects the shape of the
response function in a more distinet fashion, giving
rise to two additional peaks corresponding to the
complete escape of 1 or 2 annihilation quanta
subsequent to the absorption of a primary photon.
The appropriate corrections were made according
to the approximate procedure outlined in the
appendix. The photofraction p(/2) was corrected
both for annihilation radiation and bremsstrahlung.
In order to avoid excessive computation, the detailed
shape of the response function was corrected only for
annihilation radiation, and an adjustment for the
effects of bremsstrahlung was made by a subsequent
renormalization of the function K (I E").

2.5. Gaussian Broadening of the Response Function
It follows from eq (1), (2), (3), and (4) that the

response function ¥

LLE) j

N2rall

R(EE')=

E
f K (E,E") —— exp { —(E""
0 V"]L"

—E’)?2aE’} dE’
Y(E)pE
LY EWE)

VET oY

exp { —(E""—E) 2oL}

=HE,E'"4GE,E")

(tail) (photopeak) J

For numerical applications the parameter « was
chosen to be 0.00146 £ (Mev), corresponding to a
width at half-maximum W=0.09yE. This is a
typical value in close agreement with experimental
data of Foote and Koch (see footnote 2).

In the evaluation of H(# F£’") one must take into
account that K(/,[£’) is available only in histogram
form

n+1

b= [ K@ EYE, =0, 5L

32

in any case can be determined analytically), but not the shape of the loss function.
This procedure leads to complications when one tries to consider several crystals
simultaneously, and it was decided that—on balance—the possible gain in
efficiency was not sufficient to compensate for the increased amount of manipula-
ton and computing time.

357



It is assumed that the /&,’s have been corrected if
necessary, for escape of secondary radiation. We
consider them to form a row matrix k(£)= (kok, .

ks).  We similarly replace H (£, E’") by a row matrix.
ﬂ
32
(E)=(hohs . . . hyy), Wwhere ho(E)— f * HEEE.
32

The convolution of K(E,E’) with a Gaussian is
replaced by a matrix multiplication:

h= Tk, 8)

where the matrix element 7°,,, (a kind of transition
probability) is given by

~

rH—t

Tun= | dtT

m—+1

32 2
f DY {-(E
%E
+t> E}

n—HE> (n

The exact location of a pulse within an interval of
size [£/32 is not known from the Monte Carlo cal-
culation. We assume a uniform distribution, which
is the reason for the average with respect to ¢ in (9).

TaBLE 1.

3. Results

3.1. Efficiency and Photofraction for Collimated
Radiation °

Crystals of such sizes as are either readily avail-
able commercially, or are in use in this laboratory,
were selected for computation. In table 1, the erystal
efficiencies are listed for collimated radiation of
various energies incident along the axis of the cylin-
drical erystals, computed according to eq (4). The
figures in parentheses indicate the values that were

obtained by the Monte Carlo calculations. The
agreement is excellent.
In table 2, the photofraction p(£) is given. This

is the corrected value taking into account the escape
of secondary radiation. The amount Ap which had
to be subtracted from the raw Monte Carlo result
po in order to make the correction is indicated in
parentheses. The indicated errors are standard
deviations computed as follows. The standard
deviation of pg is
I:po(l

where N is the total number of photon histories con-
tributing to the determination of p,. (N is also
shown in tables 1 and 2.) The correction Ap was
assumed to have a standard deviation (1/10)Ap.

—po) ]

(10)

This is a nominal figure representing an ‘“‘educated
guess.””  The total standard deviation is
o=[a3+(1/10Ap)* 2. (11)

10 Collimated radiation means a narrow pencil of radiation incident along the
crystal axis.

Crystal efficiency

The values listed without parentheses were calculated according to eq (4); those in parentheses are the corresponding Monte Carlo results obtained through the

analysis of the indicated number of photon histories.

| Crystal No. | 1 2 3 | 4 | s 6 | 7 | s | 9
| | | [
Radius (in) | 2.5 2.5 2.5 0.875 | 0.75 0.75 | 075 | 0.5 | 0.25 G
Length (in.)‘ 9.0 8.0 4.0 ’ 2.0 2.0 1.5 ‘ 1.0 ; 1.0 ’ BG || HEgRE
‘ | I
‘ Efficiency Y(E)
i ‘
| Energy E ‘ | ‘
(Mev) | [ | [
| [ |
wsEm | { 1.000 1000 | 0.998 | 0.958 | 0.958 | 0.908 0.796 | 0.796 | 0.548 6,000
b2 | (1.000) | (1.000) | (.999) | (.957) ’ (957) | (903) | (.798) | (.798) | (.546)
|
an | { 0.998 | 0.996 | .936 . T4T 7| L6483 | 497 | 497 200 | 10,000
: ((998) | (.996) | (938) | (748) | (748) | (644) | (497) | (497) | (295) |
\ ,;
it ‘{ .088 981 | 861 . 627 627 522 ‘ .389 389 218 5, 000
‘ (C987) | (979) | (859) | (635 | (635 ‘ (0520) | (395) | (.395) | (.223)
wem | { 984 ‘ .975 841|602 002|490 369 ‘ 369 206 5,000
. (LCO86) | oD | B | (599) | (59 | (495) | (363 | (363) | C10D)
o ‘ { .958 .940 755 . 504 504 410 | .206 296 161 | 6,000
: (96 | Co46) | C760) | (307 | (507 | (409) | (202 | (292 | (164) |
e ‘ { L1950 .930 .735 486 486 393 .283 ‘ L9283 .153 5,000
. N Coan) | C92n) | C7a1) | C4s4) | (C484) | (398) | (282) | (282 | (153)
{ |
n
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TABLE 2.

Photofraction p(E)

The values listed without parentheses pertain to photofractions corrected for the escape of annihilation radiation and bremsstrahlung. The corresponding figures

in parentheses indicate the correction Ap that had to be subtracted from the raw Monte Carlo values po(F).

cording to eq (11).

The indicated standard deviations were computed ac-

It has already been noted by Maeder et al., that
for small crystals at an energy of 0.511 Mev the
photofraction is a smooth function of /LR where L
1s the erystal length and R the radius. The results
of table 2 show that this also holds true for large
crystals and in the entire energy range from 0.279
to 4.45 Mev.

Moreover, the dependence of the photofraction on
the crystal size can be accurately represented by a
simple empirical formula, under conditions where the
correction due to the escape of secondary radiation
is absent or small (i. e., at 0.279, 0.661, and 1.17
Mev for all the erystals, and at 1.33 for all but the
smallest crystal considered.)!

The formula is:

p(VLR, E)=AE)—B(E)e~“®VLE  (12)
where L and R are the length and radius of the
crystal.  With the parameters A, B, and C listed
in table 3, formula (12) represents the values of
p(F) given in table 2 with an accuracy that is 1 to 2
percent in most cases, occasionally 3 to 4 percent,
and in the worst cases 5 to 7 percent. These devia-
tions are presumably due to the fact that p(£) de-
pends on L and R in a more complicated way than

through +/LE.

11iAt higher energies a simple expression of the type (12) does not appear to
work well. In any case the high-energy results are not precise enough to make
fitting by a formula worthwhile.

the photofraction

‘
| Crystal No. ‘ 1 ’ 2 ‘ 3 ‘ 1 ‘ 5 6 7 | 8 9

| Radius (in) | 2.5 | 25 | 2.5 ‘ 0.875 | 0.75 | 0.75 | 0.75 | 0.5 0.25 No. of

Length (in.) | 9.0 | 80 | 4.0 ‘ 2.0 2.0 \ 1.5 1.0 | 10 | 0.5 histories
| I
Photofraction p(F)
Energy E ‘ !
(Mev) |

0.279 {0.973 0.973 | 0.971 0.915 | 0.900 0. 882 0.843 0.814 0.711 | 6,000 |
el +.002 | =002 \ +.002 | £.004 | £.004 | 004 | =005 | £.006 | =+.008 |
| | | |

o { 887 | 884 821 542 | 508 | 481 | 442 .377 .243 10, 000
: +£.003 | £.003 | +£.004 | £.006 | 4.006 | £.006 | =£.007 | £.007 | =.008 |
718 . 775 L 682 368 | L343 .315 282 | 235 | .140 }

1.17 +£.006 | £.006 | 4.007 | +.008 ‘ +£.008 | 4009 | £.010 | 4.010 | =+.011 5,000
(.002) (- 002) (002) | (003) | (.003) | (.005) | (.005) | (.005) | (.003) |

‘ ‘
767 | 758 | 667 . 351 .325 .303 212 | .o .120 |
1.33 +. 006 ‘ £.006 | 4007 | £.009 | £.009 | 4.009 | £.010 | £.010 | .01l 5,000 |
(.003) | (.004) | (.005) 009) | (009 | (.010) | Co013) | (.013) (.011) ‘
653 | .643 .531 .43 | .22 . 201 175 144 ~0950 \
2.62 +.008 | £.009 | £.010 | +.04 | =£.015 | £.016 | =£.017 |£.017 | 018 6,000 |
(051) | (.056) | (:069) (u7n | (122 (.128) (.135) | (131 (- 130) {
.621 608 | 491 169 157 132 119 L0826 L0890 |
4.45 {+£.015 | £.015 | £.020 | +.033 | £.033 | £.035 | 4.036 | £.037 | =.039 5,000 |
(.139) (- 141) (.184) (.319) | (.319) (:332) | (:33) | (.347) (. 319) 1‘
3.2. An Empirical Formula for the Photofraction | Tasre 3. Parameters of the empirical formula, eq (12), for

) \

E | AB) B(E) C(E)

Mev | em1

[ 0.279 | 0.973 | 0.514 | 0.658

L661 | 940 .841 | .219

1. 17 . 980 .934 | 124

| L33 | .98 942 | 120
\

Formula (12) also predicts the correct number
albedo for a semi-infinite medium. When L— o
and R— o

p(w, B)=A(E)=1—number albedo. (13)

When we extrapolate in the other direction
(L—0 and R—0)

(0,E)=A(E)—B(E)=upn/u (14)

where ppn/p is the ratio of the photoelectric to the
total attenuation coefficient. Thus, of the three
parameters A, B, and C, two are fixed by (13) and
(14), and only C, a quantity with the dimensions
of an attenuation coefficient, is adjustable. This
makes it rather remarkable that a simple formula

like (12) works.
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3.3. Shape of the Response Function for Collimated
Radiation

The response functions for all the crystals listed
in tables 1 and 2 (except No. 2) are shown in figures
L,a and 1,b for incident energies of 0.279, 0.661,
1.17, 1.33, 2.62, and 4.45 Mev. For the sake of
clarity of presentation we have plotted only the
response function exelusive of the photopeak, 1. e.,

the function H(K,E’) as defined in eq (7). The
photopeaks are indicated by arrows.

The Gaussian broadening has been calculated
according to the prescription given in section 2.5.
It should be mentioned that the shape of the response
function is rather insensitive to the magnitude of «.
The results are presented in histogram form, the
range between the energy of incidence £, and zero
energy being covered by 32 intervals of equal size.

e I FNO. 6 =
- R-0.25" R=0.75"
C L-056 C L-15°

|O3p ‘
© E=4.45 Mev
[ a=5

T

\

S : }mt
w . o

~ L -

e [ C

x B -

N - = = L
wiy E-0.661 Mev
ux “Ha a= |

(o) 10 _M u

L E=0.279 Mev
a=0

T \IvHHrr( T T T TTTTT]

|0'2 E v U
|0_3 E = = e
|()_4 .,nl.wuLn»Ju_ulu il
(0] 10 20 30 O 10 20 30 O 10 20 30 O 10 20 30
é‘
32 E
Ficure 1. Response functions of Nal(Tl) scintillation crystals for collimated radiation incident along the crystal axis.

a, Crystals No. 9, 8, 7, and 6.

Only the “Compton tails” of the spectra are shown; the photopeaks are merely indicated by arrows.

photon the area under them being Y(E) [1-p(E)].

All curves are normalized so as to correspond to one incident

[‘hc curves for different energies have been shifted apart through multiplication by indicated scale factors 10a.

The shaded areas represent the pulses which have been shifted from the photopeak because of the escape of annihilation radiation.
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The histograms are normalized absolutely so that
they correspond to one photon incident on a
crystal. The area under each histogram is thus
Y(E)[1—p(E)).*? In order to supply the missing
photopeak, one need merely add a Gaussian with
the desired standard deviation (ef. eq (7)) and
multiplied by a weight factor Y (E)p(£); Y (E)
and p(£) can be found in tables 1 and 2.

The shaded parts of the histograms indicate the

12 To separate the histograms for different energies, the ordinates were multi-
plied by indicated scale factors 10a.

4
10" o
R=0.7
L=2.5"

=

3 E= 445 Mev
a=5

E=I7 Mev
a=2

1.0
W

= E=0.661 Mev
28 Loas|

x
w|y .

AT

>

<]

©

— T T T 1TT1IT]

y2| E=0.279 Mev L} .

contribution to the scintillation spectrum due to the
escape of secondary radiation. In other words, they
represent pulses which would have ended up in the
photopeak if the absorptions had not been spurious.
It can be seen that at sufficiently high source energies
the response functions have two peaks at energies
me? and 2 me® below the incident energy /2, which
are associated with the escape of 1 or 2 annihilation
quanta.

It can be seen that the shapes of the response
functions for various crystal sizes, and even for
different energies, are on the whole rather similar.
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Response functions of Nal(T1) scintillation crystals for collimated radiation incident along the crystal axis—Cont.

b, Crystals No. 5, 4, 3, and 1.
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The statistical fluctuations of the Monte Carlo
calculations, as evidenced by the irregularities of
the histograms, are much worse for high than for
low incident energies. It is noticeable that quite
similar local irregularities occur for histograms
pertaining to the same energy but different crystals.
This phenomenon is due to the use of the same groups
of photon histories for all the erystals.

3.4. Other Source Geometries

Monte Carlo calculations of the response function
for any desired source geometry can easily be
accomplished through the proper choice of the initial
conditions, photon positions and directions, in the
random sampling process. Sample results of such
caleulations for 0.661 Mev radiation are presented
in figures 2, 3, and 4.

a. Broad-Beam Radiation

In figure 2 the ratio pgs/p is plotted against r/R,
where pgy is the photofraction for a broad cylindrical

1.0 T T T T T T T T T
SORES -]
(e,
N
@ = -
@
o
ECI= -
CRYSTAL NO. 3 6 9
= E=0.661 Mev 4
7 I | | | ] | i | ]
[¢] e 4 .6 .8 1.0

r/r
Ficure 2. Comparison of the photofractions for broad beam&,
and for collimated radiation incident along the crystal aris.

The ratio pyg/p is plotted as a function of r/R, where r is the radius of the broad
beam, and R that of the crystal. The source energy is 0.661 Mev.

1.0 T 1 T T T T T T

9 -
(=
~
=
aQ CRYSTAL NO.6

A3 | —

E=0.661 Mev
N7 L L [ L I | ) n
02 (58 30° 45°
tan-! R/D

Ficure 3. Comparison of the photofractions for point-isotropic
sources, and for collimated radiation incident along the
crystal axis.

The ratio Pys/P is plotted as a function of tan-! (D/R), where D is the distance

from the crystal to the point source (located on the crystal axis), and R is the
crystal radius.

beam with cross-sectional radius », p is the photo-
fraction for a collimated source, and R is the crystal
radius. Three curves are shown, for crystals No. 3,
large; No. 6, medium-sized; and No. 9, small.

b. Point-Isotropic Source

In figure 3, the ratio pis/p is plotted against
tan~' R/D where p;s is the photofraction for a point-
isotropic source located at a distance ) from the
crystal on the cylinder axis. The curve pertains to
crystal No. 6. The end-point of this curve, for
tan"'R/D=0° was obtained from the corresponding
broad-beam result.

c. Off-Axis Collimated Beam

In figure 4, the shape of the response function is
shown for collimated pencils of radiation incident
at various distances s from the crystal axis, for
crystals No. 4 and No. 1. The normalization and
other details are the same as in figure 1; the photo-
fractions are also shown.
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FIrGure 4. Response function of Nal(Tl) scintillation crystals

for collimated radiation incident offcenter at a distance s from
the crystal axis.

The curves are normalized so as to correspond to one incident photon, the area
under them being Y(E)[1—p(F)]. The curves for different values of s have been
shifted apart through multiplication by indicated scale factors 10a. Only the
“Compton tails’” of the spectra are shown; the photopeaks are indicated by
arrows, and the values of the photofractions are shown beside the corresponding
curves.
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4. Discussion

4.1. Comparison With Other Calculations

Our results for the value of the photofraction for
collimated radiation incident on small crystals are
in good agreement with those obtained by Maeder
et al. For example, at an energy of 0.661 Mev
one finds:

‘ Crystal number

| 9 | 8 7 6 5 4
p(Maeder) _|0. 246 |0. 368 0. 418 (0. 471 (0. 507 0. 546
pltable 2)_| | 243 | 377 | .442 | 481 | .508 | .542 |

At 0.279 Mev and 1.17 Mev the agreement is
almost as good (with the exception of a 15 percent
discrepancy for the smallest crystal (No. 9) at
1.17 Mev).

No other results comparable to our photofractions
for large crystals No. 1, 2, and 3 exist. Maeder et
al. did, however, attempt to compute the photo-
fraction for the limiting case of an infinitely large
crystal (i. e., a semi-infinite medium), calculating
the first two interactions of the inc 1dont photon
exactly, and estimating the effect of the subsequent
interactions. We have calculated the photofraction
for this case by extrapolation based on the empirical
formula (12) and arrive at the following comparison:

Energy (Mev)

Infinitely large crystal

0. 279 0.661 | 1.17
p(Monte Carlo) _ 0. 975 0.940 | 0. 980
p(Maeder) - . 975 . 876 . 802

The “orders of scattering” approach, in the limit
of very large crystals, agrees with the more exact
calculation only at 0.279 Mev, where multiple inter-
actions are unlikely because of the large gamma-ray
absorption cross section, but leads to a significant
underestimate of the photofraction at higher energies.

Our albedo values 1-p are in good agreement with
the results of a calculation by Hav“ ard and Hubble.
Note that the albedo is greater at 0.661 Mev than at
0.279 or 1.17 Mev. There is also experimental evi-
dence for the oceurrence of tlns maximum at an
intermediate energy.!

The pictures of the response function given by
Maeder et al. are similar in appearance to ours, but
not detailed enough for an accurate comparison in

regard to shape.

4.2. Comparison With Experimental Results

For small crystals a detailed comparison with ex-
periments has been made by Maeder et al., which
B, g )

13 E. Hayward and J. Hubbell, Phys. Rev. 93, 955 (1954).
14 H. W, Koch (private communication).

can equally well be applied to our results. It indi-
cates fair agreement between theory and experiment,
but there is a consistent tendency for the experi-
mental photofractions to be somewhat lower than
the theoretical values. This discrepancy may be
reduced in part if one takes into account energy
losses due to electron escape from the crystal.”

Measurements of Foote and Koch (see footnote 2)
indicate for collimated radiation incident on a large
crystal (R=2.5 in., L=4 in.) photofractions p=0.8
at 0.661 Mev, and 0.64 for cobalt-60 radiation, while
the corresponding theoretical values are p=0.821, and
0.675 respectively.'

Further results for a large erystal (R=2 in.,
L=4in.) have recently been reported by I\logm (see
footnote 6). His incident radiation was a broad
beam with cross-sectional radius »=0.25 . Hence
the comparison must be made for the broad-beam
photofraction pgs. We have so far only calculated
this correction at an energy of 0.661 Mev, but esti-
mate that with an error of only a few percent the
same fractional correction can also be applied at the
other energies of Kreger’s experiment.

Energy (Mev)

[ 0.279 0.661 | 1.17 | 1.32 | 2. 62

r | \ . |
p (Kreger) 0.93 |0. 725 | 0. 57 | 0. 54 | 0.47

| p (present results) | (. 90) | . 74 (.60) (.58) (.50)

The agreement is seen to be quite good at 0.661 Mev,
where the exact value of the correction is known,
and fairly good elsewhere.

Summing up the entire experimental evidence,
both for small and large crystals, we can state the
experimental photofraction is invariably below the
theoretical values, by a smaller or greater amount.
One is led to the conclusion that in the experiments
there is always background radiation present (such
as back-scattered radiation from the radiation source,
and from the material surrounding the detector)
which would be counted in the tail end of the pulse-
height spectrum and would thus tend to depress the
value of the photofraction.

The authors thank Dr. Evans Hayward for several
stimulating and enlightening discussions, and Miss
Mary Orr for her assistance with the hand com-
putations.

5. Appendix: Escape of Secondary
Radiation

5.1. Effect on the Photofraction

To estimate the effect of the escape of secondary
radiation on the value of the photofraction p, we must
dotermine the probability that an absorption is

15 K. Lidén and N. Starfelt, Arkiv Fysik 7, 428 (1954).
YAL ]1)1)(1 17)4-Y (1. 35)11(1 33)

Y(1.17)+ Y (1.33)

16 The photofraction for cobalt-60 radiation, p=
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“spurious,” 1. e., that it results in, or is preceded by,
the escape of at least one secondary photon from
the crystal (with an energy greater than 50 kev).”

We shall ignore the displacement of charged
particles in the ecrystal’® Bremsstrahlung and
annihilation quanta are thus assumed to be emitted
at the point of absorption of the primary photon.
Moreover, the emission is assumed to be isotropic.
First, attention is concentrated on the spurious
absorptions which occur in the first interaction of the
incident photon (i. e., prior to any Compton scatter-
ings), and return later to the relatively unimportant
spurious absorptions resulting from other inter-
actions. Secondary radiation is therefore considered
as originating from an exponentially distributed line
source on the axis of the crystal (on the assumption
that the incident radiation is collimated).

The following notation will be used for the various
attenuation coefficients: ppm=photoelectric absorp-
tion coefficient, w,=pair production absorption co-
efficient, uc=Compton scattering attenuation coeffi-
cient; u= upa -+ up+uc=total attenuation coeflicient.

Annihilation Radiation. If an absorption of a
primary photon of energy /2 results in pair formation
and subsequent annihilation of the positron, the
probability that at least one of the two annihilation
quanta will escape from a cylindrical erystal (with
radius /2 and length L) is given, approximately, by
the following expression:

WE) B>z
M(E)L]f dEepes

1—exp [

1
fdcose{l—(l—e"sl“’) (1—e~*»")plp¥} (15)

0

1=

where u'=pu(me?), and s; and s, are the distances
traveled in the erystal by the two annihilation quanta
(emitted in opposite directions).

If 0<z<L/2 )

cos 0; <cos <1 s;=w/cos § s;=(L—ux)/cos 8

cos 0, <cos 0<cos 6, s,=x/cosf S,=R/sinf

0<cos 0 <cos $;=R/sinf s,=R/sin 6

If Lj2<z<L g

cos 0, <cos <1 sy=w/cos 8 s,=(L—ux)/cos 8

cos 0;<cos<cosf, s;=R/sinf s,=(L—x)/cosb

0<cos §<cos 0, s;=R/sin 0 s,=R/sin f )
(16)

where

wootim 1t () T ossim 1 (E) T ™

17 The limit of 50 kev was selected because the same low-energy cutoff was also
used in the main Monte Carlo calculation.

18 The ranges for 0.3, 1.0, and 4.0 Mev electrons in Nal are approximately 0.02,
0.17, and 0.861 cm, respectlvely Hence only at the highest energy (4.45 Mev)
and for the two smallest of the crystals considered (No. 8 and 9) could the neglect
of electron displacement lead to a significant overestimate of the photofraction.

p¥ and pf are photofractions for the two annihilation
quanta, which—we believe—can be accurately ap-
proximated by the photofraction p for an energy of
0.511 Mev, as obtained by interpolation from table 2.

Bremsstrahlung. The probability of escape of a
bremsstrahlung quantum of energy £’ can be ex-
pressed by a formula similar to (15):

'U'(E) w(B)z
T—exp [— M<E)LJ e

1
})f d 0B (&= | [1—gE][1—pH(E)]}

2 )=
17

P(E")=

where we again set p*(E)=p(FE), and the path

length s is defined as follows:

i
; <le =
cos 0,< cos 0 <1; S cos 0
—c0s 0;<cos 0 <cos b s——R— 18
1 = & sin @ (18)
—1<cos § < —cos b;; s=x~L
cos 0 J

(cos 6; and cos 6, have the same meaning as above).
Let ¢(F, E’)dE’ denote the probability, per unit
path length, for an electron or positron of energy £
to produce a photon in the energy interval (£,
E’+dE”) " and let dE/ds be the average energy loss
per unit path length of an electron or positron due
to ionizing collisions.” The probability of an escape
of a bremsstrahlung quantum produced by an
electron or positron of energy £ in the course of
slowing down is

EI
fA dE" [qS(E',E”)
E

where R(E) is the electron or positron range, and
E=50 kev is the cutoff.

Let (k)dk be the probability that one of the
members of the pair has acquired initially a frac-
tion between k& and k-dk of the total available
kinetic energy.” The probability of the escape of
at least one photon in the form of bremsstahlung
emitted by a pair of total energy £ while slowing
down is

dE // "
—E @) | PEn, 9

PAE)= f g PARE) + PAE—EE)

—Py(kEVPy(E—FEE)]. (20)

19 H, Bethe and W. Heitler, Proc. Roy. Soc. [A] 146, 83 (1934).
20 H. Bethe, Handbuch der Physik, 24, 519 (1933).
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The above formula assumes that each member of
the pair can emit at most one photon with energy
greater than 50 kev in the course of slowing down.
We believe that the effects of plural photon produc-
tion can be safely neglected in the energy range of
interest here.

Combined FEffect. The probability that the ab-
sorption of a primary photon of energy £ in a first
interaction will be spurious due to the combined
effects of bremsstrahlung and annihilation radiation
is

P(E=—t""_ pPy(E)
Ml’lﬂ‘#l'
PP [P(E—2me?)+Py—Py(E—2mc)Py).
MPH T MP

(21)

In evaluating this formula we found that the neg-
lect of bremsstrahlung (i. e., setting P, and P;=0)
would lower P, by only a few percent (a maximum
of ~119, for crystal No. 9 at 4.45 Mev). The prob-
ability, per incident photon, of a spurious absorption
in the first interaction is

Po(E)=[Y ()] w(E)] [upr () + pp (E)] Py(E).

Next we must determine a corresponding probability
of spurious absorption in a second interaction. One
contribution to this probability is similar in origin to
(21), and can be written:

(22)

o e (E e (B E’
PUB)=[VEYW(E) [ apr Lot S unlE)
i w(E)

k(B E)QE")PHE"), (23)
where k(£ E’) is the Klein-Nishina differential co-
efficient for Compton scattering with energy change
from /£ to I£’; @ 1s the probability that the scattered
incident photon will not escape from the crystal with-
out further interaction *; and P§(£) is the probabii-
ity that a given absorption event is spurious, and is
analogous to P,(F), but should take into account
the fact that the source of secondary radiation is no
longer concentrated on the crystal axis. We have
ignored this circumstance, because the evaluation of
an exact expression for (/) would be exceedingly
complicated, and have set P{(FE)=P (). 1t 1s
hoped that this will introduce only a minor error,
for the following reasons: For small erystals, such a
geometrical error might be serious, but a second inter-
action is quite rare; for large erystals, in which multi-
ple interactions are more common, the geometrical

21 An expression for Q has been given by Maeder et al. (footnote 3, eq 44, 45, 46;)
their Hois our Y Q.

error is much less significant. In any case, the
contribution of P to the change in the photofraction
will be small, so that a rough-and-ready treatment is
in order.

There is also the possibility that an absorption
taking place in a second interaction is spurious be-
cause it was preceded by the escape of a brems-
strahlung quantum from a Compton recoil electron.
The probability for this to happen is

*E 1/ s
PiE) =Y (E)u(E)) [ ar Lo pEuel)

u(E")
k(EENQEP(E—E'). (24)
Thus a spurious interaction will occur with
probability
Py(E)=Ps(E)+P(E)—Ps(E)P7(E) (25)

per incident photon in a second interaction; and with
probability

(26)

in a first or second interaction. At the highest
energy and for the largest crystal considered, the
value of Pg was only 15 percent of P;, and generally
it was much smaller. Subsequent interactions will
lower the photon energy further and make spurious
absorptions even more unlikely. Hence we felt jus-
tified in ending our calculations with the effects of
the second interaction. The change in the photo-
fraction is thus

Py(E)=P5(E)+Ps(E)—Ps(E)Py(E)

Ap=—Py(E)Y(E). (27)
5.2. Effect on the Shape of the Response Function

In considering the detailed shape of the response
function we have calculated only the effects of an-
nihilation radiation from a first interaction. Other
escaping secondary radiation was taken into account
only insofar as it shifted pulses from the photopeak
mto tail of the response function (i. e., by an appro-
priate renormalization of K(K£,E")).

None, or one, or both of the annihilation quanta
resulting from a pair production can escape from the
crystal without further interaction. The probabil-
ities for these contingencies can be obtained by
replacing the integrand in the inner integral in (15)
by the expressions

S(i—emw)(1—e=sw) )
tef(l—e—% )6~ %

(1—e=%w)

(a) (no escape)

b) (one escape
(b) (one escape) (28)

(¢) (two escapes): e siw'e =S+,
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In case (a) the energy E’ left in the crystal is the
sum of three terms; two of them are each distributed
as
L(me®)|Y(E)=K(me:E")~+p(me*)s(E'—me*)  (29)
the third contribution is a constant amount of
energy E—2mc?.
In case (b), £’ is the sum of two terms, one dis-
tributed according to (29), the other a constant

equal to £—2mec? In case (¢) E/’=FE—2mc?. The
correction of the response function was performed
by shifting the appropriate number of pulses from
the photopeak to the ‘‘tail” of the pulse height
spectrum, distributing them according to the dis-
tribution functions described above weighted ac-
cording to (28).

WasHiNGgToN, November 4, 1955.
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