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Characteristics of an Image-Forming System
Roland V. Shack

Two general approaches to the analysis of an image-forming system are considered.
One depends on the image of a point object and the other on the Fourier transform of this
image. The two are developed independently and then coordinated, a practical character-
istic function being determined for each approach. The relative merits of the two approaches
are considered.

1. Introduction

For the past few years considerable energy has been expended in the search for an objective
procedure for evaluating the quality of images formed by optical instruments. Existing pro-
cedures have been found to be not entirely satisfactory, and much work has been done in
measuring previously unused physical parameters, which are objectively determinable, for the
purpose of correlating them with the existing quality criteria.

The objection to this is that such an empirical, and therefore much limited, correlation
eliminates only one of the faults of the existing criteria, and this is the subjectivity of their
determination. Any other weakness is ignored.

A better approach is to analyze the image-forming process as a phenomenon, the aim being
to characterize the process in as general and inclusive a way as possible, consistent with practical
instrumentation.  New criteria of image quality would of course be expected to be developed.
Many approaches have been made in this direction also, and the present paper is to be included
among them. However, in contrast to some of the published material, the emphasis here is on
the practicality and usefulness of the results obtained rather than on mathematical rigor, al-
though the treatment should be rigorous enough to include all essential factors.

Let us consider this matter of practical instrumentation. The heart of the test instrument
is the photosensitive detector, for it is this which provides the data by which the tested instru-
ment is evaluated. Three practical photosensitive detectors are available—the eye, the
photographic emulsion, and the photocell.

The only test of image quality for which the eye is capable of making quantitative measure-
ments is the resolving-power test. This test is rapid and relatively inexpensive, but the in-
formation obtained is incomplete, the precision is low, and the results are subject to variation
from individual to individual.

A photographic detector allows quantitative measurements to be made under nonthreshold
conditions, but time is required for processing, the processing conditions must be rigidly stand-
ardized, the granularity and diffusion in the emulsion affect the results, the response of the
film is nonlinear with respect to incident flux, and, in the end, an additional sensing mechanism,
such as a microdensitometer, is needed to reduce the emulsion properties to numerical values.

The photocell is probably the most satisfactory photosensitive detector for the test in-
strument. Within its proper operating range, its characteristics remain reasonably constant,
its response is linear with respect to incident flux, its spectral response can be adjusted so as to
approximate that of the eye, and its output can very easily produce graphical or numerical
results. However, it must be used in conjunction with an aperture that limits the spatial
integration of the detail in the image being examined, and there must be provision for relative
displacement between the aperture and the image so that various portions of the image may be
sampled.

It should also be pointed out that the report is illustrated throughout by the characteristics
of an aberration-free system with a circular aperture in monochromatic light, diffraction being
the sole source of image degradation, and the ligcht from various points in the object space
being noncoherent. This has been selected as an interesting and informative type of system,
which real systems tend to approximate as their quality improves. It must be emphasized,
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however, that this is used for illustration only. The material covered applies to all types of
images, assuming noncoherence.

There are two viewpoints from which image evaluation can be approached. One, the clas-
sical viewpoint, considers the point image to be the most fundamental element in an image
process. Any object can be regarded as a summation of points, and its image as the summation
of the corresponding point images. An evaluation of the point image would be sufficient
to characterize the system.

The other viewpoint involves the concepts of Fourier analysis. Here the object is con-
sidered to be the summation of a set of sinusoidal waves distributed in the object plane. These
component waves, differing from each other in amplitude, frequency, phase, and direction, are
spatially distributed waves. That is, they are spatial, not temporal, sinusoidal variations in
brightness throughout the object plane. The image consists of the summation of the images
of these component waves. A description of the manner in which the optical system forms
images of these component waves would also be sufficient to characterize the system.

In section 2 a way of describing the point image is developed, which can be obtained, at least
in principle, from a variety of test objects, namely, a point, a fine line, a variable slit, and a
knife edge. Data from any or all of these objects can be represented by a single common
curve, which can be interpreted in terms of any of the objects.

Section 3 deals with the Fourier type of approach. An imaging system does not affect the
frequency, direction, or sinusoidal character of the component waves. It can only affect their
amplitudes and phase relationships. The function that describes these modifications as a
function of the frequency and direction of the component waves is also characteristic of the
imaging system. The test object required to obtain this information consists of a series of
patterns in which the luminance varies sinusoidally, each pattern having a different spatial
frequency and all oriented in the same direction. The directional variation can be obtained by
rotating the test object with respect to the system being tested.

Section 4 is concerned with the coordination between the two viewpoints. It is shown that
it is possible to obtain from either approach the characteristics for a periodic test object consist-
ing of alternate dark and light stripes of equal width, such as is commonly used in resolving-
power work. It is also shown that it is possible to transform the characteristics of either
approach into those of the other.

Section 5 discusses the application to practice, the interpretation of the results and the
relative merits of the two approaches.

The appendix gives the mathematical formulation of the diffraction images used as
illustrations.

In the following mathematical statements, constant coefficients are ignored in the integra-
tions unless otherwise indicated. The functions are assumed to be normalized after integration.
Also, the object-plane coordinates are reduced to the image plane by application of the magni-
fication.

2. Evaluation of the Point Image

2.1. General Image Formation with the Point Image

The point image is the flux-density distribution in the image plane when the object is a
point source (figs. 1, 2). A general object can be considered to consist of a summation of
points, and its image the summation of the corresponding point images.

Let O(z,y) =general object function,
o(z,)=point image function,
I(x,y)=general image function.

Then :
10— | 0ot~y —ydsdy. )
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Figure 1. Point-image model. Ficure 2. Section of point image.
In this model the vertical dimension represents flux den- The normalized distance in the image plane is measured in z-units,
sity (per unitarea). Itisunderstood that theringsactually as explained in appendix 1.

continue indefinitely, whereas only the first bright ring is
shown completely.

The primed variables represent the displacement between the 0 and ¢ functions required
for the integration. For each displacement, the integral, being a definite integral, establishes
a specific value for 7. The image function, 7, then, is a function of the displacement involved
in the integration. The space described by ’,y’, however, is the same as that described by
x,y. O and I can be compared point for point.

The integration can also be written in such a form that the object function is the displaced
function, that is,

16)= " [ ewn06—sy—pdsdy. @

Either of these forms is perfectly valid, and either may be transformed into the other,
provided one recognizes that z, in eq (1) is not the same as #,y in eq (2). To distinguish them,
one might use subseripts on the symbols, but this would make the equations more confusing,
and is not necessary if one understands the situation.

The image function is to be sampled with a space-integrating detector in the image plane,
that is, a photocell behind an aperture.

Let A(x,y)=detector aperture transmission function,
E(x,1)=total flux passing through A as a function of the position of A.
Then

Ba'y)= | | 16 Aw =2y —yde dy. 3

Combining this with eq (2) we obtain
B y)= [ [ [ [ w0 —ay—pae—,y'—y)dsdyastay. @

From this it can be seen that the functional characteristics of O and A can be interchanged
without affecting the measured flux, £. For example, suppose the object were a point source
and the aperture a circular hole centered on the point image. The output from the photocell
will indicate amount of flux passing through the hole. Then interchange the object and aper-
ture. Now the object is a uniformly luminous disk with a reduced diameter equal to that of
the previous aperture, and the new aperture is a minute hole, equal in size to the reduced
geometric size of the previous point source. The output from the photocell will be the same
as before.
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Ficure 3. Pownt-image evaluation—

Hopkins’ method. Ficure 4. Radial fluz distribution of point image.
The solid represents the portion of the total flux that This curve shows the normalized volume of the solid of figure 3
passes through the circular aperture. as a function of the radius of the limiting cylinder.

Mathematically, and in a more general sense, this situation is as follows:
If O is a point source, then

E(m”,y”)-—_fm fm A(;z:”-yc’,y”—y’)l:fm fm <p(x,y)0(x’—x,y’—y)(lzdy:|d.z:’dy’

=fm fm o, y")AG" =2,y —y)dx'dy’,

(5)
and the flux detected depends on the nature of A.
On the other hand, if A is a point aperture, then
E@”,y")= f . fm o(x,y) [ f i fm O(I’-x,y’—y)A(x”-w’,y”—y’)(lw’dy’] dxdy
~ [ |7 a0 —ay—yyiay, i

which is identical in form with eq (5), except that A is replaced by 0. If O in eq (6) had the
same functional characteristics as A in eq (5), then they would be mathematically indistin-
guishable, and the same F will be obtained from either. Also note that eq (6) has the same
form as eq (2). As one would expect, the use of a point aperture would produce an undistorted
map of the flux-density distribution in the image plane.

2.2. Determination of a Characteristic Function of the Point Image

It should be clear from the above that the function which distinguishes one image-forming
system from another is the point-image function ¢. The problem is to find some way of de-
scribing ¢, which can be obtained experimentally and which provides significant information
to the user.

The direct mapping of the flux-density distribution in the image of a point object with a
point aperture is impractical because of the very low-energy levels involved. A practical
method must involve in some manner the integration of the flux over an area.

One method, used by Hopkins [7] ! is to measure the flux contained within successive
concentric circular regions about the center of the point image (fig. 3). The ratio of the flux
contained within a circular region to the total flux of the point image is plotted as a function
of the radius of the circle (fig. 4).

1 Figures in brackets indicate the literature references at the end of this paper.
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Frcure 5. Determination of point-image

Ficure 6. Point-image characteristic.

characteristic.
The solid represents the portion of the total flux that This curve shows the normalized volume of the solid in figure 5 as
passes through the receiver slit, the point image being cen- a function of the width of the slab,

tered on the slit.

This method has several advantages over mapping the flux-density distribution directly.
Of course, there 1s an increase in the energy involved, which increases the signal-to-noise ratio
of the measurements. Also, there is a reduction of a three-dimensional function to two
dimensions, which is more convenient. Further, this method provides the user with an idea
of the contrast with which small detail will be imaged, for, by the interchangeability of the
object and aperture function, the resulting curve (fig. 4) can be considered to represent the flux
density at the center of the image of a disk as a function of the size of the disk. This disk
corresponds to a small object in the scene, later observed by the user.

This method does have disadvantages, however. It is satisfactory for systems in which
the point image is radially symmetrical, but is insensitive to the presence of radial asymmetry,
such as exists in an astigmatic or comatic image. It also presents the practical difficulty of
locating the centers of the apertures or disks in two dimensions with precision.

A different integrative method that allows a considerable increase in the available energy
is one in which the integration is limited in one direction only. This is done by measuring the
flux contained in successive widths about the center of the point image (fig. 5). The normalized
flux contained in a region as a function of the width of the region (fig. 6) is the function that
is here proposed as the most useful and practical characteristic function describing the point
image. [t will hereafter be called the point-image characteristic K(w), where w represents the
width of the region. For example, if the integration is limited in the z-direction, then

w,/2 2
K(w,)zf f ol(z,y) dydz. Q)
—wx/Q -

It should be noticed that this function does not actually involve a reduction of three
dimensions to two, because the curve obtained is a function of the direction in which the
integration is taken. This makes the data somewhat less convenient than is true of the
previous method, but this is not objectionable because of the additional information obtained.
The new method will detect a lack of radial symmetry. However, the inconvenience involved
is not too great because most images are bilaterally symmetrical, or nearly so, and two mutually
perpendicular orientations are all that are necessary to characterize the image.

The point-image characteristic has other virtues beyond the relatively large amount of
available energy and the ability to detect lack of radial symmetry. These arise out of the
unidirectional limitation of the integration.

For example, the point-image characteristic is closely connected with the fine-line image.
The fine-line image is the image of a line of infinite length but infinitesimal width. The flux
density is constant along the length of the line image and varies in a direction perpendicular
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Ficure 7. Generation of fine-line image. . .
Frcure 8. Cross section of fine-line image.
The flux density at a point in a fine-line image is propor-
tional to the area of the section of the point image orien- The vertical line corresponds to the area of the section shown in
tated in the direction of the line. figure 7.

to the length. It is obtained by integrating the point image in one direction only. For
example, the image function for a fine line, the length of which is in the y-direction, is given by

L= ey, ®

This is illustrated in figures 7 and 8.
The point-image characteristic can be obtained from the fine-line image by

K(w,)= f _w;/sz( z)d. )

This is illustrated in figure 9.

Up to this point we have been considering the object to be a point or a fine line and the
detector aperture to be a variable slit, the operating mechanism that produces the variation
inw. But, because of the interchangeability of the object and aperture, an illuminated variable
slit could be used as an object and a fine slit centered on the variable slit image as the detector
aperture. This method of obtaining the point-image characteristic is illustrated in figure 10.

The point-image characteristic is also closely connected with the knife-edge image. The
latter is related to the point image as follows:

s@)= " | ey dyd. (10)
This is shown in figures 11 and 12.

The relationship between the knife-edge image and the fine-line image is given by
S(')= f " Lizydz. 1)

The point-image characteristic is obtainable from S(z) by observing the values of S(z) at
2=—w,/2 and 2= +w,/2. Then

wz(2 —Wz[2 Wz[2
Kw;)=S(w,/2)— S(—w,[2) = f L(x)dz—f L(x)dw=f L(z)dz. (12)
—® —» —Wz[2
These relationships are illustrated in figures 13 and 14.
In summary, it may be pointed out that the point-image characteristic provides a simple
yet practical and informative way of evaluating an imaging system. It may be obtained from
a variety of test objects, namely, a point, a fine line, a variable-width line, or a knife edge.
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Ficure 9.  Determination of point-image character-

wstie from fine-line image profile.
The cross-hatched area corresponds to the solid in figure 5.

Ficure 11. Generation of knife-edge image

from point image.

The flux density at a point in the knife-edge image is pro-
portional to the volume of the solid indicated where the
limiting plane has the same orientation as the knife edge
and passes through the point in question.

NORMALIZED FLUX DENSITY

a b
NORMALIZED DISTANCE IN IMAGE PLANE

Ficure 13. Generation of knife-edge image from fine-
line image.

The flux density at a point in the knife-edge image is proportional
to the area under the fine-line image to the left of the corresponding
abscissa. The area under the fine-line image between any two
abscissa values is proportional to the difference between the corre-
sponding ordinate values of the knife-edge image. Bl ¥
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Fraure 10. Cross sections of images of finite-
width object lines.

The reduced object line widths are 1, 3, 5, 7, 9, and 11 z-units.
Plotting the central flux density as a function of the reduced object
line width results in the point-image characteristic curve shown in
figure 6.
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Fraure 12. Cross section of knife-edge image.

The vertical line corresponds to the solid shown in figure 11.

K (w)

NORMALIZED FLUX DENSITY
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Ficure 14.  Determination of point-image character-

istic from knife-edge image.

If the abscissa values a and b in figure 13 are made equal to —w/2
and +w/2 as in this figure, then the ordinate difference shown here is
proportional to the corresponding area in figure 13, which itself is
proportional to the corresponding value of the point-image character-
istie, as indicated in figure 9.



Furthermore, regardless of which way it is obtained, it can be interpreted in terms of any of the
objects. This is discussed further in a later section.

3. Evaluation by Fourier Analysis

A general object O(x,y) can be analyzed into a continuum of sinusoidal spatial waves, differ-
ing from each other in direction, frequency, amplitude, and phase. The characteristics of these
waves are given by the Fourier transform of the object,

T,,(w,;,wy)zjwo fm O(z,y) exp [—i(wx+ w,y)ldazdy, (13)

where 7,(w,w,) 1s complex, containing both amplitude and phase factors, and w, and w, are
directional frequency components of the component waves.
A component wave itself is represented by

W, =T (w;,w,) exp [i(w:x+ w,5)]-. (14

Consider this to be an object. Then by applying eq (2),

T )= f - f )T oxp (i wla’—a) ') oy

=T wr,w,) exp [1(wx’+ w_,,y’)]f i fw e(a,y) exp [—i(wz+w,y)ldxdy. (15)

The integral is the Fourier transform ®(w,,w,) of ¢(z,y), and therefore
Ly (2’ ") =D(wr,w,) Tolwey,) exXP (w2 +wyy")]. (16)

The function modified by @ is seen to be simply the component object wave. Kach component
image wave then will be the product of ® and the corresponding component object wave.
Therefore,

Tl(wzywy):q’(wzywy)To(wrz w,), @ 7

where 77 1s the Fourier transform of the image.
If 7(x,y) can be considered to be the object of a second imaging precess, then

Tlg(wr,- wy):q)2(wrywy) TII(‘UI’ wu):q)ﬂ)l i (1 8)

This can be extended to as many imaging processes as desired.
The transform

Sl f - f " o(z,y) exp [—iwns-t wy)ldady (19)

is seen to be characteristic of the imaging process. Let us examine it in more detail.

The transform is the double integral of the product of two functions, one being the point
image ¢(z,7) and the other a two-dimensional wave exp|—1i(w, a4 w,y)].

This two-dimensional wave is sinusoidal in one direction and constant in the perpendicular
direction, like a corrugated roof. The direction of the sinusoidal variation is inclined to the
z-axis by an angle 6, where tan §=uw,/w,, and the frequency is given by wy=+/w?+w? (see fig. 15).
The transform can then be considered to be ® (6,ws).

For =0, w,=0 and the transform becomes

Do)~ f _m J_m e f _m sl (20)
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Fraure 15. Transformation of coordinates. This is the positive side of the cross-section of the Fourier trans-
X _ 3 SO form of the point image shown in figure 1. It is also the Fourier
If the direction of the pattern is inclined to the original z-axis by an transform of the fine-line image shown in figure 8
angle 6, then, in the new coordinate system in line with the pattern,
9= Ywz2tw,? and tan f=w ,/ws.

where L(z)= [ o(x)dy is the fine-line image (fig. 16).

o =

If the &, ¥ coordinates are rotated in iy, ¥s through the angle 6 (fig. 15), then eq (20) can be
generalized into

D(6,wp) :J L(xg)exp|—i(wexe)|das. (21)

For any 6, the transform ® of eq (21) is the cross section in the 6-direction of the solid
representing the transform ®(w,, w,). This is shown in figure 17.

Equation (21) serves as the basis for the experimental determination of ®, since for each 6
it is the transform of the fine-line image oriented with its length perpendicular to the #-direc-
tion. The object can be one in which the flux density varies sinusoidally in one direction, and
the detector aperture can be a fine slit.

The object can be represented by

()(lg)*—‘l*lf (‘X[)I;wg.l'el, Al ZI)) (22)

The constant term is necessary because all flux densities must be positive. The image is
given by

[(5)=A+P(ws)B expliwsro]- (23)

Let M,=B/A be defined as the modulation in the object. The corresponding modulation in
the image is M;=®8B/A. The transform & is obtained by

M
p=—"". (24)
M,
The use of the modulation automatically compensates for any factor that changes the
signal output of the testing device proportionally, such as the transmission factor of the
g I g proj \
lens, change in brightness of the source, change in gain of the detector amplifier, ete.
st be remembered that @ 1s actually complex, involving both an itude and a phase
It must be rememl | that @ is actually complex, involving both an amplitude and a pha
factor. However, if the origin of ¢(z,y) is properly selected, the phase shift is small. If o(z,y) is
symmetrical about its origin, then there is no phase shift involved. Inmost cases, for evaluation
purposes, the phase-shift factor can be neglected.
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Fieure 17.  Three-dvmensional model of Fou- Fiqure 18. Square-wave response curve.

rier transform of point image. The dashed line is the sine-wave response curve from which this

Each radial cross section is the sine-wav e response in that was derived. The vertical lines separate regions in which the square-
direction. Note that the space is frequency space. wave image contains different numbers of harmonic components,
each region having one more component than its neighbor to the
right. In the region farthest to the right, the square-wave image con-
tains only the fundamental.

4. Coordination

If ®(w) is given, it is possible to predict a similar response curve in which the test object con-
sists of alternate dark and light stripes, a spatial square wave. The square-wave test object
can be analyzed into its component harmonics, each of which is attenuated by the value of ®
corresponding to its frequency, and the image is obtained by adding together these attenuated
harmonics. For the response curve we are only interested in the peak-to-peak values that are
obtained from the values at the centers of the lines and spaces. The square-wave response
curve then is given by

vo)=1] 20— 20+ 1aGa— - - | 25)

1t should be noticed that there will be only a finite number of terms in the sum because there
is a limiting value of @ beyond which ® remains at zero. This limit exists because of the finite
dimensions of the aperture of the system; the larger the aperture the higher the limiting
frequency.

Because of the finite range in w, it is possible to obtain ®(w) from ¥(w) by the inverse
process. Here it is necessary to start at the limiting value of & and work backward. From this
limiting value w, back to w,/3 the sine-wave response is given by

B(w)=m/4 Y(w) (26)

because ® and ¢ are both zero for the odd multiples of w for w greater than w./3.
From w./3 to w./5,

P(w)=m/4 Y(w)+ 5P(3w), (27)

where ®(3w) may not be zero, and has already been found.
From w./5 to w./7,

D(w)=m/4 Y(w)+ 2(3w)— 38(50), (28)

and so forth.

The relationship between the square-wave response and the sine-wave response is illustrated
in figure 18.
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Ficure 19. Generation of square-wave response from Fraure 20. Generation of square-wave response from
point tmage. Jfine-line image.

The sum of the volumes of thff Sla_bS is x?roportiona] to the flux The cross-hatched areas correspond to the slabs in figure 19. The
density at the center of a bright line in the image. The sum of the marked widths indicate how the square-wave response can be ob-
volumes of the slabs that have been removed corresponds to the dark tained from the point-image characteristics,
line. The difference between the two is proportional to the square-
wave response.

The square-wave response may also be obtained from the point-image characteristic. If
we consider the imaging of a square-wave test object as a point-image integration, then the flux
density at the center of the image of a bright line in the pattern is proportional to the sum of the
volumes of the slabs illustrated in figure 19, or the areas of the stripes in figure 20. The flux
density at the center of the image of a dark line is proportional to the sum of the volumes of the
slabs (or areas of the stripes) which lie between those illustrated. The sum of these two flux
densities is proportional to the total flux in the point or fine-line image, and the square-wave

response 1is given by
V(o) —E (;7)—[1—E<2iw>]=212 (2%)—1, (29)

where F(1/2w) is the flux density at the center of the image of & bright line and 1/2w=w is the
width of a line, bright or dark, in the pattern.
It can be seen from figure 20 that

E (;z)=E<w>=K<w>+[K(5w>—K(3w>]+[K<9w>—K<7w>1+ o (30)

where K (w) is the point-image characteristic, so
W(w)=2{ K(w)+[K(5w)—K@Bw) 4. . . } 1. (31)

It is now apparent that ®(w), the sine-wave response, may be obtained from K(w), the
point-image characteristic. This is done by determining ¢(w), the square-wave response, from
K(w) and then applying the procedure indicated in eq (26), (27), and (28) to obtain the sine-
wave response.”

To obtain the point-image characteristic from the sine-wave response is more direct. Con-
sider the test object to be a variable-width line. The transform of the image of this object is
obtained by multiplying the transform of the object by the sine-wave response of the system.

2 This calculation for the case of the unaberrated image was made by the author before he was aware of Steel’s equation (see appendix). It
was done for 30 different spatial frequencies, using the tabulated values for the knife-edge image given by Struve (see appendix) as well as his
approximation for values beyond those tabulated. The agreement between this calculated sine-wave response and Steel’s equation is well within

the error of calculation.
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The transform of this object is of the form
sin Tww
TWw

T,=w (32)

shown in figure 21, and the transform of the image is given by 7,=®7,. The image itself would
be given by the inverse transform

Tag)— f 8T, exp [i(wsze)ldws, (33)
but we are interested only in the value at the center of the line image where 2,=0, so

Kws)—I1(0)— f OT dey=2w f ()

sin mww

— dws. (34)

This equation shows the direct manner in which K(w) may be obtained from ®(w). For each
w selected, the sine-wave response is multiplied by the proper calculated function of the form
sin z/z, and the product is integrated graphically or numerically. The result is then multiplied
by 2w, and the value obtained is the desired K(w).

5. Application

It has been shown that an imaging system can be evaluated by means of a description of
the point image or, alternatively, a description of its Fourier transform. Each of them has
its advantages. 7

The Fourier approach allows us to combine several systems or to analyze a system into
its components, under certain conditions. The principal condition is that each intermediate
image formed by each component must be equivalent to a real luminous object having the same
flux-density distribution in the image plane. Thus the combining or analyzing process can be
applied to a photographic process, a television system, or a system in which each intermediate
image is formed on a diffusing surface. It cannot be applied to a telescopic system because
the light emerging from the primary image still contains the wave-front deformations produced
by the objective and is subject to aberration correction by the ocular.

This does not mean that the Fourier approach cannot be applied to the entire te]escoplc
system. It is just that the whole telescope cannot be precisely evaluated by simply evaluating
the components.

Using the Fourier approach also enables one to apply the concepts developed in information
and communication theory to imaging processes.

Another virtue of the Fourier approach is that the transform determined for any orienta-
tion of the sine-wave pattern in the image plane is a true section of the solid representing the
entire transform in the image plane. A similar property does not hold for the point-image
characteristic.

It should be noticed also that the sine-wave response of a lens has a finite boundary deter-
mined by the aperture of the system, whereas the point-image characteristic is unbounded.

The point-image characteristic, on the other hand, directly provides two basic types of
information about the performance of the system, apart from the distribution of flux in the
point image. These are the contrast at which an isolated object will be imaged as a function
of the object size, and the gradient in the image of the edge of an extended object. The first
holds because the point-image characteristic can be obtained by measuring the flux densities
at the centers of finite-width line images. The second holds because the characteristic can
also be obtained from the image of a knife-edge object.

However, if one knows either the point-image characteristic or the sine-wave response,
he can calculate the other, as has been shown. It would probably be preferable to have a
research instrument that would determine the sine-wave response, because the transformation
to the point-image characteristic is more direct and more suitable for calculating machines than
the reverse transformation.
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Ficure 21. Transform of finite-width line object. The solid curve is the sine-wave response curve; tke dashed curve is
the square of the solid curve; and the rectangular area is equal to the

w is the frequency of the component wave, and w is the reduced area under the dasted curve. This rectangular area is measured by a
object-line width, . single number, its limiting frequency, thereby providing a single
number to describe the sine-wave-response curve.

Another problem that comes up is one that is involved in routine testing. It would be
desirable to reduce the evaluating curve to a single number with as little loss of significant
information as possible, and it would be desirable that this reduction be done automatically in
the test procedure.

With respect to the sine-wave response curve, Schade has suggested a reduction in which
the curve is squared, ordinate by ordinate, and then integrated. The resulting number
is equal to the limiting frequency of a rectangular “response” curve having the same area
as the squared sine-wave response curve. This establishes an equivalent bandwidth, shown
in ficure 22.

The mechanism that would permit this determination directly would be similar to the
sine-wave response mechanism, except that a “noise”” pattern instead of a sinusoidal pattern
would be used. The ideal noise pattern contains all frequencies at equal amplitude but with
random phase relations. The fluctuations in the photoelectric output produced by this pattern
are fed through a squaring circuit and then integrated. The resulting steady current, indi-
cated on a meter, is proportional to Schade’s equivalent bandwidth. One trouble with this
system 1s the difficulty involved in producing an acceptable noise pattern.

Equation (34) indicates another approach to the problem of representing the sine-wave
response curve with a single number. The object transform 7} in this equation can be con-
sidered to be a weighting factor for the sine-wave response curve, and the integral to represent
the equivalent bandwidth ©. Then this equivalent bandwidth can be determined by the use
of a variable slit or a knife edge, for

Q=" (35)

For this to be single-valued, w must be fixed, and two convenient possible values appear
evident. One is to set w=1/w,, where w, is the limiting frequency for a theoretically perfect
lens having the same aperture as the lens under test. Then the weighting function goes to
its first zero at w,. This method is illustrated in figure 23.

The other convenient value for w is zero, for the limit of K(w)/w as w goes to zero is the
slope at the center of the knife-edge image, as can be seen with the aid of figure 14. As indi-
cated in eq (35), this equivalent bandwidth is given by one-half the slope at the center of the
knife-edge image. The weighting function approaches unity for small values of w as w ap-
proaches zero, so this equivalent bandwidth is given by the area under the sine-wave response
curve itself. This is illustrated in figure 24. 1t might be emphasized that this latter relation-
ship is an important and fundamental condition. The slope at the center of a knife-edge
image is exactly proportional to the area under the sine-wave response curve.
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Ficure 23. Another equivalent bandwidth. Fraure 24. A third equivalent bandwidth.

The solid curve is the sine-wave response curve; the long-dashed This bandwidth is measured by the area under the sine-wave-
curve is the transform of the finite-width-line object; the short- response curve itself. The area is exactly proportional to the slope at
dashed curve is the product of the other two; and the rectangular the center of a knife-edge image.
area is equal to the area under the short-dashed curve. This provides
a different single characteristic number, which can be obtained more
easily than Schade’s equivalent bandwidth.

The idea of measuring an equivalent bandwidth may be a good way of reducing the sine-
wave response curve to a single number, but this process eliminates one of the advantages of
the sine-wave approach, and that is the ability to combine directly a sequence of imaging proc-
esses. For most telescopic systems this may be unimportant, but if such a combination is
desirable, then perhaps the sine-wave response curve can be characterized well enough by some
particular frequency. If the response to some such frequency were established as a measure of
quality, then the measure of the quality of the combination is simply the product of the measures
of quality of the components.

To summarize, the Fourier approach seems to be more desirable for research and detailed
testing, but the determination of the point-image characteristic lends itself to rapid routine

testing.
6. Appendix

6.1. Images Produced by an Aberration-Free System With a Circular Aperture in Mono-
chromatic Light

The extended objects are assumed to be illuminated noncoherently. In the following expressions, the
unit of displacement in the image is:

2rax
Zi— . ) (36)

where a is the radius of the circular aperture, z is the distance in the image plane from the center of the image,
d is the distance from the image plane to the aperture, and X is the wavelength of light.

a. Point Image

This is well known, and its section is given by
Ju(2)\? .
oly—4 (7). (37)

It is illustrated in figures 1 and 2.
b. Fine-Line Image

An expression for the cross section of the fine-line image, implicit in the original work of Struve [1], is explic-
itly given by Steel [2] as
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L(z)= (38)

where H; is what is known as the Struve function, and has been tabulated.? The cross section of the fine-
line image is illustrated in figure 8.

c. Knife-Edge Image
Struve [1] developed this in a series expansion and tabulated it for z up to 15, If the edge is oriented so
that the gradient for the image is positive, then the image is given by
S(z)—l—}—z 322 5 28 7 28F
2 72\ 1123% 31%23%5% " 51%3%.5%72

(39)

Struve also gave a simple approximation, which is in error by less than 0.1 percent for Z>7 and 1.0 percent
for Z>3.

2
S(Z):l"";z—g (40)

The knife-edge image is illustrated in figure 12.
d. Finite-Width Line Image

If the width of the Gaussian image is w,, then
— wz
IG=8 <2+—2~>——S (-’“’7) (41)

This family of images 1s illustrated in figure 10.

e. Point-Image Characteristic

K(w)=S (%)—s (—%)zzs (1‘12- —1. (42)

Combining this with eq (39) gives

Keo)=25 {3 St 1ot Tt -} (13)

This is given by

11232 3123%5° ' 512325572
Thisis illustrated in figure 6.

f. Sine-Wave Response

Steel [2] gives the following expression for the sine-wave response:

BRI

®w W w?
<arc cos 55 1—Z>, 0<w<2

® () (44)

=0 ;  w>2,

where w=r/w,, and w, is the wavelength of the sinusoid. Notice that there is an absolute limit to the fre-
quency of the pattern that a lens can form, this limit being where the wavelength of the pattern in z units
is equal to .

The frequency, », in the image plane is given by

w

SNV (45)

y=

where N=d/2a and A is the wavelength of light. If X is in millimeters, » is in cycles per millimeter.
Figures 16 and 17 show the sine-wave response.

3 £, Jahnke and F. Emde, Tables of functions with formulas and curves, 4th ed. (Dover Publications, New York, N. Y., 1945),
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