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Radiation From a Vertical Antenna Over a Curved
Stratified Ground

James R. Wait

The problem of a radial electric dipole outside a concentrically stratified spherical

conductor,

analogous nonuniform transmission line for the radial modes.
azimuthal mode series,

transformed to a Watson-type residue or

well-known result for the homogeneous earth as a special case.
the residue series is converted to an alternative expansion,
The leading term of this new expansion corre-

duced recently by Bremmer,
which is more suitable a2t short distances.

such as the earth, is formulated. The solution is facilitated by considering the

The general result is then
which reduces to the
Following a method intro-

sponds to the case of the transmitter and receiver over a plane stratified conducting earth.

1. Introduction

In an earlier paper by the author [1] ! expressions

were derived for the fields of a vertical electrie dipole
over a plane stratified ground. In a further paper [2],
the solution was extended to arbitrary antenna
heights and numerical values of the attenuation
factor were given. In the latter paper it was men-
tioned that the effect of the earth’s curvature could
be accounted for. It is the purpose of this paper to
develop the theory for propagation over a curved
earth with concentric stratifications.

The method of solution is a direct extension of
Watson’s [3] method to obtain a solution for the
electric dipole radiating over a homogeneous sphere.
It therefore does not seem necessary to outline the
steps in the derivation in detail. A particular novel
feature of the formulation, however, is that the
boundary conditions at the surface of the sphere are
specified by a surface impedance. The final expres-
sions for the fields are then also applicable to propa-
gation over other modified surfaces, such as a sphere
with azimuthal periodic corrugations.  Using a
method suggested recently by H. Bremmer,” an
expression for the field is then obtained that is very
suttable for computation when the receiver is neai
the optical horizon. Finally, some numerical results
are presented for various frequencies employing
typical values of the ground constants over both a
homogeneous and stratified earth.

2. Formal Solution

The source of the field is considered to be an elec-
tric current element /ds oriented in the radial direc-
tion to the spherical earth of radius a;. Choosing a
spherical coordinate system (r,6,¢), the surface of the
earth is then defined by 7=a;, and the dipole or
current element is located at »=b and 6=0. The
fields can now be expressed in terms of a Hertz

! Figures in brackets indicate the literature references at the end of this paper”
2 Personal communication.

vector, which has only a radial component U, as

follows
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where k=2x/free-space wavelength, and e is the
dielectric constant of free space, (=8.854X1071),
in mks units. A time factor exp(iwf) has been

implied. The function U satisfies the equation
2 = O 6(r— 6)6(0)
W e "m' sin 6’ 2)

where the §’s are the Dirac delta or impulse function.
The factor 2% sin 6 is the Jacobian of the trans-
formation from rectangular to spherical coordinates.
The constant is chosen so that U has the proper
singularity at the dipole, that is

oel? 1ds for R—0, (3)
where R=[r*+4b*—2br cos 6]'/*
therefore O'= (i/we)Ids.

The field U is now written as the sum of two parts
U,+ U, where U, has the proper dipole singularity
at R=0, and U, is finite at that point. As Us
is a solution of the homogeneous wave equation, it
can be written in the form

—=8.854 1072, and

U= @t AR Un)P, o), (@

where A2 (kr) is the spherical Hankel function of the
second kind, which assures outgoing waves at
infinity, and P, (cos 6) is the Legendre function.
The corresponding representation for U, is [4]
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U ’kcz 2n-+1)hY (kr)h® (k) P, (cos 0) for r< b

(5)
—FOS @ut VAP ANLL D)P, (cos ) or r>b

The coefficients A, are now found from the boundary
condition, that

Ey=—ZH, at r=a,, (6)
which can be rewritten
[}37{] Z@ewU] 1)

In other words, it is assumed that the surface of the
earth exhibits the property of surface impedance.
7 is taken to be equal to the ratio of the tangential
electric and magnetic fields for a vertically polarized
plane wave at grazing incidence on a plane stratified
earth. This step in the analysis leads to a great
simplification, and it is justified in the appendix.
It then readily follows that

1d A
= A () —=
1 _ kP ka) | wde og zh:’(2) 1O (D), (8)
e h (kay) l _‘i log zh® (x)_ié ! ,
zdg 08T T fo=tka,

where A=ewZ/k=7/120r and where AP (z) is the
spherical Hankel function of the first kind. The
total field is then of the form

U:i'; (2n—+1)f(n)P,(cos 6). (9)

Following the process developed by Watson [3], the
summation is transformed into the following contour
integral:

ndn
¢,+¢, COS N

=

f(n—%) P,—1/2[cos (r—0)], (10)

where the contour ¢;+¢, encloses the positive real
axis, as illustrated in figure 1. Noting that the
poles of the integrand are located at n=1/2, 3/2, 5/2,
., ete., 1t can be readily verified by the theorem of
residues that this integral is equivalent to eq (9).
Now, since f(n—1/2) is an even function of n, the part
of the contour e above the real axis can be replaced
by the contour cl, which is located just below the
negative real axis. The contour ¢;+ ¢, is now entlrely
equivalent to L, a straight line running along just
below the real axis. Replacing n—1/2 by », the
contour representation for U takes the form

U=—i [ 2 163 P cos (r—0)ldv

LSln v

(11)

It is to be noted that this manipulation of the con-
tours is simplified because f(n—1/2) is an even

Imag.n

Real n

Ficure 1.  Complex n plane showing the contours and the zeros
of cos nm and zeros of the denominator of equation (8).

function of n as a consequence of the method of
formulation. In the usual treatment for the homo-
geneous sphere, f(n—1/2) is not an even function
of n, and the deformation of the contour becomes
more intricate.

The next step in the analysis is to close L by an
infinite semicircle in the negative half-plane. The
contribution from this portion of the contour vanishes
as the radius of the semicircle approaches infinity.
The reasoning for this fact follows directly from
Watson’s argument for the homogeneous sphere.
The value of the integral for U along the contour L
is now equal to the sum of the residues of the inte-
grand evaluated at the poles »; of f(v) located in the
lower half-plane. It then follows that U is propor-
tional to

= (rs+1/2RD kYD (k)P [cos (r—0)]

ST (12)
T sin o[ 2] ne ey
where the function M () is defined by
M)= [— % Jop oA S () ‘;] (13)
2 =kay

and the poles v, are the solutions of M(»)=0. Again,
as a result of the formulation, the equation here for
the determination of the roots is relatively simple.
Making the usual approximation [1] that A% (z) can
be represented by Hankel functions of order 1/3, eq
(13) can be replaced by

561,,-/3 2(%[(1/3>( 278)3/2]

L —1/2
2RI ay s IO
where
. 1207 s—ka
5:—?/ (k-idﬂl/sz &Ild Ts:z‘kal)llgl. (1 5)
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For a homogeneous earth whose propagation con-
stant is vy, 1t follows that
Yo o8 U
Z=120x 2" 1—¢] , (16)
1 1
with yo=1k, and therefore
) Vi .
o=— 1
(k) P — 117 o

which is identical to the value given by Bremmer [4].
For a two-layer ground whose upper stratum of
thickness [ has propagation constant v, the surface
impedance Z is given by (see appendix)

Yo e
=120 —| 1—— s 18
TVlI: ’YI] ¢ (18)
where
Q=tanh [P+ (V?—73)'/2]], (19)
and
) 2 1/2
IR=tarihhat [:'Y_; 7 ’y°> ] (20)
V2 'yl—'yo

with v, as the propagation constant of the lower
medium. The correction factor (), which approaches
unity for /-« , can be evaluated with the aid of
charts of hyperbolic functions of complex argument.
The expression for () for a stratified ground for any
number of layers has been given previously along
with some numerical values for special cases [5].
Equation (12) for U can now be considerably
simplified by replacing the Legendre function by
its leading term 1in its asy mptnti( expansion and the

functions A% (kb) and A9 (kr) by their Hankel
approximations to lead to
U=2U,y—2 mXZ fb(/zl)fs(/z) 1/52 (21)
with
Xi—27, AL (X7 —27,)%7
(i Sl | 2205 1/313
o[ T e e @

and where

;  Idse=™®
s

p ) h=r—ay,
4miwea, 6 !

X=(ka))'"%0,

11\3:])—(11,
and

Xi=(ka)*(2hs/a,)* for 1=1,2.

The preceding equations are identical in form to
that obtained for the homogeneous earth as given
by Watson [3], Bremmer [4], Friedman [6], and
others. It is important to note that the quantities
p, 6, and the roots 7, are dependent on the electric
constants and the nature of the stratification of the
earth. Bremmer [4] has given very adequate for-

mulas for 7, in terms of powers of 6. These can be
used directly for the stratified earth. They can also
be used for a sphere with a corrugated surface if the
appropriate value of the surface impedance is
employed [7].

3. Modified Flat Earth Formula

The so-called residue series for U7 could be used for
calculations for propagation over a curved earth.

“The series, however, converges poorly for distances

near the optical horizon. It would be desirable to
transform the residue series formula to a new type
of expansion where the first term corresponds to
the radiation of a dipole over a plane stratified
earth. Succeeding terms would then be preferably
in proportion to inverse powers of ka,. In the
limiting case when ka; tends to infinity, the expres-
sion U should correspond to the situation treated
previously. A method of obtaining expansion for-
mula of this type is mentioned briefly by Bremmer in
his book [4].  Very recently he has described to the
author an alternative procedure, which he illustrated
for the case when the transmitter and receiver are
located on the surface of a homogeneous spherical
carth. His method will be employed here in the
case when the transmitter and receiver are not both
on the earth. Furthermore, as will be shown, the
method also is applicable to stratified and corrugated
surfaces. The first step is to express the field in
terms of a contour integral as follows:

iUp) 1 f”’“’ w2 f(p,hy) (p ho)e?*dp 23)
202U, 211 Jc_in  1+ei"p2A(p) ’ -
where p=1X/26° and where |A(p) and f(p,h) are
chosen as follows:
e (%) :
y, — 24
)= - (L > )
ANETE
and
Xt H e, o
S o= = e 2

for =1, 2; and ¢ 1s some positive constant.
It can be noted that the poles p; of the integrand
are determined by the solution of

l(’/’)3 [;5_6_3]_*_(,11/3 V2 @) l: 353]*

If p, is replaced by 26’777 this equation is identical
to eq (14) for the determination of the roots 7,. It
can be readily verified that the sum of the residues
evaluated at the poles p, leads back to eq (21).
Recognizing that the right-hand side of eq (23) is
in the form of an inverse Laplace Transform, it can

(26)
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be written in Heaviside’s operational notation [8]
as follows:

Ul . _
2p1/2[/*0:P(p); (2()
where
= *pf(p,l) f(p,hy)
F(])) 14},77?73711/2 1(29) (28)
and

_ (1 for p >0
M=
Lo for p<0.

The technique is now to expand F(p) in an asymp-
totic expansion in powers of 1/p and then to invert
each term to obtain series expansion for p in powers
of 6. It is convenient for the moment to consider
ho=0 so that f(p, h:)=1. Each of the Hankel func-
tions is now expanded in an asymptotic expansion,
with due regard being paid to the phase of arguments.
Note that

validity of the
It then follows

On making this conversion, the
asymptotic expansions is established.
that

w2 f(p,hi)
1—ip'”? [ J 3)+; 63+ :I

F(p)= (30)

72— 1/4 5
e L e I e L
29 21

335 1 38 1, 25 1}
e — 31
10368 227 10368 22 ' 5184 2,2, (31)
.1 .
plus terms in P ete., with

3/ ') ) 3/)
1P B2 six
LQ—‘:S [52} (7 3

To further simplify the above expression for f(p,h),
the factor (1-+.X?6/p)¥? is expanded in a binominal
series, and terms containing i, X% ete. are neg-

and

:g € ()
+7r>§ arg. p;—3 arg. d—3w>—2m, lected. After some algebraic manipulation, it follows
that
which suggests replacing the arguments z by ze %~ e 1ad® 5 ad’ .
and then employing the relation [, h)e~=?" I_T T8 pi (32)
<p 4
HP (ze= %)= “11,-7”/ HO(2) (29) plus terms containing «’8°, a’6’, etc., where a=FkhA.
T sin v ’ - When this formula for f(p,h) is substituted into eq
(30), it is readily shown that
) _ipe ipe P Wi T,
,iﬂ.l/Q 1/2 2(1_/2'_’)1/2)2 Q(I_ipl/2)
Nk 1 i 7 Sin —apl? 3
—t_é [8 p3/2(1__ip1/2)2 4p(1_7p1/2)3+4p(1_2p1/’) +\p3 ’(1 Zpl/l)] (3 )

plus terms containing 6%, 6%, etc.

The final step in the analysis is to find the cor-
responding functions of p for each term on the right-
hand side of the above equation. The necessary
operational pairs can be derived from the basic re-
lation [9],

M(g,p) =" 1 (34)
where
o <5+%> e pl/2
‘/M(g3p):erfc (2p1/2 —e€ Y b €rfc <27p172+ !7~>
with
erfc(z)z—ﬂ_m e~?dz.

For example,

eal’

(I_QPI/Z)Z |: a A‘[(‘/ p)+ J[Vh p) Al (35)
&= —1i

so that

s 1/2 ,—apl/? )

(= {”m”f" [ 52 2ot

— x4 2p—iapererte [ Stiot | T G0

The other pairs can be derived in a similar manner
by further differentiations with respect to the param-
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eter g and then setting g=—i. The final result after

collecting like terms is

U(P) 2 ; o
—p—a/4p__, 1/2,— (p—ia) ppfp Sl
o, ¢ ime) e e ek [2;1”2 " ]

; art/%(14-2 : a 5 W
_1I_53p1/zl:p —a®/4p__ (‘)i,,f,’)ef o= M)e’if"<2p1/z+@/’l/z>

(1+?a)mfc )] (37)

plus terms containing &%, 6°, etc.

The coefficient of the 6° term is not written out here
as 1t 18 quite cumbersome and in itself would not be
suitable for computation. It is constructive at this
stage to express U(p) in terms of the parameter w

defined by
w=p (1455) (39)

whence

L/ (p) Ne-i}c/zf/zula{l_,i (Tp)l/ze_I"elif(f(iwl/z)

2U,
158 I:p_l'(ﬂ.p)l/z (1 —{»22!’) e-z,-e):fc(iwl/z)]}

+53[?15’f§’ﬁ (L4 ikhA)erfe <f il ) ] (39)

For the homogeneous earth, the factor A=
(V/v?) (v3 /2 —1)1“, and if a; the radius tends to
infinity or 6=0, the remaining first term corresponds
to the well-known formula for the attenuation factor
of a dipole over a flat earth [10]. p is then the
numerical distance of Sommerfeld [11]. It is inter-
esting to note that the form of the first term is
identical to the result obtained by Hufford [12],
using an integral-equation formulation. When the
ground is stratified such that A=ewZ/k, where Z
1s the surface impedance, the first term corresponds
to the result obtained previously for the dipole over
the plane stratified earth [1, 2].

~ It now appears that, for small heights such that
khi2a6 is small compared to one, the height gain
function is simply 1-ie, which is a common factor
of at least the first three terms in the expansion in
powers of 8. To this approximation the final result
1s expressed conveniently as

g[(/f): (‘*G{ (p-——[l—z(rp)'“ (1+2p)Fo(p)l

45 [1—'i(7rp)w(1—p)—2,,+% pz+<%_1>Fo(p)]. y }
(40)

where

L—i(mp)"/* erfe(ip'?)

Fo(p)=
G~(1+ia)(1+4B) with B=khsA.
In eqn. (40), the definition of FO( p) is
: 1
P erfc (ip2)

Flp) = 1-1i (ﬂp)%e

At distances from the antenna greater than a few
wavelengths the quantity (7(p) 1s proportional to
the vertical component of the electric field, and cor-
respondingly 20U, is proportional to the field of an
identical source over a flat perfectly conducting
earth. The field strength 7, in millivolts per meter,
at a distance Dy, in kilometers, is then given by

300

4 ka ‘II p)I

(41)
for a dipole transmitter whose strength is such that
it would radiate 1 kw over a perfectly conducting
flat ground.

To illustrate the nature of the (\sults calculations
are carried out for E as a function of Dy, over a
homogeneous spherical earth of radius 6,373 km
at frequencies of 30, 15(), and 750 Me. These curves
are illustrated in figure 2, where it is indicated that
the relative dielectric constant of the ground is 4
and the conductivity is 1072 mho/m. The flat-
earth formula (. e., 6—=0) 1s designated as the
zero order or Oth approximation. The results for
including the first and second curvature corrections
are designated as first- and second-order approxima-
tion, respectively. Finally, the field strengths ob-
tained from the residue series are shown for compari-
son and designated by “Res.” In this latter case
many terms of the series were required, and it 1is
reassuring to notice that curvature corrected flat-
earth formulas merge with the residue-series formula.
The results of these calculations would lend confi-
dence to the use of eq (40) for stratified media if the

100

50

~

Field Strength , lVv/V

o=
o
T

0.2

Distance , km

Field-strength versus distance curves for a trans-
mitter that radiates 1 kilowatt.

Ficure 2.

The flat-earth and curvature corrected curves are shown along with the residue
series-calculated curve.
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Ficure 3. Field-strength versus distance curves for various

receiving-antenna heights.

appropriate value of the numerical distance p and
curvature parameter § are employed. As a further
check on the curvature corrected formula used in
conjunction with the height-gain function, calcula-
tions are carried out for various receiver heights
hy with the transmitter height A; equal to zero.
These results are shown in figure 3 for a frequency
of 43 Me, relative dielectric constant of 4, con-
ductivity of 1072 and hy,=0, 5, 10, 20, 50, and 100 m.
The solid curves correspond to the second-order
curvature corrected flat-earth formula, whereas the
dashed curves are based on the cumbersome but more
exact residue series [4]. As a matter of interest,
the line corresponding to the optical horizon is shown.
It is apparent that the agreement between the two
methods of calculation is very good at moderate
ranges. No doubt a third-order correction involving
a term proportional to §° would improve the dis-
crepancy at greater ranges. It is doubtful, how-
ever, if calculations of higher order correction terms
are justified because the residue series becemes more
convenient at larger ranges.

The computations for stratified ground are some-
what more involved, and, furthermore, even for a
two-layer ground, additional parameters to be con-
sidered are conductivity o, and dielectric constant e,
of lower stratum, and thickness [ of upper stratum.
As an example, the lower medium is taken to be 25
times better conducting than the upper stratum.
For convenience, the dielectric constants are also
taken to be in the same ratio. The second-order
curvature corrected results for a frequency of 5 Me
is shown in figure 4, where the case [=o corresponds
to a homogeneous ground of electric constants o; and

2,000

1,000 o =102
oy =25x/07¢
f =5Mc

FIE =10

|
& =4¢p J
{

200
& =25¢
100 |
—X = 1.0 meter |
50 |-

N

Field Strength ,uv/v

.
S ;
£ =25 meters — .N
777"y o q/

o
T

e L

Distance , km

T1GUrRE 4.  Erample of the field-strength—distance curves for a
two-layer stratified ground for several values of the thickness
of the wupper stratum.

14y

D =40km
=0
g, =25x107
f=5M
h=hy =0
§=4¢
&= 25x¢

Limit £ —a

Field Strength, lv/Vv

40 -

Depth £, meters

=

Ficure 5. Field strength at a distance of 40 kilometers on a
two-layer stratified ground as a function of the thickness of
the upper stratum.

e. The curve marked Res. corresponds to the residue
series calculation for the homogeneous earth. If the
thickness of the upper stratum is greater than about
2.5 m, the field corresponds quite closely to that
expected over a homogeneous ground. To show in
a little more detail, the nature of the dependence on
stratification, the field at 40 km is shown plotted in
figure 5 as a function of /I in meters. Both the
flat-earth and the second-order curvature corrected
results are included.
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4. Concluding Remarks

It is apparent that the theory of Watson [3],
Bremmer [4], and others, for propagation of radio
waves over a spherical homogeneous earth can be
generalized to propagation over a concentrically
stratified sphere. The derivation in this paper is
very straightforward as a result of choosing an
approximate boundary condition, which specifies
the surface impedance at the surface of the sphere.
Although the theory was developed for a homo-
geneous atmosphere, there is little reason to doubt
that a similar analysis can be carried out for an
inhomogeneous atmosphere following the develop-
ment of Friedman [6]. For the case of normal
refraction (absence of ducting), the results in the
present paper can be employed directly by admitting
the concept of the effective earth radius [4], where a,
is replaced by a modified value a5.

While the attention here has been mainly confined
to propagation of radio waves over a stratified sphere,
the results are applicable to the study of surface
waves on corrugated spherical surfaces of the type
that can be characterized by a surface impedance.

5. Appendix 1. Surface Impedance of a
Stratified Conducting Sphere

The surface impedance at the surface of a sphere
of radius @, consisting of a concentric core of radius
a, will be derived. The propagation constants of
the outer shell and the core are v, and 7v,, respec-
tively, and the intrinsic impedances are 5, and s,
respectively. Under the assumption that the source
is a vertical antenna the field can be represented as
a superposition of transverse magnetic ('TM) spheri-
cal waves of order n. The surface impedance Z” for
such a TM wave is defined by

Zr=[—E;[H}]r-q, (42)
The medium between the limits »=a, and @, can now
be regarded as a nonuniform transmission line [13]
of length /=a,—a,. The characteristic impedance
of the line looking inward is

Ii@r
m ~

=M(vr), (43)
L, ()

where I, is Schelkunoff’s notation for modified

spherical Bessel functions of order 7, and the prime

indicates a differentiation with respect to the argu-

ment v,  Similarly, the characteristic impedance

looking outward is

K:L (vy7)

- 7 :N 71 p ’ 44
M . (var) (nr) (44)

where K, is the modified spherical Hankel function

of order n. The line is considered to be terminated
by an impedance

I ()

! =P(Y,a,). 45
In(‘yf") r=a, ) ( ))

M2

From the theory of nonuniform transmission lines it
follows that
1 _‘_ (]c(a':?)il 0130

-, 4
IS (jlz(GQ)A‘lith ( 6)

Z"=M(a,)

where ¢, and ¢, are reflection coefficients at r—a,
for the 27 and /7 field components and are given by
_1/P(ay)—1/M(a,)

9=1/P (@) F1/N(ay) (47)

and
P(ay)—M(a,)

(]h:])(az)"%_]\r(ag)' (48)

The quantities A and B are transmission factors
given by

’ “ep N
A = ",(’Z,‘(l"-’), B :(liKn (71(11)_
( (4

azi,: Y1) GIIA\?:: (@)

. A > (49)
{0l () __ K, (Ma)
Ly —=——) e
ax 1, (Y1a,) a KK, (v,a@)

Under the restriction that the thickness of the shell
(l=ay—ay) is small compared to a,, the above for-
mulas can be greatly simplified. For example,
noting that 7,(z) satisfies the equation

d*1,(2)__ 1+1{Q%;r_1>.] 1., (50)

dx?

it readily follows that the function M (x) satisfies

{Mz(fﬂ)vL m i”d[f@:[l +”(%+*1)] n } ="

(51)
A good approximate solution is
| 1) 194
Avire nn 1)1 52
M | 1470 52

because dM/dx is small when |y;7[>>1. Now the
values of 7 are not known precisely, but the impor-
tant ones correspond to the roots »,, which are close
to the value ka,. It therefore follows that

7 i 1/2 9771/2
M (vyr)y~n, I:l + nggjl)l)—j— ) ~n ,:] ——%] y  (53)
1
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since k=1yo, ka;>1 and a;/r~1 in the range

a,<r<a;. With similar reasoning it follows that
T e -
N(’er)zm[ % for a<r<a (54)
and
'_ —YZ 1/2

P(’Yz%)ﬁno 1'—* (55)

The transmission factors are then written
A,~A,~B,~B~e= 0i-"] (56)

with /=a;—a,. The surface impedance then takes

the form

YASON [

’Y% 1/2 72

VA=
1___ 0

V%

. 1/2
[’Yz 'Yo:l +tanh [(¥—12) 1/2[]

1/2
1+ ] tanh [(vi— ’YO)W/]

(57)
It is to be noted that Z" is precisely the ratio 2 of
the tangential electric and magnetic fields for a
vertically polarized wave at grazing incidence on a
two—lavel stratified ground [5]. It, therefore, seems
justified to employ the dpploxunate boundar\' eq (7)
at least for application to propagation of radio waves
over the surface of a stratified ground with the normal
earth curvature.

6. Appendix 2. Alternative Approach to
the Height-Gain Function

It is possible to study the effect of raising the re-
ceiver and/or the transmitter by starting with a
more accurate representation for the height-gain
function:

P (kr)
f(p;hi)—hlsg) (k‘(l))
where
y=ka+ (ka)"? [—2%2] (58)
with r=h;+a; f(p,h;) 1s now expanded in a
MacLaurin series as follows:
il ] B e
@?
apa| 72 W52 (%)
k*hi| da? _
+ 2 AZIET z=ka+ R

O

Now employing the relation

G
P (lx log rh$? (1)~ (60)
and the differential equation
d- — ”+1) @
ot e 1= e (61)
it follows that
212 252
fph >_1+<mkh +~) L e 62)

It then follows that a more representative height-
gain function G’(p) in place of the function @ is
given by the operator

k2/L2A k*h2A O
ka 2 0p

The field E(p,h) is then related to the field £ (p,0)
on the ground by KE(p,h)=G"(p)E(p,0). The third
term of the expansion is negligible when ki< (ka)'
because |A| is somewhat less than unity and the
fourth term is negligible when

khD<1.

The function ’(p) to this approximation is then
identical to the height-gain function G obtained
earlier.

G’ (p)~1-+1ikh;,A—

+

—+ - (63)
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