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Radiation From a Vertical Antenna Over a Curved 
Stratified Ground 

James R. Wait 

The problem of a radial electric dipole outside a concentr ically stratified spherical 
conductor, such as t he earth, is formulated. The solutioll is facilitated by considering the 
analogo us nonuniform transmission line for the radial modes. The genenll result is then 
t ran sform ed to a IVatson-type residue or azirnuthal rnode series, which reduces to the 
\I·ell-known result for the hOInogeneous earth as a special case . Following a meLhod in t ro
dllced recently by BreInmer, the residue series is converted to a n alternative expansion, 
1I·11ich is more suitable at short distances. The leading term of this new expansion corre
sponds to the case of the transmitter and receiyer over a plane stratified conducting earth . 

1. Introduction 

In an earlier paper by the author [I]l expressions 
were derived for Chefic1ds of a ver-Lical electri c dipole 
over a plane straL ified ground. In a furt her paper [2], 
t he solLl tion was extended to arbit rary antenna 
heigh ts ancL numerical values of the aLLenuation 
factor were given. In Lhe latter paper it was men
tioned that Lhe efIect of Lhe eart h's curvature could 
be accounLed for. It is LIl e purpose of thi s paper to 
develop the theory for propagation over a curved 
earth wi th concentr ic stratifications. 

The method of solu tion is a direct extension of 
·Watson's [3] method to obtain a solution for the 
electric dipole radia ting over a homogeneous sphere. 
I t therefore does not seem necessary to outline the 
steps in the derivation in detail. A particular novel 
feature of the formulation, however, is that the 
boundary condi tions at the surface of the sphere are 
specified by a S tl d ace impedance. The final expres
sions for the fields are thon also applicable to proprr
gation over other modified surfaces, such as a spllCfe 
with azimuthal periodic corrugations. Using a 
method suggested recently by H. Bremmer} an 
expression for the field is Lhon obtained t ha t is very 
suitable for computation when the receiver is near 
the optical horizon. l?inally, some numerical results 
are presented for variou s frequ encies employing 
typical values of the ground constants over boLh a 
homogeneous and stra tified earth. 

2 . Formal Solution 

The source of the field is considered to be an elec
tric current element I ds orien ted in the radial direc
tion to the spherical earth of radius al. Choosing a 
spherical coordin ate systcm (r,O,c/J), the surface of the 
ear th is then defined by r= al, and the dipole or 
current element is located at r= b and 0= 0. The 
fields can now be expressed in terms of a H ert 7. 

1 Figures in brackets indicate the I itcrature references at the end of this paper' 
2 Personal commu nication. 

vector, which has only a radial component. U, as 
follows: 
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(1) 

where k = 27r/free-space wavelength , and ~ is the 
dielectric constant of free space, (=8 .854 X lO- 12), 

in mks units. A time factor exp(iwt) has been 
implied . Tho function U satisfies the equation 

(2) 

where the 8's are the Dirac delta or impulse fUDction. 
The factor 2 7rr2 sin 0 is the Jacobian of tho trans
formation from rectangular to spherical coordinates. 
The constant is chosen so that U has the propel' 
singularity at the dipole , that is 

e- ikR 

U-7 4 . R Ids for R-70, 
7r~W~ 

(3) 

where R = [1'2 + b2- 2bT cos 0]1 /2 , ~= 8.854 X 10- 12, and 
t1lerefore c= (i/w ~) Ids. 

The field U is now written aa tile sum of two parts 
Ue+ Us, wh ere Ue has th e proper dipole singularity 
at R = O, and Us is finito at that point. As Us 
is a solu tion of the homogeneous wave equation, it 
can be writton in the form 

where h';) (kr) is the spherical Hankel function of t he 
second kind , which assures outgoing waves at 
infinity, and Pn (cos 0) is the Legendre function . 
The corresponding representation for U e is [4] 
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The coefficients A n are now found from the boundary 
condition, that 

Ee=-ZHq, at r= al, 

which can be rewritten 

[ ! ~ rU= ZiewU] . 
r or T=a j 

(6) 

(7) 

In other words, it is assumed that the surface of the 
earth exhibits the property of surface impedance. 
Z is taken to be equal to the ratio of the tangential 
electric and magnetic ficlds for a verticaUy polarized 
plane wave at grazing incidence on a plane stratified 
earth. This step in the analysis leads to a great 
simplification, and it is justified in the appendix. 
It then readily follows that 

[
1 d iLlJ - - 100" xh(l ) (x)- -

A =_h~!) (kal) x dx b n X h (2) (kb) (8) 
n h~2) (kal) 1 d 1 h (2) () i ll n , -- og X n x--

X dx X z=ka j 

where Ll = ewZ/k = Z /1207r and where h~!) ex) is the 
spherical Hankel function of the first kind. The 
total field is then of the form 

U=~(2n+ 1)f(n)Pn(COS fJ). (9) 
n=O 

Following the process developed by Watson [3], the 
summation is transformed into the following contour 
integral: 

where the contour Cl + C2 encloses the positive real 
axis, as illustrated in figure l. Noting that the 
poles of the integrand are located at n = 1/2, 3/2, 5/2, 
... , etc., it can be readily verified by the theorem of 
residues that this integral is equivalent to eq (9) . 
Now, sincef(n - 1/2) is an even function of n, the part 
of the contour Cl above the real axis can be replaced 
by the contour c~, which is located just below the 
negative real axis. The contour c~ + C2 is now entirely 
equivalent to L, a straight line running along just 
below the real axis. Replacing n - l /2 by v, the 
contour representation for U takes the form 

oJ: (v+ 1/2) U= -~ . f(v)P.[cos (7r - f)]dv. 
L s ln V7r 

(J 1) 
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FIGURE 1. Complex n plane showing the contoUl'S and the zeros 
of cos n7r and zeros of the denominator of equation (8 ) . 

function of n as a consequence of the method of 
formulation. In the usual treatment for the homo
geneous sphere, j (n - l /2) is not an even function 
of n, and the deformation of the contour becomes 
more intricate. 

The next step in the analysis is to close L by an 
infinite semicircle in the negative half-plane. The 
contribution from this portion of the contour vanishes 
as the radius of the sf'micircle approaches infinity. 
Th e reasoning for this fact follows directly from 
Watson's argument for the homogeneous sphere. 
The value of the integral for U along the contour L 
is now equal to the sum of the residues of the inte
grand evaluated at the poles V s of f ey) located in the 
lower half-plane. It th en follows that. U is propor
tional to 

(2) 

where the function M(v) is defined by 

M(v)= [ ! !!..log Xh~2 ) (X) - i~J (13) 
x dx X x=kal 

and the poles v, are the solutions of M(v) = 0. Again, 
as a result of the formulation, the equation here for 
the determination of the' roots is relatively simple. 
Making the usual approximation [1] that h~2) (x) can 
be represented by Hankel functions of order 1/3, eq 
(13) can be replaced by 

(14) 

where 

It is to be noted that this manipulation of the con
tours is simplified because f(n - l /2) is an even 
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For a homogeneous earth whose propagation con
stant is 'Yl, it follows that 

(16) 

with 'Yo=ik , and therefore 

(17) 

which is identical to the value given by Bremmer [4]. 
For a two-layer ground whose upper stratum of 
thickness l has propagation constant 'Yl , th e surface 
impedance Z is given by (see appendix) 

Z = 1207T ~ 1- 'Yo -Q [ ]1/0 
'Yl 'YT ' 

(18) 

where 

Q= tanh [P+ ('Yi-'Y5) 1/2 l], (19) 

and 

P = tanll - l 'Y1 'YZ- 0 [ 2 ( 2 'Y2} /] 
'Y~ 'Yi-'Y5 

(20) 

with 'Y2 as Lhe propagation constant of the lower 
medium. The co rrection factor Q, which approaches 
unity for l-'7ro, can be evalu ated with the aid of 
charts of hyperboli c functions of complex argument. 
The expression for Q for a straLi'ned ground for any 
number of layers h as been give n previously along 
with some numerical values for special cases [5]. 

Equation (12) for U can now be considerably 
simplified by r eplacing th e Legendre function by 
its leading term in its asymptotic expansion and the 
functions h,c~l(kb) and h<;l(h ) by their Hankrl 
approximations to lead Lo 

(21) 

wi th 

(22) 

and where 

and 

The precedin a equations arc idenLical in form to 
that obtained for the homogeneous earth as given 
by Watson (3], Bremmer (4], F riedman [6], and 
others. It is important to note that the quantities 
p, 5, and th e roots T s are dependent on the electric 
constant and the nature of the stratification of the 
ear th . Bremmer (4] h as given very adequate for-

muJ as for T s in term of power of o. These can be 
used directly for th e sLraLified earLh. They can also 
be used for a sphere wi th a corru gated surface if the 
appropriate value of th e lIlJace impedan ce is 
employed (7]. 

3 . Modified Flat Earth Formula 

The so-called residue series for U could be used for 
calculations for propagation over a curved ear th . 

. The series, h owever, eonverges poorly for distances 
near th e optical horizon. It would be desirable to 
transform the residue series formula to a new type 
of expansion where th e first term corresponds to 
the radiation of a dipol e over a plane stratined 
earth. Succeeding terms would then be preferably 
in proportion to inverse powers of kat. In the 
limitin~ case when kal tends to infinity, the expres
sion U should correspond to th e situation treated 
previously. A method of obtaining expansion for
mula of this type is mentioned brieRy by Bremmer in 
his book (4]. Very reeently he h as described to the 
author an alternative procedure, which he illustrated 
for th e case when the transmi tter and r eceiver are 
located on the slJrfac of a homogeneous spherical 
ear th . His m ethod will be employed h ere in the 
case when th e transmitter and r eceive r are no t both 
on the earth . Furthermore, as will b e shown, th e 
method also is applicable to s trftti:lied and corrugated 
surfaces. The firs t step is to express the field in 
terms of a contoUl" integral as follows: 

where p= iX/202 and where- IA(p) and j(p, h) are 
chosen as follows: 

A (p) (24) 

and 

for i= 1, 2; and c is some positive constant. 
It can be noted th at the poles Ps of the integrand 

are determined by th e solution of 

H (2) ~ +ei .. / 3pl / 2FL(21 ~ = 0 [ 3/2J [ 3/2J 
1/ 3 353 8 2/3 353 . (26) 

If Ps is replaced by 252T se+ i .. this equation is identical 
to eq (14) for the determination of th e root T 8 ' It 
can b e readily verified th at the sum of the residues 
evaluated a t the poles Ps leads back to eq (21). 

R ecognizing that the right-hand side of eq (23) is 
in th e form of an inverse Laplace Transform, it can 
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be writLen ]n Heaviside 's operational notation [8] 
as follows: 

where 

and 

iU(p)l 
2pl/2UO = F (p), 

r 1 for p> O 
l = i 

lO for p< O. 

(27) 

(28) 

The technique is now to expand F (p ) in an asymp
totic expansion in powers of l ip and then to invert 
each term to obtain seriC's expansion for p in powers 
Dr 03 . It is convenient for t h e moment to consider 
h2= 0 so that}(p,h2)= 1. Each of the Hankel func
tions is now expanded in an asymptotic expansion , 
with due regard bC'ing paid to the phase of arguments. 
Note that 

which suggests replacing the arguments z by ze-3h 

and then employing the relation 

. ') 
SIn ~7rJ! H (2) ( ) 

• v z . 
Sln 7rJ! 

(29) 

plus terms containing 09, 012, etc. 
The final step in the analysis is to find the cor

responding function" of p for each term on the right
hand side of the above equation. The necessary 
operational pairs can be derived from the basic re
lation [9], 

(34) 

where 

~;[( _. ( a) (~+f,) , (a pl/Z) 
11 g, p) -erfc 2pl / 2 -e elic 2pl /2+g 

with 
2 f '" 'J erfc (z)=172 e- X- dx. 

7r 2 

On making this eonversion , the validity of the 
asymptotic expansions is C'stablished. It then follows 
that 

335 1 385 1 25 1} 
+ 10368 z§-10368 zl+ 5184 ZlZ2 

I . 1 . I p us terms m 3"' etc. , WIt 1 
ZI 

and 

(30) 

(3 1) 

To further simplify the above expression for }(P,h), 
the factor (1 + XZ 02/p) 3/2 is C'xpanded in a binominal 
series, and terms containing Xt, XL etc. are neg
lected. After some algebraic manipulation, it follows 
that 

(32) 

plus terms containing (i86 , a309, etc., where a= khlt::. . 
When this formula for }(P,h1) is substituted into eq 
(3 0), it is readily shown that 

For example, 

i 7r1 / 2 e- ap1/ Z 

(1- ipl / 2)2 

- i 7r 1/ 2 (1 + 2p - ia)e- (p-i a ) eric [ 2;/2+ipl /2]} 1 

(33) 

(35) 

(36) 

The other pairs can be d erived in a similar manner 
by further differentiations with respect to the param-
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eter g and then setting g= -i. The final r esult after 
collecting like terms is 

~~ ;=e-a2 / 4P _i(7r p )1 /2e - (p-i a)erjc [ 2; /2+ipI /2] 

i 7r 1/ 2 • a ) ] 
+ - 2- (1 + ta)e1ic 2pl /2 (37) 

plus terms contai ning 15 6, 159, etc. 
The coefficien t of th e 156 term is not written out here 
as it is quite cumbersome and in itself would not be 
sui table for computation . It is constructivc at this 
stage to express U (p) in terms of the parameter w 
defined by 

(38) 

whence 

~~; ~e-ik": / 2a18 { 1- i(7rp)I /2e -welic (iw1/2 ) 

+ 153 [ p-i(7r p)1 /2 (1 ~2p ) e- W eli c(iw1/2)]} 

[ . ( )1 /2 ( 'kI 2) 1/2] 
+15 3 ? 7r; (l + ikhI6 )e1ic -;~le~1 (39) 

For the homogeneous earLh , th e factor 6 = 
C'Y6hiHI'Ih6- 1)1/2, and if al the radius tends to 
infinity or 15 = 0, the remaining first term corresponds 
to the well-known formul a for the attenuation factor 
of a dipole over a flat earth [10]. p is then the 
numerical distance of Sommerfeld [11] . It is inter
esting to note that the form of the first term is 
identical to th e result obtained by Hufford [12], 
using an integral-equation formulation. \ ''\Then the 
ground is strati'Fied such that 6= ~wZ/k , where Z 
is the surface impedance, the first term corresponds 
to the r esult obtained previously for the dipole over 
the plane stratified earth [1, 2] . 
. It now appears that, for small heights such that 

kM/2ae is small compared to one, the h eight gain 
function is simply 1 + ia, which is a common factor 
of at least the firs t three terms in th e expansion in 
powers of 153• To this approximation the final result 
is expressed conveniently as 

~~~ = liV(p) = G{ Fo(p)-~ [1 - i(7r p)I /2_ (1 + 2p)Fo(p)] 

+ i5{1 - i(7r p)I /2(1- p)-2p+~ p2+(~ -1) Fo(p) ]. .. } , 

(40) 
where 

In eqn. 

F ( p) 
o 

G~(l + ia)(l + i(3) with (3=kl~6 . 

(40), the d efinition of F (p) is 
o 

1 1 

= 1 - i (1Tp) 2 e- P erfc (ip2). 
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At distances from the antenna greater than a few 
wavelengths the quanliL.v U(p) is proportional to 
the vertical compon ent of lhe electric field , and cor
respondingly 2 Uo is proportional to Lhe field of an 
identical source over a flat perfectly conducting 
earth . Th e field strength E , in millivolts per meter, 
at a distance D km , in kilomeLers, is then given by 

E = 300 IliV(p) I 
D kln 

(41) 

for a dipole transmitter whose s trength is such that 
it would radiate 1 kw over a perfectly con ducting 
flat ground. 

To illustrate th e nature of the r eSlll ts, calculations 
are carried out for E as a function of D',m over a 
homogeneous spherical earth of radius 6,373 km 
at frequencies of 30, 150, and 750 :,{c. These curves 
are illustrated in figme 2 , where it is indicated that 
th e relative dielectric co nstant of Lhe ground is 4 
and the conductivity is 10- 2 mho/m . Thc fla t
earth formula (i . C., 15-70) is designated as lh e 
zero order or Oth approximation. The r esults for 
including th e first and second curvature corrections 
arc designated as firs t- and second-order approxima
tio n, r espectively. Finally, the field strengths ob
tained from th e residu e series are shown for compari
son anel designated by " R es." In this latter case 
many terms of th e se ries were required, and it is 
reassuring to notice that curvaLure corrected £lat
ear th formulas merge with the residue-series formu la . 
The reslil ts of these calculations would lend co nfl
dell ce to the use of eq (40) for stratifi.ed media if the 
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appropriate value of the numerical distance p and 
curvatm'e parameter 8 are employed. As a further 
check on the curvature corrected formula used in 
conjunction with the height-gain function, calcula
tions are carried out for various receiver heights 
hz with the transmitter heigh t hl equal to zero. 
These results are shown in figure 3 for a frequency 
of 43 Mc, relative dielectric constan t of 4, con
ductivity of 10- 2, and h2= O, 5, 10,20, 50, and 100 m. 
The solid curves correspond to the second-order 
curvature corrected flat-earth formula , whereas the 
dashed curves are based on the cumbersome but more 
cxact residue series [4]. As a matter of interest, 
the line corresponding to the optical horizon is shown. 
It is apparent that the agreement between the two 
m ethods of calculation is very good at moderate 
ranges . No doubt a third-order correction involving 
a term proportional to 89 would improve the dis
crepancy at greater ranges. It is doubtful, how
ever , if calculations of higher order correction terms 
are justified because the residue series becomes more 
·convenient at larger ranges . 

The computations for stratified ground are some
what more involved , and, furthermore , even for a 
t wo-layer ground, additional parameters to be con
sidered are conductivity O"z and dielectric constant E2 

of lower stratum, and thickness l of upper stratum. 
As an example, the lower medium is tak en to be 25 
times better conducting than the upper stratum. 
For convenience, the dielectric constants are also 
taken to be in the same ratio. The second-order 
curvature corrected results for a frequency of 5 M c 
is shown in figure 4, where the case l= oo corresponds 
t o a homogeneous ground of electric constants 0"1 and 
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F IGU RE 4. E xample of the field-stTength- distance CW'ves for a 
two-ZayeT stratified gj'ound faT several values of the thickness 
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FIG URE 5. Field stTength at a distance of 40 kilometej's on a 
two-layer stratified gTound as a function of the thickness of 
the u ppeT stratum. 

El. The curve marked R es . corresponds to the residue 
series calculation for the homogeneous earth. If the 
thickness of the upper stratum is greater than about 
2.5 m , the field corresponds quite closely to that 
expected over a homogeneous ground. To show in 
a little more detail , the nature of the dependence on 
stratification, the field at 40 km is sho,vn plotted in 
figure 5 as a function of l in meters. Both the 
flat-earth and the second-order curvature corrected 
results are included. 
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4. Concluding Remarks 

It is apparent that the theory of Watson [3], 
Bremmer [4], and others, for propagation of radio 
waves over a spherical homogeneous earth can be 
generalized to propagation over a concentrically 
stratified sphere. The derivation in this paper is 
very s traightforward as a result of choosing an 
approximate boundary condition, which specifies 
the surface impedance at the surface of the sphere. 
Although the theory was developed for a homo
geneous atmosphere, there is little reason to doubt 
that a similar analysis can be carried out for an 
inhomogeneous atmosphere following the develop
ment of Friedman [6] . For the case of normal 
refraction (absence of ducting) , the resul ts in the 
present paper can be employed directly by admitting 
the concept of the effective earth radius [4] , where al 
is replaced by a modifLCd value ai . 

While th e attention here has been mainly confined 
to propagation of radio waves over a s tratified spher e, 
the results are applicable to the study of surface 
waves on corrugated spherical surfaces of the type 
that can be characterized by a surface impedan ce. 

5. Appendix 1. Surfa ce Impeda nce of a 
Stratified Conducting Sphere 

The slJrface impedance at the surface of a sphere 
of radius a[ consisting of a concen tric core of radius 
az will be derived. The propagation constants of 
the ou tel' shell and the core are 1'[ and 1'2, respec
tively, and the intrinsic impedances are 111 and 112, 
r espec ti vely . Under the assumption that the source 
is a vertical antenna the fi eld can be represented as 
a superposition of transverse magnetic (TM) spheri
cal waves of order n . The surface impedance Zn for 
such a TM wave is defined by 

The medium between the limit T= a l and az can now 
be l'egarded as a nonuniform transmission line [13] 
of length l= al- a2. The characteris tic impedance 
of the line looking inward is 

(43) 

where In is Schelkunoff's notation for modified 
spherical Bessel functions of order n, and the prime 
indicates a differentiation with respect to the argu 
ment "I ll' . Similarly, the characteris tic impedance 
looking outward is 

(44) 

whore I{n is the modified spherical Hankel fUIlction 

of order n. The line is considered to be terminated 
by an impedance 

(45) 

From the theory of nonnniform lransmission lines it 
follows that 

(46) 

where g e and gh are reflection coefficients a t T= a2 
for the E~ and H~ field components and are given by 

and 

1/P (arJ - 1/M (az! 
qe l /P (az) + l /N (az) 

P (az) - M (az) 
Qh=P (a2)+ N (az) 

(47) 

(48) 

The quantities A and B are transmission fadOl's 
given by 

A e 
aJ~ ('Y l a2) 

A , 

a2I~ ('Ylal) 
(49) 

A aJn ('Y1a2) 
h A , 

a2In ('Y1a l) 

Under thc res triction tha t the thickness of the shell 
(l = a2-al) is small compared to ai, the above for
mulas can be greatly simplified. For example, 
noting that In(x) satisfi es the equation 

(50) 

it r eadily follows that the fun ction M (x) saLisfies 

{MZ() + dM (X)_[1 + n(n + 1)J 2} _ , 
X 111 d - ? 111 X - 'Y[1 . X x-

(51) 

A good approximate solution iil 

[ n(n+ 1)J1/2 
lU ('YIT) c::::t. 11 1 1 + (1'11')2 ' (52) 

because dlvl/dx is small when i'YlTI»1. Now lhe 
values of n are not known precisely , but th e impor
tant ones correspond to the roots )Is, which are close 
to the value kal. It therefore follows that 

(53) 
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since k=iyo, kal»l and adT~l in the range 
a2~T~a1. With similar reasoning it follows that 

and 

(55) 

The transmission factors are th en written 

with l= a1-o2. The surface impedance then takes 
the form 

(57) 

It is to be noted that Z" is precisely the ratio Z of 
the tangential electric and magnetic fi elds for a 
vertically polarized wave at grazing incidence on a 
two-layer stratified ground (5]. It , therefore, seems 
justified to employ the approximate boundary eq (7) 
at least for application to propagation of radio waves 
over the surface of a stratified ground with the normal 
earth curvature. 

6 . Appendix 2 . Alternative Approach to 
the Height-Gain Function . 

It is possible to study the effect of raising the re
ceiver and/or the transmitter by starting with a 
more accurate representation for the height-gain 
function : 

where 

v= ka+(ka)1/3 [ - ~2J (58) 

with r=hi+a; j(:P,hi) is now expanded in a 
MacLaurin series as follows: 

dx ' X} [
d h(2)( ,] 

j(p,h)= l + khi h~2)(X) X ~ Ka 

[ 
([2 h(2) ( )] 

k2M dx2 ' X +- ( 0 ) + . ' " (59) 
2 h,- (x) x~ka 

Now employing the relation 

1 d i~ x dx log Xh~2)(X)~X 

and the differential equation 

~+~~+[l -v(v+ l)J h(2)(X) = 0 
dx2 x dx x2 ' , 

it follows that 

(60) 

(61) 

r(p hi)~l + (itJ.khi+ hi) - itJ.Ph; + PMtJ.. (62) . , a ka 2 

It then follows that a more representative height
gain function G' (p) in place of the function G is 
given by the operator 

Fh~tJ. k2h2~ 0 
G'(p)~l+ ikhitJ.-i k~ +-t- iJp+ ··.. (63) 

The field E(p,h) is then related to the field E (p, 0) 
on the ground by E (p,h)= G'(p)E(p,O). The third 
term of the expansion i,; negligible when kh< (ka) 1/3 
because 1tJ. 1 is somewhat less than unity and the 
fourth term is negligible when 

kh1jD« l. 

The function G' (p) to this approximation is then 
identical to the height-gain func tion G obtained 
earlier. 
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