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Reflection and Transmission of Gamma Radiation by
Barriers: Semianalytic Monte Carlo Calculation '

Martin J. Berger and John Doggett

The transport equation for photons which have been Compton-scattered repeatedly with
a specified sequence of energy losses and deflections was solved analytically, by an “orders of
scattering’’ approach, to obtain conditional reflection and transmission probabilities. These
probabilities were then averaged over all possible intermediate angular and energy configura-
tions in a Monte Carlo calculation carried out on the NBS automatic computer (SEAC).
The efficiency of the Monte Carlo calculation was increased by taking advantage of the close
correlation between the transmission of radiation through thick barriers and the correspond-
ing penetration problem in an infinite homogeneous medium for which an exact solution was
available. The reflected and transmitted energy flux (integrated over all spectral energies
and directions) has been calculated for 0.66-, 1- and 4-Mev radiation incident on water barriers,
and 1-, 4-, and 10-Mev radiation incident on iron, tin, and lead barriers. Angular and
energy spectra were obtained for water at 0.66 Mev. The ratio of the scattered energy flux,
transmitted through a barrier to the scattered flux at equal depth in an infinite medium, was

found to be constant for distances from the source greater than four mean free paths of the

source radiation.

1. Introduction

The theory of the diffusion and penetration of
gamma radiation in an infinite homogeneous medium
is now well developed, complete solutions being
provided by the moment-method [1] # and the closely
related semiasymptotic Laplace-transform method

[2]. A satisfactory theory of boundary effects is still
lacking. The “orders of scattering” approach [3]

provides formal solutions to boundary problems,
which can in practice be evaluated only when few
orders of scattering need be considered. The Monte
Carlo method [4] is a very effective means for treating
boundary effects but is ineflicient when applied to the
radiation that penetrates very far from the source.
This inefficiency can, in principle, be removed by
so-called “biased’” sampling, but the success of such
techniques has mnot yet been demonstrated con-
clusively.

This investigation is part of an exploratory Monte
Carlo program for the survey of boundary effects in
gamma-ray diffusion. The specific aim is to calcu-
late the reflection and transmission of radiation by
plane parallel barriers. The approach is eclectic,
and a combination of all three of the methods de-
scribed above is being used. It can be characterized
as an ‘“‘orders of scattering” method in which the
multiple integrals, which ordinarily make the evalua-
tion of the solution troublesome, are evaluated
numerically by random sampling. Conversely, one
could call it a “reinforced” Monte Carlo calculation
whose efficiency for dealing with deep penetration
has been increased in two ways: by confining the
random sampling to the angular and energy variables,
while treating the space variable analytically, and
through the use of correlated sampling, the cor-
related problem being the diffusion of y-radiation in
an infinite homogeneous medium.

I This work was supported by the Office of Naval Research and the Reactor

Division of the U. S. Atomic Energy Commission.
2 Figures in brackets indicate the literature references at the end of this paper

The reflection and transmission problems differ
substantially from the point of view of random
sampling, because transmission through thick bar-
riers, being unlikely, tends to require an excessive
amount of sampling and thus puts a high premium
on analytical help. Nevertheless, the two problems
were treated together because they fitted in a single
computational scheme.

Two types of questions may be asked in radiation
diffusion problems. One concerns the estimation of
the radiation intensity at any one position, cor-
responding to the observable response of some
integral detector like an ionization chamber. The
other type of question is more detailed and concerns
the spectral composition and directional distribution
of the radiation at any one point. In the work
reported here most of the effort has been devoted to
intensity (energy flux) determinations. Exploratory
studies of spectral and angular distributions were
made only for one source energy (0.66 Mev) and one
barrier material (water).

For the deep-penetration problem the attention
was focused on the comparison of the radiation
intensity behind a finite barrier of thickness ¢ and
inside an infinite medium at a depth z (equal to &)
from the source plane (see fig. 1,a,b). No quantita-
tive indication was previously available on this
comparison. Notice that practical situations are
usually intermediate between those schematized in
figure 1,a,b, because there is some matter (possibly
of different composition) behind the barrier, though
often at some distance from it (fig. 1,c).

On the problem of relative intensity a rather
definitive answer has been obtained. In the first
place, it proved unnecessary to have extended the
calculation to very great depths because the in-
tensity ratio no longer varies appreciably beyond
about four mean free paths of the incident radiation.
It follows that any future investigation may confine
itself to moderate depths and may thus utilize less
elaborate methods. Data on the wvalues of the
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intensity ratio for various depths are given in table 3
for four materials (water, iron, tin, and lead) and
four y-ray energies (0.66, 1, 4, and 10 Mev). Those
data may be applied as correction factors to the
extensive results of calculations for infinite media
[5]. The ratios differ substantially from unity only
for low energies and low-Z materials, and also vary
smoothly, so that adaptation to other circumstances
ought to be easy.

In the treatment of the reflection problem, atten-
tion was directed in the first place to the dependence
of the reflected intensity on the y-ray energy, on
the material of the barrier, and also on the angle of
incidence. The results for a semi-infinite barrier
are given in table 2a. An additional item of
interest was the dependence of reflection on the
barrier thickness, that is, on how rapidly the re-
flection approaches the value for a semi-infinite
barrier. Some data on this aspect are given in
table 2,b.

2. Outline of the Calculation
2.1. Analytical Frame

We consider a homogeneous plane-parallel layer
of material located between the planes z=0 and
z=(. Radiation is incident with specified energy
and direction on the face z=0. What are the
characteristics of the radiation reflected through the
plane z=0 and transmitted through the plane z=1¢?

The state of a photon traversing the barrier is
described by three variables: the energy £, the
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angle 6 between the direction of motion and the
z-axis, and the depth z in the barrier.

Photons can be scattered and absorbed inside
the barrier. Let wu,(£) equal the probability of
absorption per unit path length; ¢(#) the probability
of scattering per unit path length, and ¥(£.6; £’,6")
the probability distribution (normalized to unity)
that a scattering will change the state of the photon
from (£,0) to (£’,6"). Consider a photon that, as
the result of n scatterings, has successively assumed
the energies and directions

E(),E‘l, .

B\ o
6. 0y, . b, }f(nmgy—angle history /£,.

The index n refers to the state of the photon imme-
diately after its nth scattering; n=0 pertains to the

state in which the photon enters the barrier. The
probability distribution of A, is
=il .
Qn: HO‘I’(Emyom; ErrL+1r0m+1) (1)
m=

Let P,(zth,) be the probability that a photon with
history 4, will cross the plane z (0<z<t) after the
nth and prior to an (n-+1)st scattering. An an-
alytical expression for this crossing-probability is
derived in section 3. If a beam of K photons per
unit area and unit time is incident on the barrier,
the flux per unit time at depth z is

F(Ep2)—K 37, f dE, f d, . . . f dE,
n=0
f 0,P,Q5(E—E,)50—0,), (2)

where § is Dirac’s delta function. If the weight
factors f, are unity, the flux represents the number
of photons crossing a unit area of the z-plane per
unit time. Most radiation detectors do not measure
the number flux through a fixed plane; their response
depends in various ways on the energy and direction
of the radiation and 1s represented by the f,’s. A
few examples are:

[
‘ Type In | Flux
| |
| o | 1 i Nun‘,hor[FluX (or current) per unit
b i E, | Energy { area of surface perpen-
‘ ‘ 2 dicular to the z-axis.
‘ ‘ Flux per unit area of sur- 1
‘ face perpendicular to the |
‘ ‘ direction of motion of the |
C [sec 6, 1 Number) radiation. This is the
d | |sec 0,/E, | Energy flux seen by an isotropic
detector. It is propor-
‘ tional to the photon
‘ density.

The numerical results of this paper pertain to flux
type (d). By this choice they become comparable to
the results of an extensive set of calculations for
infinite media by the moment-method [5].



2.2. Monte Carlo Estimates

In the evaluation of expression (2) for the flux, the
sum over collisons must be cut off for n >N, and the
integration over the intermediate energies and anglesis
carried out by the Monte Clarlo method. A suitable
value of the cutoff N depends on the absorbing prop-
erties of the medium, the depth of penetration, and
the spectral-energy range over which one wants to
know the flux. Calculations for an infinite medium
show that for all practical purposes the energy flux
vanishes below 30 kev in water, below 50 kev in
iron, 75 kev in tin, and 100 kev in lead, for source
energies between 0.5 and 10 Mev. The photon
energy histories were therefore terminated at these
limits. Trial calculations indicated that under these
circumstances, for a barrier thickness up to 16 mean
free paths (ut=16), it was sufficient to let N=25
for water, 12 for iron, 9 for tin, and 6 for lead.

Energy-angle histories of length N were sampled
according to the distribution function y. The
detailed equations for doing this are well known.
They are presented elsewhere, together with the
adaptations required or desirable for computations
on an automatic computer [6].

Let A,; be an initial portion of length # <N of the
Jth sample history hy;, and let P,;(z,t) be the corre-
sponding crossing-probability. If a sample of .J
histories is available, the flux of radiation in a
specified spectral interval R, and angular interval
Rj can be estimated as follows:

3P

j=1n=0

f dE [ aoFE.0, 2=~
Rg Ry J

fnJ'PnJ'(Z,v t) A1 (En]) Az (anj)) (3)
where
AEN = 1,if &, is1in the interval R
i) =0, if E,, is outside the interval R,
A0, )= 1,if 0,;1s in the interval 12,
2\ =0, if 0,,;1s outside the interval 1.

If one wants to know the value of the flux for fixed
values of £ and 6 rather than in intervals, the
sampling procedure must be modified so as to be
conditional not only on the initial photon state but
also on the final state £,=F and 6,=60. For this
purpose one replaces P, by Pi(hHV(E,_,,0,_:; E, 0),

where
h’,’:z {EOy EI! 5B C g En—lyE
L 00,01, ., B4, 6

We have been content to obtain the flux in energy
and angular intervals because the main body of
calculations was done in any case for the total
intensity integrated over all spectral energies and
directions.

In conformity with the usage that has become
common in shielding work, the results for the
intensity are presented in the form of buildup
factors B(zt), which are equal to the ratio of the
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total to the unscattered energy flux:

Eo T
f dEf dOF(E,0,z,t)
0 o T
KfP, :

@)

B(z,t)=

The Monte Carlo estimates of the buildup factors
are the mean values

Blz,H)=(1/J) Z B,(2,1), 5)

where

A'\"
Bj(Z,t)—_—(E()] sec 001 P())_1 ZEndSeC on]]Pn](Z;t)
n=0

The standard deviation of the
estimate is J "% (z,t) where

buildup factor

2

1/

(6)

¥ The buildup factors (and their standard devia-
tions) were estimated from the same set of energy-
angle histories for three specific situations:

(1) B(0,t)=energy reflection buildup factor *

(i1) B(tit)=energy transmission buildup factor

(it1) B(t, »)=energy buildup factor for the flux at

depth ¢ within a semi-infinite
medium.

2.3. Correlation

The difference between B(tt) and B(t, =) is pre-
dominantly due to photons with histories such that
in an infinite medium they would cross the plane
z=t, have their directions reversed as the result of
one or a few collisions in the vicinity of ¢, and would
then make another crossing. Thus B, «) is—
loosely speaking—a function of two factors: a prob-
ability p,(#) of penetration to depth ¢, and a proba-
bility p, of being turned around in the vicinity of the

t-plane. On the other hand, /(¢,t) only contains the
factor p,(t). The greatest statistical fluctuations in
a Monte Carlo calculation are found in the estimate
of pi(t), because only a small part of the sampled
histories provides information concerning deep pene-
tration. If the same set of energy-angle histories is

used for the estimate of B(t, ») and B(tt), it is to be
expected that the estimate of the ratio of these two
quantities will have a much smaller statistical dis-
persion than the estimates of the individual buildup
factors because the ratio no longer contains the
troublesome factor p,(f). Unscattered radiation
should be excluded from the comparison because it

The energy reflection buildup factor has the! ollowing physical significance.
Consider an isotropic detector placed in the path of a broad beam of radiation,
and denote the energy flow through the detector by Fo. Then place a barrier of
thickness ¢ immediately behind _Ehe detector. This increases_tho energy flow
through the detector to F. Then B(0,t)=F/Fo,. The quantity B(0./)—1 is related
to but not identical with the energy albedo, which as commonly defined pertains
to an energy current.
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s not affected by the boundaries. We therefore
subtract 1 from both buildup factors and introduce
the ratio

B(t,H)—
B(t, » ) 1

A Monte Carlo estimate of % has an estimated
standard deviation J~?g;, where

k(t)= (7)

e {[ a(t,t) ] [ a(t, )
! B(t,t)—1 B, )—1
Cott) a(t,w) V2
g B(t,t)—1 B@t, »)—1 ®
and
(119) 35 B4, —B 1,01 (B¢, )— B, =)
plty=—— )

a(t,t)a(t, )

is the correlation coefficient of B(tt) and B(t, ).
The two buildup factors have a strong positive cor-
relation so that p~1 and the value of oy/k is small.

For moderate and deep penetrations, F(f, o) 1is
practically identical with the buildup factor for an
infinite medium which can be obtained by a reliable
moment-calculation. These known results, together
with an estimate of the ratio k(f), provide an ac-
curate indirect method for determining the trans-
mission buildup factor which requires much smaller
sample sizes than a direct estimate. Thus the
Monte Carlo and moment-methods complement
each other: one provides knowledge of the boundary
effect, the other knowledge of deep penetration of
radiation. In section 5 the advantage of this cor-
relation technique is demonstrated.

3. Solution of the Transport Equation for the
Crossing-Probabilities

The crossing-probabilities obey
integral equations:

C(E )

the following

P, +1(2)—, f A2/ P (") kaBrin) e(Brin))(z=2)eos b

(10a)
if cos 6,., >0.

Pn+1(2>_JC(E") f dz'Pn(z/)e [14(Ens1)+c(Ens1))(z—2")/COS Ons1
(10b)

if cos 6,.+:<C0.
Py(2)= ¢~ [ra(Bo)+c(En)]z/cos o (10¢)

These equations express the fact that the probability
of passage through the z-plane after n-1 collisions
is equal to the probability of passage through the
plane z’ after n colhslons times the probability of
a collision between 2z’ and 2z’ 4 dz’, times the probabil-
ity of passage from 2z’ to z without further scattering
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or absorption, the triple product being averaged
over all values of 2’ compatible with the boundary
conditions. ) )
We shall find it convenient to introduce in place
of the probabilities P, the related quantities
G.(2)=]|sec 0,|P,(z) (11)
which already incorporate the trigonometrical factor
required for the type of lux which we want to deter-

mine. The following abbreviated notation will be
adopted:
=pa(E,)+(E))
cn=c(Ey)
N,=0C0S 0, - (12)

u,=0 if cos 0, >0
u,=t if cos 6,<0 J

Equations (10a, b, and ¢) can then be rewritten in
the form

z

Gon)=" | dr@ e m " (13a)
Mn+1 J up4q "
el
G(](Z)--————P 7 (13b)
Mo

To solve these equations, assume that &, can be
expressed in the form

n(z)_ Z Ane m

== (z—Um)

(14)

Substitution of eq (14) into (13a) yields the equation
An

Nn+1 m=0 77n+1l~‘m

Hntl _Hm
{8_"_ (Unp1— um)e—” (z—Un41) — nm(z um)} (15)

Cy

(e &

so that the functional form of G, is the same as
that of ¢,. The expansion coeflicients are

Cn

1
A"+1 ——Anfor0<m<n (16a)
Mn+1 MBnt1_ Hm
Nn+1 Nm
L —"—’L"(u —Um)
Arii=—2, Antig o " (16b)
m=0

We have thus obtained inductively the general
solution for @,(z). Although the solution is rather
formal and not readily surveyed, it is convenient for
numerical evaluation with an automatic computer
because of its recursive nature.



It is poss1b1e that i — Nup1in=0, s0 that singu-
larities occur in the recursion relations (16a, b).
But this difficulty is apparent rather than real,
because upon substitution of the coefficients A;‘,ﬁ‘
into the expression for G,,; the singularities occur
pairwise and cancel each other. This can be seen
by a reexamination of (15). Note that the existence
ol the singularity implies that #,.7,>0, because
both w, and u,., are positive. It follows that u,, is
equal to u,,,. Therefore, the factor multiplying
A in eq (15) is

:n:i (2—Upyy) (F‘n+l ;4"‘)(" 5 3
c,e ™ —— ) =y,
o= e\ —1 ¢ (1)
Fni1  Hm
NMu+1 M L
AS 77m:“71+1_71n+1/4m__>0
—m (z—u,,)
al—>C,(z—uy)e ™ (18)

If the singularities are removed by a limiting pro-
cedure, the functional form of @, is thus changed.
For the numerical computation on an automatic
computer we have found it simplest not to use the
limiting procedure, but to stick to the unmodified
formal solution, while eliminating singular cases by
introducing a cutoff for the quantity a= (w,1/7m11) —
(wm/mm) 10 the denominator of eq (16a). KEvery
a< 107 was replaced by 107%.  The error incuired
by this approximation 1llcloaqos with |z—u,|. But
even for deep penetration it is quite small. For
example, when a(z—u,,)=20, [exp(—0.001%20)—1]/
107%=20.201, so that the error is only 1 percent.

4. Machine Computation

The calculation was programed for the NBS
automatic computer (SEAC). It was carried out in
two stages. First, energy-angle histories (in groups
of rLpprommatoly 100) were wonomtcd by random
sampling and stored on ma(rnvtlc wire or tape.
'l hese histories were then used as input data for the
second stage, in which the quantities @, (proportional
to the crossing-probabilities P,) were calculated.
Any desired type of flux or buildup factor can be
obtained by a suitable linear combination of the
G,’s, the selection being made by an appropriate
output code.

The buildup factor code provides for the computa-
tion of B(0), B(tt), and B(l,»), for wut=2"d
(n=0,1, . . ., 5), d being a disposable parameter.
Kither all 18 or any subgroup of these buildup factors
can be computed in an integrated operation. The
standard deviations ¢(0,t), a(t,t), and ¢(t, o), as well
as the correlation coefficient p (¢) are also contained
in the output.

Most of the computational effort was devoted to
the buildup factors, but limited use was also made
of output codes for energy spectra and angular
distributions.

The amount of SEAC computing time depends
on the number N of collisions through which one

follows the photon histories. As has been mentioned,
it was found sufficient to let N=25 for water, 12 for
iron, 9 for tin, and 6 for lead. The amount of
machine time (seconds per history) required for the
generation and storage of photon energy-angle his-
tories was

6=0.4 N. (19)

For the joint computation of 18 buildup factors,
the machine time (seconds per history and buildup
factor)

t,=0.18 N-+0.0205 N (20)
for 6<N<25. For the computation of an individual
buildup factor, the machine time (seconds per his-
tory)

t;=1.3 N. (21)
It can be seen that the joint computation of several
buildup factors was more economical.

A major difficulty in setting up the machine pro-
gram was the scaling problem. SEAC operates only
on numbers less than 4 in absolute value. But the
coefficients A% in the expansion for @, can occasion-
ally become extremely large because of sampling
accidents. This difficulty was aggravated by the
fact that singularities were not removed analytically
from the recursion relations (16a, b) but by a
numerical cutoff procedure. This resulted in the
occurrence of pairs of coefficients with approximately
the same large absolute value, but opposite sign,
whose weighted difference must be calculated with
great accuracy. This required the use of floating-
decimal-point routines, which, although they were
specially adapted to the problem, proved to be
costly in computation time.

The occurrence of large terms with alternating
signs 1n the series for @, plOVldod a convenient check
on the code and the computer operation. Clearly
G, being a positive multiple of a probability, must
be a positive quantity. It was found by experience
that because of the alternating character of the
series for @,, almost any sort of code or machine
trouble quickly led to the occurrence of negative
G,’s. The machine was instructed to interrupt the
computation whenever this happened. s As many
@G,’s are computed per second, the absence of such
interruptions for prolonged periods was a reasonable
guarantee that the operation of thefcomputer was
error free.

5. Results
5.1. Statistical Efficiency

Before presenting the main body of our results,
we shall discuss the statistical accuracy of the Monte
Carlo estimates in detail for a sample calculation
based on 300 photon histories, pertaining to 1-Mev
radiation incident normally on an iron barrier. In
table 1 are listed, in addition to the estimated
buildup factors and buildup factor ratios, other
quantities of statistical interest including fractional
standard deviations and correlation coefficients.
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TaBLE 1.

Statistical analysis of buildup factor estimates for 1-Mev radiation incident on an zron barrier

| | |
— a(0, 1) = (&,t) - ‘ a(t, @) ok
t e , = , | = il — [ R
Ko BO, Y | Fop—1| B | 5001 | B4 |5 o)1 p | - q
| | |
i
0.5 1. 048 0. 0586 ‘ 1. 40 0. 61 1. 53 0.43 | 9.2X1072 0.755 = 0.29 0. 4
1.0 1. 057 . 0696 1. 71 .73 1. 89 .58 | 2 .2X1072 L7980 .20 .3
2.0 1. 061 . 0747 2. 43 1. 00 2. 68 . 89 ‘ 6. 5X10-3 . 851 i 5 1B 15. 2
4.0 1. 061 . 0747 4. 07 1. 58 4. 45 1.48 | 4.9X10°® .890 | .18 43. 6
8.0 | L 061 L0747 | 7.80 2. 90 8. 60 2.68 | 3.4X10°3 895 .31 67. 2
16. 0 1. 061 . 0747 1L, &) ‘ 4. 87 20. 0 4. 58 1. 85X 103 ‘ . 884 .41 ‘ 115. 0
|
Now let us see what the large amount of analysis TasLe 2. Energy reflection
introduced into the Monte Carlo calculation has
accomp]ished. To estimate the transmission buildup a. Energy Reflection Buildup Factors for Semi-infinite Batricrs
factor for a barrier with thickness pot=16 with a _ T S
standard deviation amounting to 5 percent of the Water Iron i o Mool
buildup factor would require on the order of 10° _— ) ‘
photon histories in an ordinary random sampling Ly o
calculation. But according to table 1 the semi- RV R R R R T e
. . . 3 . . [ | O
analytical method requires only 8.5>X10° histories. | |____ 1 ;
Taking into account the estimated increase in W |
computation time per history required in the semi- | | % | J80 | P3| oo o fo s e e
analytical calculation, one finds that the effective 10 | 1081 | 1153 | 1061 | 1142 1022 1086 | 1.009 | 1.042
reduction factor is ~2,500. This is respectable but | 0§ | 10| 100y o | NP B
not quite good enough for a computer with the ’ ‘
capabilities of SEAC. But one can do better still b. Dependence of Reflection on Barrier Thickness
through the use of correlated sampling, i. e., by
estimating the buildup factor ratio £(¢). It can be . ; pot
seen from table 1 that, in accordance with expecta- g e
tions, the correlation coefficient p is very close to | 05 ! o
unity, and the fractional standard deviation o./k i <
. alt Mvev.
correspondingly small. A 5 percent standard devia- 0.66 0° | 065 | 088 0.99
tion now only requires a sample of 67 histories. ro | e | | R
Taking into account the increased computation e L - 1.00
- : . ] . N 95 | .99 1.00
time per history, the reduction of effort is S0-fold. 1.0 0° 97|00 1.00
The over-all improvement factor is therefore :

2,500 % 80=200,000.

The last column of table 1 lists the factor ¢=
[o(t,t)/B(t,t)])%/lor/k])?, by which the correlated sam-
pling technique reduced the required sample size.
Statistical analyses at other energies and for other
scattering media yield over-all improvements in
efficiency of about the same magnitude.

5.2. Buildup Factors

Reflection buildup factors for semi-infinite media
are listed in table 2,a, for diverse conditions. The
sample sizes were such that the quantities £(0,t)—1,
1. e., the increase of the flux due to reflection, had a
statistical accuracy of 5 percent. It can be seen
that energy reflection is appreciable only for low
energies and low-Z materials. Table 2,b, shows the
dependence of reflection on the barrier thickness for
some typical cases. The outstanding feature of these
results 1s the rapidity with which the reflection of
energy assumes its maximum value. A barrier with
a thickness of one, or at most two mean free paths of
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a Columns 4, 5, and 6 give the values of k(0) =[B(0,t)—1]/[B(0, ) —1].
k(0) is a measure of the relative amount of reflected radiation from a finite barrier
and from a semi-infinite medium.

the source radiation is already equivalent to a semi-
infinite medium.

Table 3 contains an extensive list of buildup
factor ratios k(t), for water at 0.66, 1, and 4 Mev, for
iron, tin, and lead at 1, 4, and 10 Mev. Again, it
can be seen that the boundary effect, indicated by
deviations of k(?) from unity, 1s appreciable only at
low energies and for low-Z materials. It is signifi-
cant that the ratios stay constant, within the limits
of statistical error, as the barrier thickness is in-
creased from uit=4 to u¢=16. The physical reason
for this constancy is the establishment of radiative
near-equilibria in regions far from the source, which
is well known from the diffusion theory for infinite
media. Sufficiently deep in the material, both the
energy spectrum and angular distribution of the
radiation flux become very slowly varying functions
of the penetration depth. Under these circumstances
it is not surprising that the boundary effect, which
depends on the characteristics of these distributions,
likewise remains practically unchanged.



TABLE 3.

rier with penetration to an equal depth in a semi-infinite
medium
P
‘ | [
‘ | ‘ ot
| Material 1 Energy| T N
‘ | =10 ‘ L0 | 20 | 40 8.0 16.0
N i -l
‘ ‘ 1 i ‘
‘ Mev ‘ ‘ \ ‘
[[ 0.66 | 0.601 | 0.663| 0.713 | 0.783 | 0.785 | 0.784
| Water______ 18 .720 | 754 | 821 828 | 830
i (L4 | .s49| .885| .912| .920| .926 | .933
| | | |
E {1 | .0 | .7e8| .851| .890 | .805 | .804
| TIron _4 4 | .890| .910| .923| .936| .932 | .949
‘ (L 1o ‘ 941 | .959 | .972 | .974 | .978 | .977
‘ ‘ 1| .889| .911| .924| .935| .938 | .946
Tin.________ 4 | o1 | .926| .955| .967 | .974 | .97
(L1 | o5t .60 | 962 | 973 | 071 | .969
\[ 1| L9309 951 .969 | .975| .979 | .982
| Lead |1 4 Lo | 977 | .982 | .990 | .992 | .994
| 10 986 | .990 | .995 | .992 | .994 | .995
| | y
‘ Estimated
accuracy
| %)o-eo| o |50 220 |EL5 L5 [£2.0  |£2.5
| \
& Comparison of a barrier with an infinite medium.
TaBre 4. Energy-transmission buldup factors
—
! . wt
e Energy i
Material [~ Mev
‘ | 05 ‘ 1.0 ‘ 20 | 40 8.0 16.0
I N \
) 0.66 | 1.49 | 1.96 | 3.10 | 599 | 13.3 | 39.4
Water ________ 1 40| 1.80 | 2.72| 501| 10.5 |25.7 |
‘ 4 1.22 | 142 | 183 | 260 | 4.21 | 7.20 |
I 1 1.40 | 172 | 2.43 | 4.07| 7.8 [17.8
Iron _________ 4 1.20 | 1.36 | 1.72 | 256 | 4.17 | 7.45
[l 10 107 | 1.16| 1.35 | 1.75| 2.80 | 5.85
1 1.29 | 156 210 | 3.15| 5.31 | 10.2
Tin. . _______ {4 | 1L16| 131 | 163 | 2.35| 4.12| 9.41 |
(l10 | Lo6| 112 1.26 | 1.59| 2.75 | 8.22 |
| | | [
(1 | 20| 1.35| 1.63| 2.09 ‘ 2.87 | 4.24
Lead ... 4 | Lin| 23| U4t Tos| 38| 7.6
10 ‘ 103 | 1.08| 117 | 1.40 ‘ 2.17 | 6.47

The results of table 3 pertain to a comparison of
finite barriers with a semi-infinite medium. For dis-
tances ut >4, a comparison with an infinite medium
would yield practically identical results. Column 3
shows the buildup factor ratios for wuit=1 obtained
by a Monte Carlo calculation for transmission and a
moment-calculation for an infinite medium. It can
be seen that these ratios are up to 10 percent lower
than the corresponding ratios for a semi-infinite
medium. For pt=2 there is a similar but extremely
small reduction, but our data are insufficient for us
to quote a value of the reduction.

Table 4 lists the transmission buildup factors for
the same range of conditions as in table 3. For
wt=0.5, 1, and 2, the results were obtained entirely
by the Monte Carlo calculation. For greater barrier
thicknesses the values quoted are the result of apply-
ing the correction factors of table 3 to an extensive
set of calculations for an infinite medium [5]. The
infinite-medium results are stated to be accurate to
within 5 percent. The accuracy ot the derived
transmission buildup factors is therefore of the order
of 6 to 7 percent. The direct Monte Carlo results
for shallow penetration have about the same accuracy.

Buildup factor ratio k(t)=[B(t,t)—11/[B({t,»)—1]
for comparing transmission of radiation through a finite bar-

95

5.3. Application of the Monte Carlo Method to an
Infinite-Medium Problem

For heavy elements the boundary effect is so small
that the Monte Carlo method does not add much
new knowledge. Yet it can be utilized as a con-
venient and laborsaving tool for the extension of
available results. As an example of such an appli-
cation we have considered the penetration of radia-
tion from a plane monodirectional oblique source in
an infinite medium. This problem can be handled
by the moment-method, but requires much more
work than the corresponding problem for plane
monodirectional sources with zero obliquity, or
plane isotropic sources. We considered a 4-Mev
plane oblique source in lead. A set of 100 energy-
angle histories were selected that yielded buildup
factors in close agreement with those of a moment-
calculation for a monodirectional zero obliquity
source for penetrations up to ut=16. Then we per-
formed a rotation of the angular part of these his-
tories. Provision for doing this is built into the
SEAC code for the computation of the G,’s. After
rotation, these histories can then be used as input
data for oblique source problems, and the results can
be expected to be reliable, since the energy part of
the histories, known to be properly representative,
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Frcure Transmission of radiation from a /4-Mev plane
monodirectional oblique source through a lead barrier.



remained unchanged by the rotation. In this man-
ner we have made quick calculations for obliquity
angles 0,=45° 60°, 75°, and 90°. As a final check,
the fluxes from sources with different obliquities
were summed so as to obtain the flux from a plane
isotropic source. Again the agreement with a direct
moment-calculation was close. Thus a fix on the
accuracy of the Monte Carlo results was obtained at
two points, and in spite of the small sample size the
penetration of radiation to very great depths could
be calculated with an accuracy which we estimate
to be 5 to 7 percent. The results of the calcula-
tion are shown in figure 2 in the form of plots of
the percent-energy-transmission (=buildup factor
X exp(—uet)) versus uet, for different obliquity
angles.

5.4. Energy Spectra and Angular Distributions

In figure 3 we show for normally incident 0.66-
Mev radiation the energy spectra of the scattered
flux transmitted through water barriers with thick-
nesses ut=4 and pt=8. The corresponding energy
spectra at the same depths in an infinite medium
are also shown. (The histograms pertain to the
Monte Carlo results, the curves to a moment-
calculation.) The shaded areas between corre-
sponding histograms for transmission and an infinite
medium are a measure of the boundary effect. It
can be seen that the presence of boundaries removes
a large part of the low-energy end of the spectrum,
but leaves spectral components near the source
energy unchanged. It is noteworthy that the
spectra are quite similar at both depths. This lends
support to our argument that the constancy of the
buildup factor ratios is connected with the occurrence
of radiative equilibria.

Figure 4 pertains to the same conditions as figure
3, and shows the angular distribution of the scattered
transmitted energy flux, and of the corresponding
flux in an infinite medium. The shaded areas
again indicate the boundary effect. The shaded areas
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Fiaure 3. Energy spectra of scattered radiation transmitted
through water barriers of thickness pot=/4 and ugt=S8, for nor-
mally incident beams of 0.66-Mev photons.

The unshaded parts of the histograms pertain to penetration through a finite
barrier, while the shaded areas indicate the additional radiation that would pene-
trate to a depth £ in an infinitely extended medium. The curves accompanying
the histograms represent the results of calculations by the moment-method for
an infinite medium.

for negative values of cosf represent photons which
crossed the boundary 2, 4, 6, - times, while the
areas for positive values of cosf represent photons
which crossed the boundary 3, 5, 7, - - - times in an
infinite medium. The relatively small number
of photons in the latter group indicates that repeated
crossings of any plane deep in an infinite medium
are quite unlikely, so that it should be possible to
calculate the boundary effect in reasonable approx-
imation by infinite-medium theory, by setting the
transmitted flux equal to the infinite-medium
flux integrated over positive values of cosf. The
angular distributions are similar to the energy
spectra in that they do not change their shape as

T I T T T T
L Eo =0.66 Mev - | E, =0.66 Mev =
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Fiaure 4. Angular distributions of scattered radiation trans-
mitted through water barriers of thickness pt=14 and pl=3§,
for normally incident beams of 0.66-Mev photons.

The unshaded parts of the histograms pertain to penetration through a finite
barrier, while the shaded areas indicate the additional radiation that would
penetrate to a depth ¢ in an infinitely extended medium. The angle # measures
the direction of the transmitted radiation with respect to the normal to the
barrier face. Shaded areas for positive values of cos 6 represent photons that
would cross the boundry plane at least three times in an infinite medium.
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Ficure 5. Energy spectrum and angular distribution of radia-

tion reflected from a semi-infinite water barrier, for a normally
incident beam of 0.66-Mev photons.

The angle 6 indicates the direction between the direction of the reflected photons
and the normal to the barrier face.
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the barrier thickness is increased from pit=4 to
,U.()t:8

Figure 5 shows the angular and energy distribu-
tions of reflected radiation due to 0.66-Mev photons
incident normally on a semi-infinite water barrier.
Both distributions have two distinct peaks. Their
locations are such that they appear to imply the
existence of two preferred modes of reflection, one
associated with a first scattering through approxi-
mately 180°, the other with a first scattering through
approximately 90°.

6. Discussion

6.1. Comparison with Experiments

A recent survey of experiments on the penetration
and diffusion of y-radiation [5] indicates that few
experiments have been done for plane source radia-
tion that are comparable with our calculations.
Moreover, the uncertainty of the experimental
results is usually at least of the order of magnitude
of the boundary effect. It would seem that the
boundary effect could best be checked by a dif-
ferential experiment in which one measures the flux
through a detector, both with and without backing
material behind the detector.

The penetration of radiation with energies be-
tween 0.66 and 2.76 Mev through iron slabs has been
measured by Beach et al. [7]. Their experimental
values agree to within a few percent with the buildup
factors listed in table 4. But the experimental
results include large corrections for air-scattering,
SO t}hat the evidence is not as conclusive as one might
wish.

Kirn, Kennedy, and Wyckoff [8] measured the
penetration of Co% radiation (1.17 and 1.33 Mev)
through concrete barriers. An attempt has been
made to match their results by a calculation for an
aluminum barrier with a concrete-equivalent electron
density. (The photoelectric absorption cross section
per electron is very nearly the same for concrete
as for aluminum, except at extremely low ener-
gies.) The penetration in an infinite aluminum
medium was found by interpolation from cal-

culations of Goldstein and Wilkins [5]. These
results were then corrected for the boundary
effect with the use of table 3 of this paper. Finally,

the predicted buildup factors were increased by
small amounts (not more than 29,) to account for
the energy response of the experimental detector.
One more major adjustment must be made prior
to a comparison of theory and experiment. The
experimental cobalt source was 1 em thick, so that
there was an appreciable chance for Compton scatter-
ing and resultant energy degradation of the radiation
in the source. The degraded radiation is absorbed
much more strongly than the primary radiation while
passing through the concrete barrier. When con-
sidering the attenuation at moderate and great
depths one should renormalize the source strength so
as to include only undegraded photons emerging
from the source. An approximate single-scattering
calculation leads to the estimate that the effective
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source strength is .82+ .05 times the nominal source
strength. Table 5 shows the experimental and
theoretical energy transmission (for normal incidence
of the Co% radiation on the concrete barrier). The
agreement with the adjusted experimental values is
good. Although the source strength correction
constitutes a weakness of the comrarison (at least
insofar as verification of the boundary effect is con-
cerned), it is significant that by adjusting a single
normalization constant one can get agreement be-
tween theory and experiment over a wide range of
barrier thicknesses.

TAaBLE 5. Energy transmission by a concrete barrier

Comparison of the experimental transmission found by Kirn et al. [8], and the
predicted transmission. (Transmission=buildup factorXexp(—uot).)

‘ Energy transmission, in percent,
| with concrete barrier thickness of—

|
T T ]
‘ 5.0 in. | 10.0 in. ; 15.010. | 17.51n
— : ‘
[ Experiment, uncorrected ____________ | 39.0 11.0 2.80 1.40
Experiment, corrected for the deg- ‘ | |
radation of radiation in the source.| 46.8 13.2 | 3.36 1. 68
EI Tl €0 Xy AN S | 44.3 13.7 3.41 1.69

The experimental literature on the reflection of
gamma radiation from barriers is even scarcer than
that on transmission. We have learned of some
unpublished measurements by Kirn, Kennedy, and
Wyckoff * of the reflection of Co® radiation from
effectively semi-infinite concrete and lead barriers.
(The lead barrier actually was a concrete block
fronted by % in. of lead, but this combination was
in effect equivalent to a solid lead barrier.) By
interpolation based on the results in table 2 we
obtained reflection buildup factors which, according
to the comparison in table 6, are in reasonably good
agreement with the experimental values.

TaBre 6. Energy-reflection buildup factors for Co® radiation
incident on semi-infinite barriers

Comparison of the theory with the experiment of Kirn et al.

[
!‘ Material ; 1n33511§«?,r90 ‘ Experiment Theory
|
T 1.063 1.065
R e { 1086 | L1110
Ll (@ | Bz | row
|

6.2 Comparison With Other Calculations

In table 7 a comparison is made for buildup
factors for shallow and moderate penetration depths,
pertaining to 0.66 Mev radiation incident on water
barriers. The comparison includes the results of
this paper, infinite-medium calculations by the
moment-method [10] and the results of two other
Monte Carlo calculations, one of them done by a
direct stochastic analog method [9], the other

4+ H. 0. Wyckoff, private communication.



TaBLe 7. Comparison of buildup factors obtained by various
methods for 0.66-Mev radiation in water medium

| |
| | .
| . o Penetration in flxlr;r?lef(trlzlll
i Method T ranl;;m ission, SeII;l‘(I’.dlrillfglllle | e
\ ()] B m)’ | medium,
| ’ T | BO,x)
|
‘ ‘ ol
|
\ ‘ \ g ‘ ‘ ‘ [y
‘ \ : —o | 0=
| ‘ 1 2 4 | 1 2 ‘ 4 ‘00 0 60°
RO TIPS RSP [ESITTIN I Rrper] i
| Monte Carlo (this | | [ | } 1
paper) - ... _._ | 1.96 | 3.10 | 5.99 | .- | 402 | 7.15 | 1.148|1.189
Monte Carlo (NBS) | | i | | | ‘
,,,,,,,,,,,,,,,, 89 | 3.21 | 5.64 | 2.48 | 4.07 | 6.98 ; 1.15 (1.18
Monte Carlo (NRL) | | |
| (1) 3.30 | 5.56 | 2.43 | 3.75 ‘ 6.55 | 1.14 | ____
| Spencer-Fano mo- | | |
ment-method [10] | | | | |38 |737|
| | |

based on an analytical integration over a sampled
collision density [6]. The agreement of the various
methods is on the whole satisfactory.

6.3. Comments

We have demonstrated the constancy of the
boundary effect for thick barriers, and the resultant
lack of necessity to do deep-penetration Monte
Carlo calculations, only for plane geometry. But it
appears plausible that a similar situation will also
prevail in other geometries since the constancy of
the boundary effect appears to be rooted in the
occurrence of equilibrium spectra far from a radiation
source.

The advantage of incorporating knowledge ob-
tained from other sources into a Monte Carlo calcu-
lation through the technique of correlated sampling
has been clearly demonstrated. In fact, it was only
this technique which made it possible for us to survey
the boundary effect for a variety of conditions with-
out excessive computation.

The analytical treatment of the space variable
likewise proved successful, but we feel that it may
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have been too much of a good thing. From the stand-
point of computing efficiency, there is an optimum
amount of analysis that should be put into a Monte
(Carlo calculation, which depends on the nature of
the problem and the capabilities of the computing
machine. It is questionable whether we operated
near this optimum. If one is interested in the
radiation intensity, it is not unreasonable to take,
as we have done, relatively small samples and to
analyze them exhaustively. But if energy spectra
and angular distributions are desired, it is probably
preferable to use larger and more representative
samples of energy-angle histories and to analyze
them less thoroughly. One possible compromise
would be to confine the analytic treatment of the
space variable to a limited number of collisions, and
then to revert to a stochastic calculation.

The authors thank Anne Futterman for aid and
advice in programing the problem for SEAC.
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