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Dielectric Relaxation for a Three-Dimensional Rotator in
a Crystalline Field: Theory for a General Six-Site Model

Benjamin M. Axilrod

A theory of dielectric relaxation is presented for a generalized six-site model where the
transition probabilities for the turning of dipoles from one orientational site to another are

arbitrary. The sites are arranged in three dimensions.
relaxation times generated by this model is examined in a general manner.

The nature of the set of discrete
It is found

that the relaxation times are all real and positive and the range of the relaxation times is

established.

1. Introduction

Previous work [1]' with two simple models of a
rather restricted nature has been sufficient to indi-
cate that a set of discrete dielectric relaxation times
can arise in a lattice consisting of dipoles that may
occupy orientational sites arranged in three dimen-
sions. As in studies on the single-axis rotator
[2, 3], the source of the set of relaxation times was
the anisotropy in the crystalline field, which hin-
dered the turning of dipoles from one orientational
site to another.

In the present paper the purpose is to extend
the treatment of the three-dimensional rotator prob-
lem discussed in reference [1] by constructing the
rate equations for a six-site model with arbitrary
transition probabilities in order to examine the
general nature of the set of relaxation times.

2. General Six-Site Model
2.1. Model

A model in which a dipole of moment x on each
lattice point can orient in any six directions is con-
sidered. These equilibrium orientations are along
the Cartesian coordinate axes, z, 7, and z (fig. 1 (a)).
As in previous work [1, 2, 3], the following conditions
are assumed:

(a) There is no correlation in the motion of dipoles
on different lattice points.

(b) The barrier system is the same for all molecules
in the lattice.

(¢) The only elementary process is a reorientation
to an adjacent site (single jump hypothesis, S-J).
It should be noted that the general results obtained
do not depend upon the orthogonal site orientations
exhibited in figure 1 (a). This model was selected
because it serves as well as any other for the general
discussion and it was desirable to derive certain ex-
plicit expressions useful for polarizability calcula-
tions for this special case.

1 Figures in brackets indicate the literature references at the end of this paper.
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The transition probability for the turning of a
dipole from a site 7 to an adjacent site j is given by

=W
k”:Be kT (])
where B is a frequency factor, k is Boltzmann’s
constant, and 7" is the absolute temperature. The

quantity W, is the local free energy of activation
barrier, which must be surmounted by a dipole in
turning from site » to site j (fig. 1 (b)). The transi-
tion probability for the jump ;7 to 7, kj;, is given by
eq (1) with W, in place of W,;. As transitions are
permitted from a site 7 to four adjacent sites, there
are 24 elementary process transition probabilities
k.; with 4, =1, 2, . 6, and 77 in the general
model. From physical considerations it is shown in
the appendix (section 3.1) that of these 24 constants
only 17 are independent, and that relations exist
for the /k;; corresponding to a closed circuit of tran-
sitions and the inverse circuit. Thus, if we consider
the series of site-to-site transitions 1—2, 2—3, 3—1,
and the inverse circuit 1—3, 3—2, 2—1, we find *

krokeoske sy = keyskeaskesr . (2a)

Other relations such as the above must apply, one
for each site triplet for the remaining seven octants:

kiskessless = levskesskes (2b)
kevsksshess =leisksaken (2¢)
ksl soleos = kerokasks: ; (2d)

the four remaining equations, (2¢) through (2h) are
obtained from the equations above by substituting
the subscript 6 for 1. Any one of the set of eight
relations in eq (2) may be derived from the other
seven.® These are the basic equations which re-
strict the arbitrary choice of the k,; for the six-site
model. Equations (2) are also needed for a mathe-
matical proof noted later.

2A single relation of this type was given in reference 3 for single-axis rotators
(see eq (7) and (25))

3 For example, eq (2e), kekaskss=kesksskes, may be obtained as the quotient [eq
(2a) X (2b) X (2¢) ><(2d)]/[u1 (20) X (2g) X (2h)].
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Ficure 1. (General siz-site Cartesian axes model.

(a) The equilibrium orientations of the dipole moment x. (b) Local free-

energy barrier as a function of angular position in the y-z plane through sites
1,2, and 6. Wiz is the barrier for a transition from site 1 to site 2 and Wy is the
barrier for the reverse transition. Vi and V2 are the free energies for sites 1 and
2, respectively, relative to an arbitrary zero.

2.2. Rate Equations

Assume a lattice with a total of N dipoles where
the number of dipoles oriented in the ith site at any
time ¢ is given by N;. The summation of the N,
is always N. The number of dipoles turning per
unit time from a given site ¢ to an adjacent site j is
kN3, and the number entering site ¢ from j is k;:V,;
the total leaving site 7 to turn to adjacent sites is
> kiNi.  Accordingly, the differential equations for

Jyj#i

the change in population ef each site are *

dN, h
dt = (k12+k13+k14+k15)]\71+
k21N2+k31]\73+k41N4+k51AY5
O 1o, (ks s N
kBQAT3+k52N5+k62]\T6
o+ sV — (ko i) Nt
k43N4+k63*7\’T6
dN, r @)
7’216142\71 +k341\73* (ku +k43+k45+k46>N4+
' ksuNy-+EeNo
oy Ny kN —
(kal +k52+k04+k06)N5+k602\ 6
M lroNo-+ N+ N+
k56N5 <k62+k63+k64+k65) \76 J

The molecular relaxation times, 75, will be included
in the solutions of the above equations.

2.3. Characteristic Determinant and Its Properties

Solutions of linear homogeneous differential equa-
tions of the type shown in eq (3) are of the form

Ni: ?ﬁ) Uiﬂefﬁ (k)t’ (4)

where the symbol 73(k) represents a function of some
or all of the £;;. The functions e¢5®* are referred
to as decay functions, since the fz(k) are always
negative for =2 (see below). The index B refers
to the mode of decay. KEach decay function indi-
cates the rate at which a particular mode of decay
promotes the attainment of equilibrium after the
abrupt removal of a disturbance. The f3(k) are
obtained by forming the characteristic determinant

of eq (3) and solving for its eigenvalues. This
characteristic determinant is
Ay ke i ke kg D
_kIZ AZ _k32 0 _k52 _/c62
_klfi —k23 443 _k43 0 _k63
A(D ki) =
—k14 0 _—k34 A4 —k54 ‘k64
—k15 _k25 O _k45 A5 _k65
0 _k26 —k36 _k46 _k56 4-16 (1
(5a)
4 By the S-J hypothesis, ks=ka=kau= . . . =ks3=0.
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where we let D=d/dt and define A;, Ay, A;, . . . as
441:D+k12+k13+k14+k]5y
A2:D+k21+k23+k25+k26,

(5b)

A3:D+k3l+k32+k34+k367

A6:D+k62+k63+k64+k65-

The characteristic determinantal equation, obtained
by setting A equal to zero in eq (5a), has six roots, or
eigenvalues, f3, for the operator D). The nature of
the elements in A permits one to answer some
questions regarding the eigenvalues and, hence,
about the relaxation times, 75.

The following questions may be raised: Are the
eigenvalues real, what is their sign, what is their
range, and are they distinct for the most general case,
i.e., when the k;; are distinet? The eigenvalues can
be shown to be real by applying a theorem due to
Goldberg.® The line of reasoning is briefly thus:
From the theory of matrices the characteristic
determinant of a symmetric matrix has real roots.
Hence, if a symmetric matrix, S, can be constructed
that has the same characteristic determinantal
equation as A, i.e., A=0, then the eigenvalues of A
will be real. Sufficient conditions for forming such
a matrix S with the same roots as A are the set of
relations given by eq (2) and the inequalities
ki;>0. Since eq (2) and k;>0 are imposed by
physical considerations, it follows that the eigen-
values are always real.

The sign and range of the eigenvalues f;z are
specified by applying a theorem derived by Ger-
schgorin [4] and rediscovered by Brauer [5] regarding
the areas in the complex plane in which the roots of
a matrix lie; it can be shown (see appendix, section
3.3) that for our particular case, eq (5a), the eigen-
values lie between zero and twice the most negative
diagonal element in the matrix (a;) derived from
A in eq (5a) by setting D=0 and changing the sign.
Since, by definition, k;;>0, the roots are all negative.

The proof that the eigenvalues are distinct if the
ks; are distinet has not been accomplished.

From the theory of matrices we obtain two other
properties of the characteristic determinant A. In
the matrix (@), defined above, it is evident (see eq
(5b)) that each column sum vanishes. This in-
dicates that one eigenvalue of A corresponds to the
root D=0. Next, the trace or diagonal sum of a
matrix (by) is equal to the sum of the eigenvalues,
>\, of the characteristic determinant |b,;—N\é:|,

s
where §; is the Kronecker delta. From eq (5) it is
seen that for the matrix (—a;;) the diagonal sum is
> 'ki;, where the prime means 777. Since the eigen-
)
values of the characteristic determinant are un-

5 See appendix, section 3.2.
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changed if each element is replaced by its negative,
the sum of the eigenvalues of A is ~ 20k~ The

. ij ;
latter property is useful as a check when the eigen-
values are determined in a particular problem.

2.4. Relaxation Times

With the general results obtained in section 2.3,
we may write the solutions of the rate equations,
noting that f; is zero, in the form

Ni:C'“—i‘O,[?efg(k)l_*_ nI

=Cyn+Cpe=tin4 . .. 4')

where the 75 are defined as the molecular relaxation
times [1,2,3]
o= —1/fs(k). (6)

Since we have shown that the f3 are all real and
negative, it follows that the 75 for the general six-site
Cartesian axes model are all real and positive. As
implied earlier, eq (4’) show how and at what rate
a system tends to return to equilibrium after the
abrupt removal of a disturbance such as a static
electric field. Thus, for any arbitrary choice of the
k5, consistent with eq (2), the return of the system
to equilibrium is described by an exponential decay
and cannot include any oscillatory modes.

Also, from the application of Gerschgorin’s Theo-
rem to the range of the eigenvalues, we find that the
shortest relaxation time 7y, is ©

1
- ST L W
Tmin = 21(1/

) (7
mm‘

where @, is the most negative diagonal element in
the matrix (a;) defined in section 2.3. If k,, is the
largest of the £, eq (5) and (7) lead to

1
=2
Tmln=8kpq (8)
The above results cover the inferences that may

be readily drawn regarding the molecular relaxation
times for the general six-site model.

2.5. Dielectric Relaxation Spectrum

If we assume the molecular and macroscopic
relaxation times are equal, an approximation used
previously [1,2,3,5], the molecular relaxation times 75
describe the approach to equilibrium of the polariza-
tion. The coeflicients C;z (for §=2) in general
measure the “strength” of each mode contributing
to the relaxation process. In the case where we
consider the restoration of equilibrium following the
removal of a static electric field, the polarization

6 In eq (7) the symbol |amm| represents the absolute value of the amm.



P(t) decays with time as

P(t)= ZPeef = ZPM‘” 8. (9)

The coefficients Ps, and hence the orientational
polarizabilities «s associated with each mode, may
be obtained from the quantities C(8=2) for a
particular model by standard methods [1]. The ag
are calculated assuming a polycrystalline substance.

We note that for sinusoidal fields eq (9) leads to
the approximate expression [1,6]

e"(w)'_‘—_’K;aﬁw'rﬂ/(l—i—wz'rg), (10)

where €’(w) is the dielectric-loss factor as a function
of angular frequency w, K is a constant, and «g is
the orientational polarizability associated with the
Bth mode. Although the expression is not exact, it is
sufficient for an approximate analysis of the general
characteristics of the dielectric relaxation spectrum.
For the case of a single relaxation time, eq (10)
rgduces to the form of the Debye equation [7] for
€ (w).

The coefficients (s (and hence the Pz and «ap)
cannot be obtained exvlicitly in the general case as
they depend (eq (3) and (4)) on the eigenvalues, and
the latter cannot be expressed explicitly in terms of
the k;;. As a consequence, we have not been able to
prove in the general case, where the k;; are distinct,
that all relaxation modes are active in the dielectric
spectrum. However, the latter situation seems
quite possible, since in earlier calculations inactive
modes (compensatory reorientation of dipoles to
maintain a net dipole moment of zero) were formed
only for very simple models, such as those containing
two pairs of equivalent sites.

To obtain further information about the dielectric
behavior of dipolar systems represented by the gen-
eral six-site model, it is necessary to examine special
models. This is planned for a subsequent paper.

A few useful formulas to apply to special models
are given in the appendix, section 3.4.

The author is indebted to John D. Hoffman for
numerous helpful discussions regarding the general
subject and to Karl Goldberg and Martin Greenspan
for assistance with mathematical aspects.

3. Appendix
3.1. Relations Between ky;

Let the free energies relative to an arbitrary zero
of energy for two adjacent sites 7 and 7 be designated
as V; and V;, and the free-energy barriers for 2 to j
and j to 7 transitions be defined as W, and W,
respectively. The height of the free-energy barrier
between sites i and j, referred to the zero of energy,
is then

WeN=V+W,=

V,+Wi (11a)

Consider a series of transitions 7 to 7, 7 to /, [ to % for
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a closed circuit, of three adjacent sites and write the
equations corresponding to eq (11a) for the barrier
heights referred to the zero of energy

= WeH=V;+W;=V,+W, (11b)

=i W(l)=V+W,=V+W,. (11c)
The sum of the eq (11) is

W4+ Wy+W, =W+ W, +W,,. (12)

If we recall the definition of %k,;, eq (1), inspection
shows that eq (12) corresponds to log (kk;k,)=
log (k;k k), and hence

ki]kjlkli:kilkljkﬁ- (13)

The same type of relations, eq (12) and (13), can be
obtained for any closed circuit of transitions between
adjacent sites with three or more jumps to the cir-
cutt.” For the six-site model there are seven inde-
pendent relations, such as eq (13), namely, any
seven of the elght eq (2). All others and those in-
volving more sites are derivable from eq (13). Ac-
cordingly, of the 24 transition probabilities only 17
are independent. This is plausible on physical
grounds. The local free-energy system of the general
model is fixed when six minus one site energies and
12 barriers W(i, j) are specified; the “minus one’”
arises because the zero of energy is arbitrary.

The following geometrical argument illustrates
how all product relations of the type in eq (13), but
mnvolving more sites, can be constructed from suit-
able products of the product relations given in eq (2)
for three adjacent sites.

The six orientational sites (fig. 1) are located at the
corners of an octahedron. Associated with the
product relations on the &y, eq (13), for a closed cir-
cuit of transitions between the ad]acent sites ¢, 7, [,
is the circuit of the perimeter of the face with vertices
i, 7, [, and the inverse circuit. Consider a closed
circuit along the edges of the octahedron connecting
the successively adjacent sites i, 7, [, . . ., m, 1, for
example, where there are 4, 5, or 6 sites. This closed
circuit divides the octahedron, a simply connected
surface, into two parts, each of which is constituted
of triangular faces; for convenience, choose the sur-
face with the fewer faces, labeled 7%, . . ., T,. If we
traverse in succession in the same sense ® as that on
the whole perimeter (¢, 7,4, . . ., m, 1), the perimeters
of each of the triangular faces 7y, . . ., T}, this is the
same as traversing the bounding path 7, j, /

y e ey

7 An alternate method of arriving at product relations of the type in eq (13) or
eq (2) is to invoke ‘‘detailed balancing” for each pair of adjacent sites. This
means that at equilibrium the number of dlpoles turning in unit time from site
i to site j is equal to the number turning from site j to site i, or kiCit=Fk;iCit; Cin is
the equilibrium number of dipoles in the ith site. For a pa't cular case, sites 1, 2,
3, we may then write k12Cii=ka1 Car, ks Cor=k32C21,and k31 C31=k13C11. The product
of the last three equations yields eq (2a), ki2kasksi=kaiksokia.

8 That is, if the perimeter of the portion of the surface bounded by the sites
@,j, ... m,i)istraversed in a clockwise sense by the above sequence, then each
of the covstituent triangles is traversed in the same sense.



m, . Hence if we multiply the product equations
such as (13) for the triangles 7y, . . ., T}, traversing
their edges in the correct sense, we obtain the corre-
spondmg product relation for the circuit 2ty o o s
m, 1) and the inverse circuit (7, m, . . ., 1, 7, 7). In
this w ay the k;; product relation for any sequence of
connected sites can be formed by multiplying the
product relations for the enclosed triangular circuits.

3.2. Application of Goldberg’'s Theorem ° to the
Matrix for the Six-Site Model

Theorem: It a real matrix A= (a;;) of order n has

the properties a;>0 for 7, j=1, ..., n with 757
and

ar,-liQa,iQiz oo o aimh:afzila’iaiz v e e (l,lim (14)
for all (44, . . . ,7x) belonging to (1, ,n),m >3, then

all the characteristic roots of A are real.

We wish to apply the theorem to the matrix — A,
derived from A in eq (5a) by letting D be zero and
changing the signs of the elements. If we let a;; be
the element of —Aqin the ith row and the jth column,
the usual order of index notation, we note that for
17#]

(15)

1. e., the order of indices is reversed on the k’s. Hence
with eq (15), eq (14) can be written as follows, after
interchanging the left and right sides and then re-
versing the factor order on the right side:

ay;=k;;,

Fijiskisiy . . . ki, =kigi kisi, . . . kiyi,,

=Fitiy, . . . kigiskini,. (14")
Equation (14") now evidently equates the product of
ki/s for the closed circuit of m sites (3<m<6)
Uiz, 9>, . . ., iy~ to the corresponding
product for the inverse circuit 4,—>%,, . . . , 9—>7;.
There are two types of circuits: (a) circuits in which
at least one successive pair 4,, i, are nonadjacent sites,
and (b) circuits in which all successive site pairs are
adjacent. Since by the S-J hypothesis £;; =

ki, =0 for all nonadjacent site pairs, eq (14"), and

hence eq (14), is valid for case (a). Next we have
indicated in section 3.1 that closed-circuit product
relations of the type eq (14”) are valid for a sequence
of three or more adjacent sites. Hence our matrix
— A for the general six-site model satisfies the above
theorem.

3.3. Range of Eigenvalues

Brauer [5] has derived the following theorem
regarding the characteristic roots (eigenvalues) of a
matrix.

9 K. Goldberg of the Applied Mathematics Division of the Bureau. His proof
is published in RP2652 in this Journal. The theorem as stated above is in a
slightly different form from that as stated by Goldberg; his condition (2) has
been replaced by the condition ;=0 which still permits the construction of an
equivalent symmetric matrix, namely, bi=(aija;)"?.
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Theorem: Let A= (a,;) be an arbitrary matrix and

n n
leaiJ'I:Ph 12_1'@1';[:(3]'-
it inf

Each characteristic root \ lies in at least one of the
circles

lz_a/izI <P,
and in at least one of the circles

|z—a; <Q;.

A is a square matrix of order n over the complex
field; z is the complex variable x-41y. P;is the sum
of the absolute values of the off-diagonal elements in
the ith row; @; is a similar sum for the jth column.
In the matrix —A, derived from the characteristic
determinant, eq (5a), by letting D be zero and chang-
ing the signs, we know that the off-diagonal elements
are all real and positive, and so an off-diagonal
column sum is ;. Also from eq (5a) we see that
the jth diagonal element a;; is —¢);. Hence, for the
jth circle (j=1, , 6) the radius is @, and the
center is on the real axis at —@;. Let ,>Q;
(g==1, ,6). @, defines the largest circle. Pre-
viously all roots were shown to be real. Hence all
roots lie on or within the mth circle on the axis of
reals, that is between zero and 2a,,, (@, being the
most negative of the diagonal elements in —A).

3.4. Useful Formulas

Relation between the equilibrium number of dipoles
an each site with and without a static electric field. We
refer to the method of solving the rate equations in
reference 1. After a “mode analysis” in which for
each given mode 8 the coefficients O are determined
relative to one another, the boundary condition at
t=0 is introduced. This condition corresponds to
the sudden removal of a static electric field. This
results in the equations

Ci =;Cw,

where ('] is the equilibrium number of dipoles in the
ith site in the presence of the field. A general
expression for these coefficients in terms of the
equilibrium coefficients for zero field is helpful in
solving any particular model.

The equations below for the Cf are derived in a
manner similar to that indicated in section 2.4 of
reference 1.

We assume a static electric field F defined by the
magnitude /' and the polar angles £ and 6, with ¢
being the azimuth angle measured from the z-axis.
For convenience, let

y=uF/ET and v,=

= sin £ sin 6

v sin £ cos

Yy
=+ cos £.



Then

OuF: 011
021F= 021

r Oy —C:
Oy"=Cy | 1—7; <‘31‘]\7;51— 1)'_
041F: 041
Cf =04 | 1— I<(731 al+1>

UGLF =C, 61

The total polarizability, a.. We assume a poly-
crystalline substance and follow the procedure out-
lined in section 2.4, reference 1, for obtaining the
polarizability associated with each mode. Here,
however, we introduce for each site i the value of
Ny at t=0, namely, Cf;. With the use of the ex-
pressions for the (¥, given in the preceding para-

gra,ph, one can Obt&ln
P 1__(031~051)2+(C21_041)2+(011_061)2 ll«2
R 3T
(17)

N2

[ 114Cu— Cay V=1 Cu—CayN—, (D501

]. _72(031 b (701)/N—‘Yy (%_ 1>_72((Yll D 061)/N
1 _7:5((731 ED 05!)/N_‘7y (%"‘ 1>'_' ’Yz(.cyll i pSI)/N

F —YCs1— Cs1)/N—7(Cor— Cr) [ N—, ((711 661-]—1)

N

Y(Cor— Cya)/N —7,(Cyu—Cer)[N

(16)

71, 021 041 /N 72(011 Oﬁl)/N

J
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