
I. '. 

l. 
.> 

I 
'2:l 
I 

Journal of Research of the National Bureau of Standards Vol. 56, No.2, February 1956 Research Paper 2651 

Dielectric Relaxation for a Three-Dimensional Rotator in 
a Crystalline Field: Theory for a General Six-Site Model 

Benjamin M. Axilrod 

A t heory of dielectric relaxation is presented for a generalized six-site model where t he 
t r ansit ion probabili t ies for t h e t urning of dipoles from one orientational site to another a re 
arbit rary. The sites are arranged in t hree dimensions. The nature of t he set of discrete 
relaxation t imes generated by t his model is examined in a general m a nn er . It is found 
that t he relaxation t imes are all real and positive 9 nd t he ra nge of the relaxation t imes is 
established . 

1. Introduction 

Previous work [1)1 with two simple m odels of a 
rather r estricted nature h as been sufficien t to indi­
cate that a set of discrete dielectric r elaxation times 
can arise in a lat tice consisting of dipoles that m ay 
occupy orien tational sites arranged in three dimen­
sions. As in studies on the single-axis rotator 
[2 , 3], the source of the set of relaxa tion times was 
the anisotropy in the crys talline fi eld, which hin­
dered th e t urning of dipoles from one orienta tional 
si te to another. 

In the present paper the purpose is to extend 
the treatment of the three-dimensionall'otator prob­
lem discussed in referen ce [1] by constructing the 
rate equations for a six-site model with arbitrary 
tr ansit ion probabilities in order to examine the 
general nature of the set of r elaxation times. 

2. General Six-Site Model 

2 .1. Model 

A model in which a dipole of momen t J.i. on each 
lattice point can orien t in any six directions is con­
sidered. These equilibrium orientations are along 
the Cartesian coordinate axes, x, y , and z (fig. 1 (a)). 
As in previous work [1,2 , 3], the following conditions 
are assumed: 

(a) There is no correlat ion in the mo tion of dipoles 
on differen t lattice points. 

(b ) The barrier system is the same for all molecules 
in the lattice. 

(c) The only elementary process is a reorientation 
to an adj acent site (single jump hypo thesis, S-J). 
It should be noted that t he general resul ts obtained 
do not depend upon the orthogonal si te orientations 
exhibi ted in figure 1 (a ). This model was selected 
because it serves as well as any other for the general 
discussion and i t was desirable to derive cer tain ex­
plicit expressions useful for polarizabiJi ty calcula­
tions for this special case. 

I Figures in brack ets indicate the literature references a t the end of tll is paper. 
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The tranSItIOn probabili ty for the turning of a 
dipole from a si te i to an adj acen t s ite.7 is given by 

- l"-l'i j 

le ij=B ekT- (1) 

where B is a frequency factor, k is Bol tzmann 's 
constan t , and T is the absolu te tempera tme. The 
quan ti ty W i} is the local free energy of activation 
barrier, which must be surmounted by a dipole in 
turning from si te t to sitej (fig. 1 (b )). The transi­
t ion probabili ty for the jumP .7 to i, le ji , is given by 
eq (1) wi th W ji in place of W 'j' As transi tions are 
permitted from a site i to four adj acen t site , there 
are 24 elem en tary process transi tion probabili ties 
le t} wi th i , j = 1, 2, . .. 6, and i,c.j in the general 
model. From physical co nsidera tions i t is shown in 
the appendix (spction 3. 1) that of these 24 const.an ts 
only 17 are independent, and that r ela tions exist 
for the le ij corresponding to a closed circui t of tran­
sitions and the in verse circui t . Thus, if we consider 
the series of si te-to-si te transitions 1-72, 2-73, 3-71, 
and the inverse circui t 1-73, 3 2, 2-71, we find 2 

(2a) 

Other r elations such as the above must apply, one 
for each site triplet for the remaining seven octan ts : 

k13le34le41 = le 14le43le31 

le14le45le51 = le 15lc54k41 

k15k52k21 = le!2le25le51; 

(2b ) 

(2c) 

(2d) 

the four r emaining equations, (2e) through (2h) are 
obtained from the equa tions above by substi tu ting 
the subscrip t 6 for 1. Any one of the set of eigh t 
relations in eq (2 ) may be derived from t he other 
seven.3 These are the basic equa tions which re­
strict the arbi trary choice of the le i} for the six-si te 
model. Equations (2) are also needed for a mathe­
matical proof noted later. 

' A Single relat ion of this type was given in reference 3 for si ngle-ax is rotators 
(see eq (7) and (25». 

3 For example, Cq (2c) , k"k"k" =k"k"k,,, may be obtailled as the quotient [eq 
(2a)X(2h)X(2c) X (2d)]/[eq (2l)X(2g)X(2h)]. 
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FIG U RE 1. General six-site Cartesian axes model. 

Ca) The equilibrium orientations of the dipole moment It. Cb) Local [ree­
energy barrier as a [unction o[ angular posit ion in the y-z plane through sites 
1,2, and 6. W " is the barrier for a transition from site 1 to site 2 and 1V2l is the 
barrier [or the reverse transition. VI and V, are the free energies [or sites 1 and 
2, respectively, relative to an arbitrary 1.ero. 

2 .2 . Rate Equations 

Assume a lattice with a total of N dipoles where 
the number of dipoles oriented in the ith site at any 
time t is given by N i . The summation of the N i 
is always N. The number of dipoles turning per 
unit time from a given site i to an adjacent site j is 
k ijN i, and the number entering site ~ fromj is k jiN j; 
the total leaving site i to turn to adjacent sites is 
'L,kijN i. Accordingly, the differential equations for 
j,)"" ; 

the change in population Gf each site are 4 

d:;:l = _ (kI2 + k13 + kI4+ k15)NI + 
k 21N z + k31N 3+ k4lN4 + k51N5 

d:;:2 = k IZN I - (k2 1 + kn + k25 + k26 )N 2+ 
k32N3+k52N5+k62N 6 

d:;:3 = kI3Nl+ knN2- (k31 + k32+ k 31 + k36)N 3+ 
k43N 4+ k63N 6 

d:;:4 = k I4N 1 +k3~3- (k41 + k43+ k45+ k46)N4+ 
k54N5+k6~6 

dN-
dt o= kl5N I + k25N2+ k45N 4-

(k51 + k52+ k54+k56)N 5+ k65N6 

d:!/ = k26N 2 + k36N 3 + k46N 4 + 
k56N 5 - (le62 + k63+ le64+ k65)N6 

(3) 

The molecular relaxation times, T{3, will be included 
in the solutions of the above equations. 

2 .3. Characteristic Determinant and Its Properties 

Solutions of linear homogeneous differential equa­
tions of the typ e shown in eq (3) are of the form 

Ni=hCif3ef~Ck)t, (4) 
fJ 

where the symbolff3 (le) represents a function of some 
or all of the kij. The functions ef~(k) t are referred 
to as decay functions, since the f{3(k) are always 
negative for {3 ~ 2 (see below). The index (3 refers 
to the mode of decay. Each decay function indi­
cates the rate at which a particular mode of decay 
promotes the attainment of equilibrium after the 
abrupt removal of a disturbance. The .ff3(k ) arp. 
obtained by forming the characteristic determinant 
of eq (3) and solving for its eigenvalues. This 
characteristic determinant is 

Al - k21 - k31 - k41 - le51 0 

- le12 A 2 - k32 0 - k52 - k62 

- le13 - k23 A 3 - k43 0 - k63 
t:. (D ,le i }) = 

- kJ4 0 - k34 A 4 - le54 - k64 

- k15 - k25 0 - k45 A 5 - k65 

0 - k26 - k36 - k46 - le56 A 6 , 

(5a ) 
• By the 8-J h ypothesis, k'6=k,,=k24= ..• =k53= O. 
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where lye let D= djdt and define AI, A 2, As, ... as 

A l = D + kI2+kI3+ k14+ kI5, 

A2= D+ k21 + k23+ k25+ k26, 

A 3= D+ k31 + k32 + k34+ k36, 
(5b) 

The characteristic determinantal equation, obtained 
by setting Il equal to zero in eq (5a), has six roots, or 
eigenvalues,j~, for the operator D . The nature of 
the elements in Il permits one to answer some 
questions regarding the eigenvalues and, hence, 
about the relaxation times, T~. 

The following questions may be raised: Are the 
eigenvalues reaL, what is their sign, what is their 
range, and are they distinct for the most general case, 
i.e., when the k ij are distinct? The eigenvalues can 
be shown to be real by applYing a theorem due to 
Goldberg.5 The line of r easoning is briefl.y thus: 
From the theory of matrices the characteristic 
determinant of a symmetric matrix has real roots. 
Hcnce, if a symmetric matrix, S, can be constructed 
that has the same characteristic determinantal 
equation as Il, i. e., Il = O, then the eigenvalues of Il 
will be real. Sufficient conditions for forming such 
a matrix S with the same roots as Il are the set of 
r elations given by eq (2) and the inequalities 
lc /j~ O . Since eq (2) and kjl~ O are imposed by 
physical considerations, it follows that the eigen­
values are always real. 

The sign and range of the eigenvalues jfJ are 
specified by applying a theorem derived by Ger­
schgorin [4] and rediscovered by Brauer [5] regarding 
the areas in the complex plane in which the roots of 
a matrix lie; it can be shown (see appendix, section 
3.3) that for our particular case, eq (5a), the eigen­
values lie between zero and twice the most negative 
diagonal element in the matrix (a tJ) derived from 
Il in eq (5a) by setting D = O and changing the sign. 
Since, by definition, kjj~ O, the roots are all negative. 

The proof that the eigenvalues are distinct if the 
k jj are distinct has not been accomplished. 

From the theory of matrices we obtain two other 
properties of the characteristic determinant Il. In 
the matrix (a /j) , defined above, it is evident (see eq 
(5b» that each column sum vanishes. This in­
dicates that one eigenvalue of Il corresponds to the 
root D= O. Next, the trace. or diagonal sum of a 
matrix (bjl) is equal to the sum of the eigenvalues, 
~As, of the characteristic determinant Ibtj-M;I, 

8 

where 0; is the Kronecker delta. From eq (5) it is 
seen that for the matrix (-atj) the diagonal sum is 
~/lc /i! where the prime means i¢j. Since the eigen­
i. j 

values of the characteristic determinant are un-
'.See appendix, section 3.2. 
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changed if each element is rcplaced by its negative, 
the sum of the eigenvalues of Il is - ~/k tj . The 

i,j 
latter property is useful a a check whcn the eigen­
values are determined in a particular problem. 

2.4. Relaxation Times 

With the general results obtained in section 2.3 , 
we may write the solutions of the rate equations, 
noting thatll is zero, in the form 

Ni=GH+Gi2ef~(k)t+ ... 

(4/) 

where the T~ are defined as the molecular relaxation 
times [1 ,2,3] 

(6) 

Since we have shown that the j fJ are all real and 
negative, it follows that the Tfj for the general six-site 
Cartesian axes model are all real and positive. As 
implied earlier, eq (4/ ) show how and at what rate 
a system tends to return to equilibrium after the 
abrupt removal of a disturbance such as a static 
electric field. Thus, for any arbitrary choice of the 
lc iiJ consistent with eq (2), the return of the system 
to equilibrium is described by an exponential decay 
and cannot include any oscillatory mode. 

Also, from the application of GerschgOl'in's Theo­
rem to the range of the eigenvalues, we find that the 
shortest relaxation time Troln is 6 

> 1 
Tm l n =-21--I' amm 

(7) 

where amm is the most negative diagonal element in 
the matrix (a il) defined in section 2.3 . If k pQ is the 
largest of the le i}, eq (5) and (7) lead to 

(8) 

The above results cover the inferences that may 
be readily drawn regarding the molecular relaxation 
times for the general six-site model. 

2.5 . Dielectric Relaxation Spectrum 

If we assume the molecular and macroscopic 
relaxation times are equal, an approximation used 
previously [1 ,2,3,5]' the molecular relaxation times T fj 

describe the approach to equilibrium of the polariza­
tion. The coefficients Gifj (for (3 'i'; 2) in general 
measure the "strength" of each mode contributing 
to the relaxation process. In the case where we 
consider the restoration of equilibrium following the 
removal of a static electric field, the polarization 

' I ll eq (7) the symbol lamml represents t he absolute value of t he ammo 



pet) decays with time as 

P(t) = ""5.2PfJef p (k ) i= ""5.2PfJe- t IrP. 

a closed circuit of three udjacent sites and write the 
equations corresponding to eq (l1a) for the barrier 

(9) heights referred to the zero of energy 
fJ fJ 

The coefficients P fJ , and hen?e the orientational 
polarizabilities lXfJ associated ":'I~h each mode, may 
be obtained from the quantities eifJ ({3~2) for a 
particular model by standard methods [1]. The lX{3 
are calculated assuming a polycrystalline substance. 

We note t hat for sinusoidal fields eq (9 ) leads to 
the approximate expression [1,6] 

€//(w) ~K""5.2 lX{3WTfJ/(l + W2T~), (10) 
fJ 

where €//(w) is the dielectric-loss factor as a functio.n 
of angular frequency w; K. i.s a cons~ant, an~ I.XfJ IS 
the orientational polanzablhty assocIated with the 
{3th mode. Although the expression is not exact, it is 
sufficient for an approximate analysis of the general 
characteristics of the dielectric relaxation spectrum. 
For the case of a single relaxation time, eq (10) 
reduces to the form of the D ebye equation [7] for 
~// (w ) . 

The coefficients e ifJ (and hence the P fJ and I.XfJ) 
cannot be obtained exnlicitly in the general case as 
they depend (eq (3) and (4) ) on the eigenvalues, and 
the latter cannot be expressed explicitly in terms of 
the k ij . As a consequence, we have not been ~b~e to 
prove in the general case, where .the .kij are ~Istmc.t, 
that all relaxation modes are active 111 the dIelectnc 
spectrum. However, the latter situ.atio~ see!lls 
quite possible since in earlier calculatIOns lllactive 
modes (comp~nsatory reorientation of dipoles to 
maintain a net dipole moment of zero ) were fo~'~ed 
only for very simple models, such as those contalllmg 
two pairs o'f equivalent sites. .. 

To obtain further informa tion about the dlelectnc 
behavior of dipolar systems represented by the ge:n­
eral six-si te model, it is necessary to examme speCIal 
models. This is planned for a subsequent paper. 

A few useful formulas to apply to special models 
are given in the appendix, section 3.4. 

The author is indebted to John D. Hoffman for 
numerous helpful discussions regarding the general 
subject and to Karl Goldberg and Martlll Greenspan 
for assistance with mathematical aspects. 

3 . Appendix 

3.1. Relations Between k 11 

Let the free energies rrIative to an arbitrary zero 
of energy for two adjacent sites i and} J;le designate4 
as V i and V i> and the free-energy barners for ~ to J 
and j to l ' transitions be defined as W ij and TT:'Ji, 
respectively. The height of the free-energy barner 
between sites i and j , rej erred to the zero oj energy, 
is then 

(lla) 

Consider a series of transitions i to j, J to l, 1 to i for 
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The sum of the eq (11) is 

(lIb) 

(l1c) 

(12) 

If we recall the definition of k ij, eq (1) , inspection 
shows that eq (12) corresponds to log (k ijk jlk1i)= 
log (k jik Ilk 0), and hence 

(13) 

The same type of relations, eq (12) and (13) , can be 
obtained for any closed circuit of transitions between 
adjacent sites wi~h ~hree or more jumps to th~ cir­
cuit.7 For the SIx-site model there are seven mde­
pendent relations, such as eq (13) , namely, any 
seven of the eight eq (2) . All others and those in­
volving more sites are de~i'.'"able from .e9-. (13) . Ac­
cordingly, of the 24 tranSitIOn probabilItIeS only 17 
are independent. This is plausible on physical 
grounds. The local fr.ee-e~ergy syste!ll of the l5eneral 
model is fixed when SIX mmus one slte energies and 
12 barriers Wei, j) are specified; the "minus one" 
arises because the zero of energy is arbitrary . 

The following geometrical argument illustrates 
how all product relations of the type in eq (13) , but 
involving more sites, can be constructed from suit­
able products of the product relations given in eq (2) 
for three adjacent sites. 

The six: orientational sites (fig. 1) are located at the 
corners of an octahedron. Associated with the 
product relati~ns on the k jj, eq (13), for a :lose.d ?ir­
cuit of transitIOns between the adjacent sites ~ , J, l , 
is the circuit of the perimeter of the face with vertices 
i j l and the inverse circuit. Consider a closed 
dirc~it along the edges of the octahedron connecting 
the successively adjacent sites i, j, l , .. . , m, i , for 
example, where there arc 4, 5, or 6 s~tes. This closed 
circuit divides the octahedron, a slffiply connected 
surface into two parts, each of which is constituted 
of tria~gular faces; for convenience, choose the sur­
face with the fewer faces , labeled T t , • • . , Tp. If we 
tra verse in succession in the same sense 8 as tha t on 
the whole perimeter (i, j, l , . .. , m, i), the perimeters 
of each of the triangular faces TJ , • • ., Tp this is the 
same as traversing the bounding path i , j , l , . . . , 

7 An alternate method of arriv ing at product relations of t he type in eq (13) or 
eq \2) is to invoke "detailed balancing" for each pair of adjaccnt sites. This 
means that at equilibrium the number of d ipoles turmng 111 umt t Ime from site 
ito sitej is equal to the number turning from sitej to site " or kijCil = kjiC;l; G 1:t is 
the equilibrium number of dipoles in tbe ;th site. For a particular case. sites 1,2, 
3, we may t hen write k12Cll =k" C 21, k"C21=k"C,!,and k31Q31=k13Cll. The product 
of the last three equations yields eq (2a) , kl2k23k31=k21k32k13. 

8 That is if t he perimeter of the portion of t he surface bounded by t he sites 
(i, j, .. 0''':''' i) is traversed in a clockwise sense by the above sequence, then each 
of the constituent triangles is traversed in t he same sense. 
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m, i . Hence if we multiply the product equations 
such a (13) for the triangles Tt , ... , Tv, traversing 
their edges in the correct sense, we obtain the corre­
sponding product relation for the circuit (i, j, l , ... , 
m, i) and the inverse circuit (i, m, ... , l, j, i). In 
this way the k ij product relation for any sequence of 
connected sites can be formed by multiplying the 
product relations for the enclosed triangular circuits. 

3.2 . Application of Goldberg's Theorem 9 to the 
Matrix for the Six-Site Model 

Theol'em: If a real matrix A= (atj) of order n has 
Lhe properties aij~ O for i, j=I, ... , n with i~j 
and 

for all (ii, .. . ,im ) belonging to (I , ... , n), m ~3, then 
all the characteristic roots of A are real. 

We wish to apply the theorem to the matrix - flo 
derived from Ll in eq (5a) by letting D be zero and 
changing the signs of the elements. If we let aij be 
the element of - Llo in the ith row and thejth column, 
the usual order of index notation, we note that for 
i~j 

(15) 

i. e., the order of indices is reversed on the k's. Hence 
with eq (15), eq (14) can be written as follows, after 
interchanging the left and right sides and then re­
versing the factor ord er on the right side: 

Equation (14') now evidently equates the product of 
ktJ's for the closed circuit of m sites (3~m~6) 
ic·-'?i2 , i2-7i3, • • • ,im-7i! to the corresponding 
product for the inverse circuit i!-7im , • • • , i 2-71:!. 
There are two types of circuits: (a) circuits in which 
at least one successive pair iv, iQ are nonadjacent sites, 
and (b) circuits in which all successive site pairs are 
adjacent. Since by the S-J hypothesis ki i "" pa 
ki.ip""O for all nonadjacent site pairs, eq (14'), and 
hence eq (14), is valid for case (a). Next we have 
indica ted in sec tion 3.1 that closed-circui t product 
relations of the type eq (14') are valid for a sequence 
of three or more adjacent sites. Hence our matrix 
- Llo for the general six-site model satisfies t.he above 
theorem. 

3.3. Range of Eigenvalues 

Brauer [5] has derived the following theorem 
regarding the characteristic roots (eigenvalues) of a 
matrix. 

, K. Goldberg of tbe Applied Mathematics Division of the Bureau. His proof 
is published iu RP2652 iu this Journal. The theorem as stated above is in 11 
slightly different form from tbat as stated by Goldberg; his condition (2) has 
been replaced by the conditiou a;;;::>:O which still permits tbe construction of all 
equivalent symmctric matrix, namely, b;F(a;jaji)!/'. 
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Th eoTem: Let A = (aij) be an arbitrary rna trix and 

n 

~latJ I= Qj ' 
i=1 
ir'i 

Each characteristic root" lies in at least one of the 
circles 

Iz - a · I< P 'It _ t 

and in at least one of the circles 

A is a square matrix of order n over the complex 
fi eld; z is the complex variable x+ty . P i is the sum 
of the absolute values of the ofl'-cliagonal elements in 
the ith row; Qj is a similar sum for the jth column. 

In the matrix - Llo derived from the characteristic 
determinant, eq (5a), by letting D be zero and chang­
ing the signs, we know that the off-diagonal elements 
are all real and positive, and so an off-diagonal 
column sum is Qj. Also from eq (5a) we see that 
the jth diagonal element ajj is -Qj. H ence, for the 
jth circle (j= I , ... , 6) the radius is Qh and the 
center is on the real axis at - Qt. Let Qm ~ Q, 
(j=,= I , ... ,6). Qm defines the largest circle. Pre­
viously all roots were shown to be real. H ence all 
roots lie on or within the mth circle on the axis of 
reals, that is between zero and 2amm (amm being the 
most negative of the diagonal elements in - Llo). 

3.4. Useful Formulas 

R elation between the eq1tilibTium numbeT oj dipoleg 
in each site with and without a static electTic field. W 0 

refer to the method of solving the rate equations in 
reference 1. After a "modo analysis" in which for 
each given mode f3 the coefficients OtP are determined 
relative to one another, the boundary condition at 
t= 0 is introduced. This condition corresponds to 
the sudden removal of a static electric field. This 
results in the equations 

Cj~=~Oi{3, 
{3 

where Oi~ is the equilibrium number of dipoles in the 
ith site in the presence of the field. A general 
expression for these coefficients in terms of the 
eq uilibrium coefficients for zero field is helpful in 
solving any particular model. 

The equations below for the Cj~ are derived in a 
manner similar to that indicated in section 2.4 of 
reference 1. 

--W e assume a static electric field F defined by the 
magnitude F and the polar angles ~ and 0, with ~ 
being the azimuth angle measured from the z-axis. 
For convenience, let 

'Y=J.l.F/kT and 'Yx = 'Y sin ~ cos 0 

'Yy='Y sin ~ sin 0 

'Yz='Y cos ~. 



Then 

C1{=C11 [ 1--'YX(C31-C01)/N - 'YY(C21 -C41)/N - 'Yz (Cl1-;:/(61 1)] 
C2{=C21 [ 1- 'YX(C31-C51)fN- 'Yy(C21-;;C41 1 )-'YZ(C11 -C61)/N J 

C31"'=C31 [ l -'Yx (C31-;;COI 1 )-'YY(C21-CU )/N - 'Yz(CU-C61)/N ] 

C4t=C41 [ 1- 'YX(C31-C01)/N _ 'Yv(C21-;;C41+ 1 )-'Yz(Cn -C61)fN ] 

C5t=C51 [ l -'Yx (C31-;; C51 + 1 )-'YY(C21-C41)/N - 'Yz(Cn-C61 )/N ] 

C6t=C61 [ 1- 'YX(C31-C01)/N - 'Yy(C21 -C41)/N - 'Yz (C11-;;C61+1) ] 

(16) 

The total polarizability, <X tot . We assume a poly­
crystalline substance and follow the procedme out­
lined in section 2.4, reference 1, for obtaining the 
polarizability associated with each mode. Here, 
however, we introduce for each site i the value of 
Ni at t= O, namely, Cfl' With the use of the ex­
pressions for the Cfl given in the preceding para­
graph, one can obtain 
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