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Calculation of Thermodynamic Functions for
Polyatomic Molecules

Harold W. Woolley

Formulas are given from which the thermodynamic functions may be obtained for
polyatomic molecules not exhibiting special phenomena, such as internal rotation. The
effects of first and second order anharmonicities and rotational-vibrational interaction are
treated in detail, as also are the angular momentum effects of doubly degenerate vibrations
in linear molecules. This paper presents formulas for the corrections carried to higher order
than has hitherto been available.

1. Introduction

There is occasionally need for accurate thermodynamic functions for polyatomic molecules.
A definite calculating procedure exists for approximate calculations via the rigid-rotator har-
monic oscillator treatment, with small corrections for effects of anharmonicity, stretching, ete.

This paper presents formulas for the corrections carried to higher order than has hitherto
been available. Calculations can thus be made via the approximation formulas with accuracy
probably comparable with that of the direct summation method using extrapolated formulas
for the energy levels, aside from effects related to vibrational and rotational cut-off, which have
been omitted.

2. Nonlinear Polyatomic Molecules

The partition function for the internal molecular energy states may be written as
t=T9 .

Q= QrQrcQr .0 Q. (1)

For nonlinear molecules,

Qr=(1/7)y/ ([ A:BoCo) (k T/he)* 2)

is the rigid rotator partition function for the lowest vibrational energy state, where Ay, By, and
(), are the rotational constants for the ground vibrational state, and v is the symmetry number.
Qi 0. 1s the partition function for vibrational levels of harmonic oscillators. Qg is a correction
factor including (1) a factor 1-+p7. . . for rotational stretching, as shown by Wilson [1]* and
(2) a factor 1-+6,/7-46,/T for a low temperature quantum correction for rotation as shown by
Stripp and Kirkwood [2].2 @, is a factor including rotational-vibrational interaction and the
anharmonicity corrections, now to be treated in detail.

The rotational-vibrational interaction in its simple form arises from the vibrational de-
pendence of the analogue of eq (2) for higher vibrational states. Before summation over
vibrational quantum numbers, the dependence is introduced by including the factor

R,=exp[Zaw;+Za;0?+2a,;00;,+ 202+ 21020, Za;:0.00:], (3)

equivalent to a form introduced by Benedict [3].* With his formulation, the constants in the
factor R, come from sums of corresponding constants for A,, B, and (,, A summation pro-
cedure adequate to treat this with the anharmonicity effects follows, extending the latter
beyond the linear terms of Stockmayer, Kavanagh, and Mickley [4].

1 Related to a thesis submitted to the Graduate School of the University of Michigan in partial fulfillment of the requirements for the Ph. D.
degree in Physics.

2 Figures in brackets indicate the literature references at the end of this paper.

3 Expressions representing the 7'2 rotational stretching effect and the 7'-3 low temperature correction as well as a low temperature correction
for symmetry effects for different classes of rotational levels for the asymmetric rotator are included in the thesis.

4 An equivalent representation in slightly different form is given in the thesis.
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For a given vibrational level, specified by vibrational quantum numbers »; 1<:7<n, the
statistical weight is the product of the n quantities

pi=itd;i— 1)/l (di— 1], 4)

where d; is the degeneracy associated with the ith fundamental frequency.
The summation over the vibrational levels may be indicated as

Q= QRQRc;Rv exp[~th,,/kT]Hpi (%)

UiS
with the vibrational energy in wave numbers given by
Go=Z20w;+2Z2,0;0,—1) + 22,0 0;+ ZY 110:(0:— 1) (0:—2) + 2y 140:(0:— 1)0;+- 2y v v 0x. - (6)

The relations between these constants and the more usual ones are indicated in appendix 1.
The Boltzmann factor is separated into two factors, one for harmonic oscillators fitting
the lowest levels and a second giving the alteration due to anharmonicity

exp[—heG, [k T]=exp[—heZww;/k T)exp[—he(G,—Zww,) [k T]. (7)

Qye, the product of the second factor on the right hand side of (7) with /,, is expanded into
a power series whose terms are polynomials in the »’s.  Defining a function

fiZ)=v!|(v;—2Z)! (8)
it can be shown that?
épie—“i”f=<1—e-uf>‘df, (9)
where u;=hcw;/kT, and that
S Z)pievin=[(di+ Z— 1) (di—1)]-e= 2/ (1— ) 4:+2], (10)

Vi=0

The factor @, can be expressed as a sum of terms, each linear in whatever f/s it contains.®
The results of multiple summation over all »,’s follow by application of eq (10). If the right-
hand side of eq (10) be designated by f*(Z), one has Z,Q,Q,.= Qu 0.Q., where @Q,=exp [—Zu ]
Qi 0. =2,0, and where ¢, is the same function of f*(Z) as @, was of f,(Z). Thus eq (1)
has been evaluated, @ . being given by

0. =II(1—e %)~d. (11)
]

There is some advantage in using the logarithm of the partition function from this point
on because of analytic cancellations of some higher order terms. The terms removed are cross
products without linkage in the subscripts, such as x5, 2,25, and az;*, for example.

The contribution to In Q. due to z;; and z,; terms, with 7,—e % and s,=(1—e %)"!is

— (he/kT) 25 {@:di(di+1)risi+w5,didjr 8.8, +35 (he/kT)? 25 { 203, do(d i+ 1)r[14-2(d i+ 1)r )]st
a2, ddr ;14 di - dirj)sis2+2x x g d dydir 771878 81+ 42,%d (ds 1) djrirsis)),  (12)
with terms of higher order for this and other contributions listed in appendix 4. At high

temperature the first term varies as 7" and the second as 7% The terms in the appendix are
higher than 7% in principal dependence at high temperature.

5 See appendix 2.
6 Relations giving the simpler polynomials in terms of the f’s will be found in appendix 3.
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Similarly, the contribution of higher order anharmonic terms is
— (he/kT) > { Y i(di+ 1) (diF-2)risi +y14;d i (d i+ 1) drirjs2s, +yipd dydir v risis,se ). (13)
The contribution due to rotational-vibrational interaction is
D {adirsitadr(1+dr)si+ayddrrss;+3aidrs?) (14)
as far as @’s alone are concerned, while their mixing with anharmonicities gives
— (he/kT) D> {20 @::d:(ds+ )i+ a i ddrrssis, ). (15)

In all of these (multiple) summations, if the terms are completely symmetric in the indices
that are present, such as 1, 7, ete., the symmetric indices are to progress in size as with 1< j<k,
and so forth. For terms not completely symmetric in the indices, the indices not symmetric
are simply not to be equal, thus 757>k, and so forth.”

3. Linear Molecules

There is an additional kind of vibrational-rotational interaction, concerning vibrational
angular momentum, which is important for linear molecules.  When doubly degenerate vibra-
tions occur, the vibrational energy, eq (6), contains an additional term ¢=2 ¢,l/;, For

i<j
linear molecules, in addition, there is dependence of the rotational energy upon I where [=2[;,
giving for the two together

F(J, )=g+B,[J(J+1)—F]—D,[J(J+1)—F], (16)

where J=1, [-+1,1+2 . . ., with double degeneracy for |I|>>0.
The sum over the rotational levels for /> |I| follows from a half integer summation formula
of the Euler-Maclaurin type [5]

©

3 = [ fdn-+ /2 (=)~ /5760 (=) -+ (31967680 O u—1) . . ., (17)
giving
J%i @J+1)exp heBlJ(J+1)—E)/k T=kT/heB+1/34 . . . 18)
and
Q=J§” @2J+1)e " = (1 [y)[k T [he B+1/3+-2(k T/heB)*D| B]-¢ 7"/, (19)

The exponential in ¢ is expanded as a power series and the summations made with », increasing
by steps of two from /; to «, then summing /; from — = to + . If ¢ is extended to include
possible contributions to In . varying as 77 at high temperature, while retaining the g;; term
needed for nonlinear molecules, as in

g:thil?+;!]Ulil,’+ 2 9uilivit 25 gialior, (20)

] 1<J

the contribution of ¢ to In @, becomes

—2(hefk T)Z{giirig?’}‘!/iiiria +37)82 -+ giundir irisise—2g @ w?st } 4 (he/k T2 { g% (r4-+ 8rF
+rf)3?+2!]1'21'"1'7”;‘3?8?+4giixii7'¢2(4+3ri)3?+2giﬂ7ik7'i7’k(1+7'1)3?3k}- (21)

7 For a case with 3 frequencies, for example, z;z;; which is not completely symmetric in the indices would include 211713 and also 23373  But
zii%jjxii has complete symmetry in the indices. and x3371213 is sufficient without zgr23 also.
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Constants of the latter two types in eq (20) are not experimentally available at present. For a
linear molecule, when there is only one doubly degenerate frequency, with /=0, the — B,/*
term of eq (16) is commonly absorbed into the ¢g/3 term. In that case, g, of eq (21) repre-
sents g+ B, of the spectroscopist.

The free energy function for a mole of a substance in the standard ideal gas state is given by

—(F°—E3)/RT=In @+ (5/2) In T+ (3/2)ln M+1n (2x/N)3?k52[h3P,,

P, being atmospheric pressure, M the molecular weight, and the others known physical con-
stants. The other functions follow by differentiation as given in appendix 5.

A tabulation by Pennington and Kobe [6] may also be used for convenient evaluation of
the more important of the contribution here treated.
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5. Appendices
5.1. Appendix 1
The relation of the constants of eq (6) with those in
szzai(vt+di/2)+Ziii(vi+dz/2)2+%ffj(’vi+di/2)(v;+dj/2)+Z?iif(vi+ d/2)?
+;jgii](”i+di/2)2(0j+dj/2)+i<;<kg7ijk(l’z+di/2)(vj+dj/2)(vk+dk/2)
is
wi:ai—l_((li+1)-jii+;%djzij+(1/4)(3d?+6di+'4)27iii
+;(%)(di+1>dj?7iij+;(d?/4)77i1j+Zj'<k2(djdk/4>?7i1k

Ti= z‘[i+(%)(3d1+6)?7iii+2j)(dj/Z)yiiJ'
3717:51‘1+(di+1)17izj+(dj+1)77171+Zk'(dk/2)?7wk
YVirr="Y i1, Yiis="Ysi7 A Yije="Y 1.

5.2. Appendix 2

To obtain eq (9) and (10), begin with the identity
i r'=1—z )L

=0

Multiply by 27~* and differentiate n times with respect to z, getting

n(‘+ —Z' —0—14+Z—n dn z =il
lg(—l) %Z)'lw B AL (x—1)71].
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For the second member of the identity, let —1=¢, giving

d" Zh= . d" r=ZW Z! iy
A AL B P F s
n
For n>7—1, the only contribution is from the one term with r=27, giving (i[td t=' or (—1)"n!

1-Z+n
(z—1)""""  Multiplying both members of the identity by (—1)" 2, one has
i n—2)!

(D‘I’n_Z)!I—”A n! ., L
=0 ('D—Z)!(n—Z)!_(n_Z)! z=Z2(1—z™Y) -

Inserting ¢ “i for x, one may obtain eq (10) by using n=27-4d;—1, with eq (9) as the special
case given by Z=0.

5.3. Appendix 3
Funections of v in terms of (f(s)=2!/(v—s)!:
v=F(1)
v*=f(2)+f(1)
v*=F(3)+3f(2)+f(1)
v'=f(4)+6f(3)+7(2)+f(1)
v*=1(5)+10f(4)+25f(3)+15f(2)+f(1)
v*=f(6)+15f(5)+65f(4)+90f(3)+31/(2)+/(1)

P*—v*=f(3)+2f(2)
v'— 1 =1(4)+5f(3)+4f(2)

v'—20*+0*=F(4)+4f(3) +2f(2)
V' —20'4-0*=f(5)+8f(4) 1+ 14/(3) +4/(2).
5.4. Appendix 4
Additional terms in the formulas given earlier are as follows:

Equation (12):

—(1/6) (he[k T)* >0 {423 d (di+ 1)ri[1+ (8d,+-12)r,+ (8d; +-22d,+ 15)r} + (2d; +4d+-2)rf]s?
+a?ddrirs 14+ Bd+1)r,+ Bd;+1)r;+ dird +diri+ (6d.d;+3d 4 3d;4-1)r ;4 dirir;
+diradlsisi -+ 12032 ,,d (d - 1 Ydirir (14 (3d;+4)r i+ (d;+ 1)rd]sis;+ 6 a2,d:(d; 4 1)driry[2
+ @2d+1)ri+2d ;4 dyr i Jsis? +3a2 2 ad dydir v i1+ Qd A 1)r i +-djr;+-djr i) sisisy
4242, ;2 ,d (di+1)d(d; - 1)r3r3sisd + 122 0 0d o (d - 1) djdirir re (247 1) 8188
+ 122 ;2 5 d i (d i+ 1) d,dirdririsisisy + 6@, @ @ ad dydxdyr o ey (1415)s38 858
+ 6242 35 1 d Ay dydyr i 1$33i 81814 622 qxjpd dydyr v i (L d i+ djr s+ dir i) $38383 |
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Equation (13):

— (he/kT) 220 { 2i0udi(d i+ 1) (di+2) (di+-3)risi+ 240di(di+1) (dy+2)d rirsis;
+ 2y (d s 1) dydir?r 8?8 s+ 244,08 (d s+ 1) dy(d A= 1)rir3sist -+ 2 yud dydidyr i s i858 151 §
+(1/2) (he/k T 25 { 1223 14:ds(d i+ 1) (di+2)7[1+ (di+1)ri]s? 44259 10,4 (ds+ 1) d rirs[1
+2(di+1)ridsts;+4x5d:(d i+ 1)d;(d; 4 1)ririsisi 420 gpd o (d i+ 1) dydirir res?s si
6239100 (di+ 1) (dA-2)drir sts;+ 23y 50 (d i 1)d p2r;[2 -+ d e i 4-2d jr ] s3s?
4, 10d (A 1) ddirir risds s+ 20 Y id il ydi (dp - 1)r i 13878580+ 20 1y sradidydpdir i1 i1 52
;8568122 3y i@ ol gy (1 +dyr o+ djr ) sisisy }

Equation (14):
2 { aiaiidiri[l A (@ +2d,) 7‘1‘]8?+aiaijdidjrirj8?8j+ (1/6>a’?dirl (1 _i"ri)s'?_i'a’iiidiri[l A= +3d,)r;
Fdrdlsitaddrir;(1-Fdir)sis;+ apd ddyr i ris 8 8i }
Equation (15):
— (hefk TYZ{ a;@id (d;+1)r2[4 4 (4d;+2)r]si4-2a 240 (d - 1)rirsds ;- ayddr i1
+ @2d;+1)rsis;+aye ddr o[l +daFdir;)sist -+ agand ddr s s3sz )
+ 3 (he/kT)*2 { dald(di+ 1)1+ Bdi+4)r 4 (di+ 17+ (di -+ d)rilsi +aaddid o1
+@d A 1)r - dp;+-dpajlsisi+4az@ o d(di+1)dair;(24-r;)sis +4ae2 5d,(d,
+1)d2r;8282+ 20 2 @ i@yl 7 (1 1.)8 38,8+ 202 1 e oy a7 73528281, }
Equation (21):
—(1/3) (he/k T)*> { gk (r 45073+ 19473+ 5078 +15) st + 62 493 73 (16 4+ 997+ 70724 375) 8¢
+3zyghidrir;(1 4+ 1971975 +13) 8585+ 128159 00557 5 (L+74) (1475) 8385
+120%,9:%(4 4557+ T0rF +-977) 8§+ 122:84,9:.dr5r (8 + 1774 37%) 8%,
+32%,g:d i1+ 87+ 573+ d;(ry4r o412 1845+ 12252559 1d (A 1) 7 a3 (1+-1) 8353
652 g il s i i (L4411 1%) 8581856215 j0g i e i1 (1 4-70) €358 }
5.5. Appendix 5
For a term of In @ of the form
szpfl Hr;rniszli: Wfl,
2

with fi=1+2> trs and u=he/kT and with z, p, m;, n; t,, and ¢, constants, the contributions

to the variouszthermodynamic functions are: For —(F°—E})/RT, z=Wf,; for (H°—E;)/RT,
—udz/du=Wh,; for C; /R, w*d*z/du?*=Whs; with ho=fg:+fs, hs=F1g:+2f:0:+f5, where

fZIZtiQiuﬁ?"

fo=2otqiuiri

= —p—l—ziniuir,-si—l— Simauy
(Flp= —p—i—Ziniu?ris?—i—gf.

WasHINGTON, January 11, 1956.

110

U. S. GOVERNMENT PRINTING OFFICE: 1956



	jresv56n2p_105
	jresv56n2p_106
	jresv56n2p_107
	jresv56n2p_108
	jresv56n2p_109
	jresv56n2p_110

