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Calculation of Thermodynamic Functions for 
Polyatomic Molecules! 

Harold W. WooJley 

F ormul as a re give n from which t he t hermod ynami c fun ctions may be obtained for 
po lya to mi c molec ules not exhibiting special phenomena, s uch as internal rotati on. Thc 
cffects of first and second order anharmonicit ies and ro tational-vibrational interaction a re 
t ,·ea ted in de ta il, as also are t he a ngular moment um effects of doubly degenerate vibrations 
in linear molecules. This paper presents formulas for t he co rrect ions carried to hi gher order 
than has hither to been a vailable. 

1. Introduction 

'1'11 er e is occasionally need for accLlraLe th ermodynami c funcLions for polyatomic molecules. 
A defini te calculating procedure exists for approximate calculations via th e rigid-ro tator har­
monic oscillaLor treatment, with small corrections for effects of anh armonicity, s tretching, etc. 

This paper presents formulas for the corrections carried to high er order than ha hith erto 
been available. Calculations can thus be made via the approximation formulas with accuracy 
probably comparable with that of the direct summation method using extrapolated formulas 
for the en ergy levels, aside from effects rela ted to vibrational and ro tational cut-off, which have 
been omit ted. 

2 . Nonlinear Poly atomic Molecules 

The p arti tion function for the internal molecular energy sta tes may be wri tten as 

(1) 
For nonlinear molecules, 

(2) 

is the rigid ro tator par tition function for the lowest vibrational energy sLate, where .110, Eo, and 
Co are the rotational constan ts for the ground vibrational state, and 'Y is the symmetry number. 
QIl .O. is the partition function for vibra tional levels of harmonic oscillators. Qnc is a correction 
fac tor including (1) a factor 1 + pT. . . for rotational stretching, as shown by Wilson [1]2 and 
(2) a factor 1 +edT+e2/T2 for a low temperature quantum correction for ro ta tion as shown by 
Stripp and Kirkwood [2] .3 Qc is a factor including rotational-vibrational interaction and th e 
anharmonicity corrections, now to be tr eated in detail. 

The r ota tional-vibrational interaction in its simple form arises from the vibra Lional de­
pendence of the analogue of eq (2) for higher vibrational states . Before summa Lion over 
vibrational quan tum numbers, the dependence is introduced by including the factor 

(3) 

equivalen t to a form introdu ced by Benedi ct [3 ]. 4 With his formulation, the constan ts in the 
factor R. come from sums of corresponding constan ts for A v, B., and Cv• A summation pro­
cedure adequate to treat this wi th the anharmonicity effects follows, extending the lat ter 
beyond the linear t erms of Stockm ayer, K avanagh, and Mickley [4] . 

I Related to a thesis submitted to the Graduate School of the Un iversity of M ichigan in pa rtial fulfi llmeut o[ the requ irements [or the Ph . D. 
degree in P hysics. 

, Figures in hraekets indicate t he li terat ure references at the end of th is pa per. 
3 Expressions re prosenting the T 2 rotational stretching effect and tho T -3 low temperature correction as well as a low temperatu re correc tion 

for symmetry e fTects for d ifTCl'ent classes of rotational levels for the asymmetric rotator arc included in tho thesis. 
• An equivalent representat ion in slightly difTercnt form is given in the thesis. 
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For a given vibrational level, specified by vibrational quantum numbers Vi, 1 ~ i ~ 'Y/" the 
statistical weight is the product of the n quantities 

(4) 

where di is the degeneracy associated with the ith fundamental frequency. 
The summation over the vibrational levels may be indicated as 

(5 ) 

with the vibrational energy in wave numbers given by 
, 

G.= :2;WiVi+ :2;xiivi(vi- 1) + :2;X ijViVj+ :2;YwV;(vi- l) (Vi- 2) + :2;y iijvi(vi- 1 )Vj+ :2;Y ijkViVjVk. (6) 

The relations between these constants and the more usual ones are indicatedln appendix 1. 
The Boltzmann factor is separated into two factors, one for harmonic oscillators fit ting 

the lowest levels and a second giving the alteration due to anharmonicity 

exp[ - hcGv/kT] = exp[ - hc:2;w ivi/kT]exp[ - hc( Gv- :2;WiVi)jkT]. (7) 

Qvc, the product of the second factor on the right band side of (7) with Rv, is expanded into 
a power series whose terms are polynomials in the V's. Defining a function 

it can be shown that 5 

where u i= hcw;/kT, and that 

~Pie-Ui Vi = (l - e-Ui)- di, 
Vi= Q 

"f:,fi(Z)PiC-U,P; = [(di+ Z - l)! j(d i- l )!]·[e-Zuij( l - e-Ui)di+ Z] . 
Vi= O 

(8) 

(9) 

(10) 

The factor Qvc can be expressed as a sum of terms, each linear in whatever fis it contains. 6 

The results of multiple summation over all v/ s follow by application of eq (10). If the right­
hand side of eq (10) be designated by f;* (Z) , one has :2;vQvQvc= QHO. Qc, where Qv= exp [- :2; iUiVi] 
QH .O.= :2;vQ. and where Qc is the same function of j;*(Z) as Qvc was of fi(Z) , Thus eq (1) 
has been evaluated, QH .O. being given by 

QH.O. = II (I -e-Ui )-di. 
i 

(11 ) 

There is some advantage in using the logarithm of the partition function from this point 
on because of analytic cancellations of some higber order terms. The terms removed are cross 
products without linkage in the subscripts, such as XijXkl , XiiXjk , and aix}/ , for example. 

The contribution to 1n Qc due to Xii and Xi} terms, with ri= e- Ui and si= (1 - e- Ui )- l is 

- (hcjkT)~ {x jjdi(d i+ l)r;s;+xijdidl\ rjSiSj} +HhcjkT)2~ {2x7i di(d i+ l)r; [l + 2(di+ l)ri]S; 

+ x7jdidjr irAI + dir i+ djr}]s;s~+2x ijX 'kd idjdkr irjrkS7s h + 4xiiXijdi(di+ 1 )djr:r jsrsj], (12) 

with terms of higher order for this and other contributions listed in appendix 4 . At high 
temperature the first term varies as T and the second as T2. The terms in the appendix are 
higher than T2 in principal dependence at high temperature. 

, See appendix 2. 
, Relations giving the simpler polynomials in terms of theI's will be found in appendix 3. 
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Similarly, the contribution of higher order anharmonic terms is 

Th e contribution due to rotational-vibrational interaction is 

~ {a,d,r,8,+a"d,rt (1 +dir i)8~+a ,jdidjr irj8i8j+!a~dir i8~} (14) 

as far as a's alone are concerned, while their mixing with anharmonicities gives 

(15) 

In all of these (multiple) summations, if the terms are completely symmetric in the indices 
that are present, such as i, j, etc., the symmetric indices are to progress in size as with i< j< k, 
and so forth. For terms not completely symmetric in the indices, the indices not symmetric 
are simply not to be equal, thus i~j ~k, and so forth.7 

3 . Linear Molecules 

There is an additional kind of vibrational-rotational interaction, concerning vibrational 
angular momentum, which is important for linear molecules. When doubly degenerate vibra­
tions occur, the vibrational energy, eq (6), contains an additional term g= J:. gijlilj. For 

i$j 

linear molecules, in addition, there is dependence of the rotational energy upon l where l= J:.l i, 
giving for the two together 

(16) 

where J = l, 1+ 1, l+ 2 ... , with double degeneracy for Ill> O. 
The sum over the rotational levels for J '?l l l follows from a half integer summation formula 

of the Euler-Maclaurin type [5] 

'" 
~ (2J+ l )exp hcB[J(J + l )-l2]/kT= kT/hcB+ l /3+ 
J =ili 

(18) 

and 

'" Q= ~ (2J+ l )e-hcF/kT=(I/'Y) [kT /hcB+ 1/3 + 2 (kT/hcB)2D/B]·e-IlCg/kT. (19) 
J=ili 

The exponential in g is expanded as a power series and the summations made with Vi increasing 
by steps of two from 1i to 00, then summing li from - 00 to + 00. If g is extended to include 
possible contributions to In Qc varying as T2 at high temperature, while retaining the gij term 
needed for nonlinear molecules, as in 

(20 ) 

the contribution of g to In Qc becomes 

7 For a case with 3 frequencies, for exam pIc, XiiXii which is not completely symmetric in tho indices would inc]udexUxl3 and a l SOT33l'31 . But 
XiiX iiXij has complete symmetry in the indicQS. and X33X'1IX13 is sufficient withoutX33X'1IX31 also. 
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Constants of the latter two types in eq (20) are not experimentally available at present. For a 
linear molecule, when there is only one doubly degenerate frequency, with l= l2' the - E v12 
term of eq (16) is commonly absorbed into the g221; term. In that case, gii of eq (21) repre­
sents g22 + E. of the spectroscopist. 

The free energy function for a mole of a substance in the standard ideal gas state is given by 

Po being atmospheric pressure, M the molecular weight, and the others known physical con­
stants. The other functions follow by differentiation as given in appendix 5. 

A tabulation by Pennington and Kobe [6] may also be used for convenient evalu ation of 
the more important of the contribution here treated. 
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5 . Appendices 

5 .1. Appendix 1 

The relation of the constants of eq (6) with those in 

W;= Wt+ (dt+ l )Xti+ ~tdjXtj+ (1/4 )(3df+ 6dt+ 4 )Yiii 
j 

5.2 . Appendix 2 

To obtain eq (9) and (10), begin with the identity 

00 

~ x-'= ( l _ X- l)-l. 
v=o 

Multiply by X Z - l and differentiate n times with respect to x, getting 

~(_l)n (v + n-Z)! x -v- I+Z-n = dn
n [xZ(X-l) - I]. 

v=o (v - Z )! d x 
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I :, 

For Lbe second member of the identity, let x- I = t, giving 

or . tZ- r - 1 dn [r~z Z' J' 
dt n ~ (Z-1')!1'! . 

Fol' ,,> Z - I, the only contr ibution is from the one term with 1' = Z, giving 1t: t- I or (- l)"n! 

xl-Z+n 
(x_ 1) -I-n. Multiplying both members of the identity by (- I) n (n- Z )!' one has 

" (v + n-Z)! x -V n' 
.LJ (n - Z )! x - z (l -x-1)-1-n. 
V~ O (v - Z ) ! (n- Z)! 

Inserting e-Ui for x, one may obtain eq (10) by using n = Z + di- l , with eq (9) as the special 
case given by Z = O. 

5 .3 . Appendix 3 

Functions of v in terms of (J(s) = v!/(v-s) !: 

v= f(l) 

v2 = f (2 )+f(1) 

v3= f(3) + 3f(2) + f(1) 

v4= f (4) + 6f(3) + 7f(2) +f(1 ) 

v5= f(5) + 10f(4) + 25f(3) + 15f(2 ) + f(l) 

v6=f(6) + 15f(5) + 65f(4) + 90f(3) +3 ]f(2) + f (l) 

V 3-v2= f(3) + 2f(2 ) 

V4-v3=f(4 ) + 5f(3 ) + 4f(2 ) 

v4 - 2v3+v2 = f(4 ) + 4f(3) + 2f(2) 

v5-2v4+v3=f(5) + 8f(4) + 14f(3 ) + 4f(2 ). 

5 .4. Appendix 4 

Additional terms in the formulas given earlier are as follows: 

Equation (12): 

- (1/6) (hc/kT)3~ {4x7i di(di+ 1)1'W + (8di+ 12 )1'i+ (8dr+2 2di+ 15 )1':+ (2d:+4di+2)1'lM 

+xljdidj1' i1' j[1 + (3d j + 1)1'i+ (3d j+ 1h+d:r.+d;1';+ (6d idj+ 3d i + 3dj+ 1)ri1' j+d;1';1' j 

+ d;1'j7'7].sts f+ 12x:ixijd i(di+ l )dj1';rAl + (3 di+ 4)1' t+ (d i+ 1)r:]sfsj+6xitx:jdi(di+ 1)dj1':1'Jl2 

+ (2di+ 1)ri+ 2dj1' j+ dj1'i1'j]s;s7 + 3X:jXikdidjdk1'i1'j1'k[1 + (2d i + 1)1' i+ djrj+ dj1'i1' j]sls7sk 

+ 24xiiXjjXijdi(d j + l)dj(d j+ 1 )1':r;slsf+ 12xitxijxikdi(di+ 1 )djdkr;rj1'k(2 + 1' i)StS;8k 

+ 12xtixijxjkdi(di+ 1 )djdkr;rj1'kSls7sk+ 6XijXikXadidjdkdl1'i1';1'k1'l (1 + 1' j)s7SjSkSl 

+ 6X jjXikXjldidjdkdl1' i1'j1'k1'lS;s7skSl + 6XijXikXjkd idjdk1' i1'j1'k (1 + d j1' i+ dj1'j+ dk1'k)S:s7si } 
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Equation (13): 

- (helkT)~ {Ziiiidi(di+ 1) (di+2) (d t +3) 1'M+ ziiijdi(di+ 1) (di+2)dFt1' js;Sj 

+Ziijkdi(di+ l )d jdk1''f1'hs;sh+ ziijjdi(dt+ 1 )d j(dj+ 1 )1';r}s:s~+ Zijkldid jdkdl1't1'h1' ISiSjSkSI} 

+ (l/2) (helk T)2~ { 12xiiYwdt(dt+ 1) (d t+ 2 )1';[1 + (di+ 1)1' i]s?+4xitYiijdi(dt+ 1 ) dj1';rA 1 

+ 2(di+ 1)1'i]stsj+4xitYjjtdt(di+ l )dj(dj+ 1)r;r'fs;s;+4XitYijkdi(dt+ l )d jdk1''f1',1'ks;sjSk 

+ 6XtjYWdi(di+ 1) (di+ 2 )d j1';1' js;sj+ 2XtjYiijdt(di+ 1 )dj1';1' j[2 + di1' i+ 2dj1' j]sts; 

+ 4XijYiikdi( di+ 1 )djdkr,1' j1'kStS jSk+ 2Xi,Ykkididjdk(dk+ 1)1' i1' j1'is;s jsi + 2XijYikldidjdkdl1' ir j1'k1' IS; 

SjSkSI + 2XijY;.Jkdidjdk1' .1'j1'k( l + dj1' i+ dj1'j)s'fS~Sk} 

Equation (14): 

~ {aiaiidi1' i[l + (1 + 2dJ l' i]st+aiaijdidj1' i1'js7sj+ (J 16) a~d t1' . (J +1' ;)s7+ atttd t1'i [1 + (1 +3di)1'i 

+ d;1'ns;+ aiijdid j1' i1'j( l + di1' t)s;s j+ aijkdtdjdk1' i1'hSiSjSk} 

Equation (15): 

- (he/le T)~ {aiixiidtCdt+ 1 )1';[4 + (4 di+ 2)1' i]St+ 2aijXitdi(dt+ l)r:1'js;sj+ atixtjdtdj1't1'j [1 

+ (2di+ 1)1' i]8;Sj+ aijXtjdid j1' i1'A1 + di1't+ djr j]s7s7+ a ijXkjdidjdk1'i1'hSis;Sk } 

+HhelkT)2~ { 4aix;, dt(di+ 1)1';[1 + (3 dt+ 4)1' ,+ (dt+ l )r:+ (d7+ dt) 1'nst+(Ltx;i dtdjrt1'A l 

+ (2di+ l)1' i+ dj1'j+ dj1'irj]sts;+4a ixiiXijdi(dt+ 1 )dj1'71'i 2+ l' i)stsi+ 4ajXtiXijdi(d i 

+ 1 )d jl';1'js;s;+ 2aiXijXtkdidjdk1' i1',1'k( l +1'i)si3sj8.+ 2ajXi/J:ikdidjdk1't1'j1'kS;s;Sk} 

Equation (21 ): 

- (1/3) (helle T)3~ {gti (1' t+ 50d+ 1 94rt + 50r1+1'Ds~+ 6:lii91i1'1( 16 + 991' i+ 701'~+3 1'~)s~ 

+3Xijg~idj1't1'j (l + 191'i+ 191';+dMsj+ 12xijgiigjj1' i1'j (1 +1' i) (1 +1'j)s~s; 

+ 12x~igii1'1(4 +551'i+ 70d+9d)s~+ 12xiixijg iidj1'~1'j(8+ 171'i+ 31'~Msj 

+3x~jgiidj1' i1' j [1 + 81' i+51'~+ djCrt+ 41' i1'j + 1'11'j) ]s;s}+ 12xijxjjgiidj(dj+ l)1'd CI + 1' i)S~S; 

+ 6Xij:l" ikg iidjdk1' i1' j1'kO + 41' i+ 1'~)s~s jSk+ 6XjjXjkg tid jdk1' i1' j1'k( l +1'i)ds~sk} 

5.5. Appendix 5 

For a term of In Q of the form 

Z=XUP! 1 n 1';nis~i= W!l, 
t 

with !1=1+ ~ti1'fi and u = helleT and with x, p , m i, ni, t i, and qi constants, the contributions 
i 

to the various thermodynamic functions are: For - (F0 - E~) I RT, Z= W! I; for (H O - E~) / R T, 
- udzldu = Wh2; for C~/R, u2d2zjdu2 = Wh3; with h2=!lgl +h h3=!lg2+ 2!2g1+h where 

!2= ~tiq iUi1'ri , 
!3= ~tiq'fuMi , 

gl=-P+ ~niui1'isi+ ~miu i 
i 

g2=-P+ ~niu;1'is;+ gi. 
i 

W ASHINGTON , J anuary 11 , 1956. 
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