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Reflection 
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and Transmission of Gamma Radiation by 
a Collision-Monte Carlo 

Method 12 

Calculation by 
Density 

Martin 1. Berger 

The collision density of photons in an infinite Compton-scattering medium was calcu­
lated by random sampling. The intensity, spectral composition, a nd angular distribution 
were then determined for radiation reflected and t ransmitted by plane-parallel barriers by 
carrying out appropriate integrations over the collision density, taking into account the 
absorbing properties of t he medium and the effect of boundaries. All numerical work was 
done on the National Bureau of Standards automatic computer (SEAC). Sample results 
a re presented for O.66-Mev radiation incident on water barriers of various thicknesses. 

1. Introduction 

The Problem. The results of an investigation of 
the following boundary problem in gamma-ray 
diffusion are presented: A beam of monoenergetic 
gamma rays is incident at a given angle on a plane­
parallel barrier that has a finite thickness in one 
dimension but is infinite in the other two dimensions. 
What are the intensities and spectral compositions 
of the reflected and transmitted beam? 

M ethod of Solution. An analytical attack on this 
problem by th e solution of th e relevant transport 
equation leads to great mathematical difficul ty. 
So far such an approach has been successfully carried 
out for homogenous infinitely extended media [1),3 
but boundary problems remain unsolved. In order 
to bypass these difficulties, explore the problem, and 
obtain at least an approximate solution, this investi­
gation employed the Monte Carlo (random sampling) 
method. All numerical work was carried out on the 
automatic computer of the National Bureau of Stand­
ards (SEAC) . 

The calculation was divided, in regard to both 
method and execution, into two rather distinct parts : 
(1) a stochastic part, in which pho ton random walks 
are generated by random sampling in an infinite 
nonabsorbing scatterer, whereby a collision density 
is obtained, and (2) a calculation of th e reflected 
and transmitted radiation obtained by summations 
over collision densities, taking into accoun t boundary 
conditions and absorption characteristics of the 
barrier. There were a number of reasons for this 
division . For one thing, it reduced the required 
computer memory capacity. More importantly, 
the random walles have a "universal" character, 
i. e., they can be used for the calculation of different 
boundary problems involving different geometri es 
as well as different scatterin g and absorbing media. 
Not only will the repeated usc of the same set of 

I Tbis work was supported by the Office of Naval Research and tbe AtomiC 
Energy Commission Hcactor Division . 

, Some of tbe results of this paper were presented at a symposium on Monte 
Carlo methods at the Univers ity of Florida in March 1954 . 

'Figures in brackets indicate th e literature references at the end of this paper. 

random walks often lead to computing economy, 
but it may also increase the accuracy of a calculation . 
Suppose, for example, th at we wish to determine the 
diff erence in transmission for two beams incident on 
a barrier at different angles but otherwise identical. 
It will then be to our advan tage Lo base th e compari­
son on th e same set of random walk b ecause 
irrelevant differences res ul ting from statistical flu c­
tuations will thereby be largely eliminated . 

2. Gamma-Ray Random Walks in a n In­
finite Compton Scatterer 

2.1 . Definitions 

The state S of a photon can be specified by a seL 
of six quantities: 

S= (E,O,cp,x,y ,z) , 

where E is the photon energy, 0 and cp are angular 
coordinates describing the direction of motion (in a 
sph erical coordinate system with th e z-axis as polar 
axis), and x, y , and z arc Car tesian coordinates of 
position. Let the state of the photon immediately 
after the nth scattering even t OCCUlTing in a given 
random walk be denoted by SnCn= I ,2," '), and 
let So denote the state in which it was introduced 
into the scattering medium . A random walk is 
then described by a sequence 

each term (except So) depending stochastically on 
its immediate predecessor only (Markov process). 
The length , L , of 'such a sequence would be infinite, 
but in the present work the random walks are ter­
minated when the energy, E, drops below 30 kev . 
Thls arbitrary cu toff4 results in an average value 
(L )= 18 for an il}itial energy Eo=660 kev. A 

• The cutoO' is justified Oil ph YSical grounds because radiation at energies below 
30 key is always so heavily absorbed that it makes only a negligible contribu tion 
to the cmergen t radiation flux . 
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set of random walks constitutes a ~lonte Carlo 
estimate of the collision density resulting from the 
diffusion of radiation in an infinite homogenous 
Compton scatterer. 

It will be observed that for the problem of trans­
mission and refiection by plane-parallel barriers, 
only the variables E, fJ and one space variable, say z, 
are r equired. Nevertheless, it is worthwhile to 
calculate the other three variables also. The ran­
dom walks are thus made applicabJe to other 
boundary problems with different geometrical condi­
tions. ~i[oreover, we can use the sa.me set of 
random walks for barrier problems with differen t 
angles of incidence. We always set fJo = o and rotate 
th e boundaries as required by using, instead of cos 
(J and z , 

cos (J / = cos (J cos a + sin (J sin a cos 'P 

z' = x sin a+z cos a, 

\yhere a= (J~ is the angle of incidence. 

2.2. Random Sampling 

X ext the sampling scheme is described, by which 
successive states 8 n are selected, the initial state 
being specified as 8 0= (Ec,O,O,O,O ,O). Calculations of 
a set of random walks with this initial condition will 
serve for the solution of problems involving mono­
energetic beams of energy Eo and arbitrary direction 
of incidence a. Because of the linearity of the 
gamma-ray diffusion equation, i t is possible to 
obtain solutions for incident beams of specified 
energetic and angular composition by superposition 
of the results obtained with different Eo's and a's. 

Prior to the discussion of the detailed steps in the 
sampling process, some comment is in order concern­
ing the required random numbers. VVith a high­
speed computer the use of tables of random numbers 
is clearly impractical. Instead, so-called pseudo­
random numbers rm(O::;rm::; 1) were used, and which 
were generated as required in the course of the 
computation by a method developed by O. Taussky­
Todd [2]. They arc defined by the relations 

(2) 

Ro= l . 

It mq,y be shown that the period of Tm is 240, i . e., 
that a sequence of 240 different numbers will be 
obtained before repetition occurs. Extensive test­
ing carried out at the National Bureau of Standards 
has shown that th ese pseudorandom numbers 
satisfy the various accepted statistical criteria of 
randomness. It is an advantageous feature of th is 
method that identical random walks may be re­
created repeatedly for checking purposes, provided 
the initial random number used for the walk is 
recorded . 

The various steps in the calculation of 8,,+1, 
given 8 ", follow. 

a. Energy Change 

The energy E n+1 after a scattering is determined by 

(3) 

where T is a random number, and k (En,E) is the 
Klein-Nishinl1 differential coefficien t (pel' unit path 
length) for Compton scattering with energy ch ange 
from E n to E. 

It was found convenient to carry out the random 
sampling for the wavelength A= mc2 jE, where mc2 is 
the electron rest mass, rather than for the energy 
directly. If we make this change of variable, sub­
stitute the explicit formula for the Klein-Nishina 
differential coefficien t, and carry out the indicated 
integrations, eq (3) is transformed into 

To use this equatiou to finel An +IJ given An and r, 
would be intolerably cumbersome, even when an 
automatic computer is used. Latter and Kahn [3] 
evaluated eq (4) numerically and presented a table 
of An+I= An+1(An ,r) for a grid of values in the range 
O::;r::;l , O.05::;An::; 1O. The tabulation has been 
extended to An= 16 and used to obtain a polynomial 
rrpre:;entation 

(5) 

This required extensive bivariate interpolation , 
which was carried out by a convenient matrix tech­
nique. This technique is described in the appendix 
because it does not appear in the standard literature 
on numerical analysis. 

The following coefficient-matrices, A u, were found 
to give representations of " HI accurate to 1 percent: 

0.05:S;An< 0.5 

j 
i 

0 1 2 3 4 5 
- --

0 0 O. 1180 -0.9844 4.683 -6.896 5.079 
1 1.0 .07930 20.57 -69.56 117. 2 -68.29 
2 0 2. 124 -63.65 209.7 -342.3 194.1 
3 0 -3.418 70.31 -227.8 359.2 -198.3 

0.5:'0 1- , < 10.0 

j 
i 

0 1 2 3 4 5 
- --

0 0 O. 0410~ 2.851 -8.346 13.37 -5. 916 
1 1.0 .4779 - I. 502 4.863 -5.168 1. 330 
2 0 -.05409 O. 07590 -0. 1713 -0.02g45 O. 1789 
3 0 .002153 . 0008490 -.0077 .02359 -. 01891 
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-96.6375 
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71. 2080 
- 17. 17 

1. 304 
0.03233 

b. Change of Direction 

D eflect ion and wavelength shift arc related by the 
Compton equation 

(6) 

where Wn is the angle between th e directions of mo tion 
immediatcl~- .before and after the n+ 1st scattering. 

The dll'CCtlOl1 of th e scattered photon depends on 
W n and 0 11 an azimuth angle Xn which is a random 
quantity distributed uniformly between ° and 271" . 
-YVe need the sine and cpsine of Xn rather than XII 
Itself. . H ence we take advantage of the followin g 
conveillent computatIOnal scheme suo'gested bv Vo n 
Neumann [4]. Choose random nu~bers a 'and b 
satisfying the condition a 2+b2 :::; 1, and let c be a 
random number that is equal to ± 1 with probability 
1/2. Then 

(7) 

From the deflections Wn and X II, the new angular 
coordiDates are th en determined by the following 
trigonometric relationships: 

cos O"+I=COS On ~os w,,~sin 0" sin Wn cos Xnl 
. _ (A.. A,) SIn X n SlnW" Slll '1-'1/+1- 'i'll • l 

sm On+l r (8) 

( ) cos W,,-cos On cos °n+l I 
cos 1>n+l-1>11 . 

sm On sin On+l .J 

c. Displacement 

The posi tion of the (n+ l )st scattering is defined by 

sin 0" cos ip" 1 
(E ) og r 

).ls -.In 

sin On sin ip n 
Yn +l = Yn- (E ) log r J.1. s n 

cos On 
Zn+l=Zn- (E ) logr 

f1.s " 

vhere r is a random numb er, and 

I E" 
J.1.,(E,,)= 0 k(En,E)dE. 

1 r 
J, 

(9) 

3. The Transmission-Reflection Boundary 
Problem 

3.1 . Summation O ver the Collision Density 5 

The informa.tion ob~aine~l by sampling J photon 
random walks IS con tameclm the set of state vectors 
8 n(7)(n= 0,1,' .. L j ; j = 1,2" .. J ), which describe Lhe 
state of th e .7th photon immediately aHer its nth 
scattering. IVe consider th ese vectors to form a 
set ?f r~pres~nta~ive points (a sample collision 
denSIty) I~l a six-dllllensional collision-density space. 
The solu tIOn of boundary problems can be obtained 
by performing appropriate sums over the collision 
density. 
. In the reflection-transmission problem, one con­

sIders a plane-p~rallcl barrier between the planes 
z= o and z= t. A beam of photons is assumed to be 
incident on th e face z= O. 

Reflected and transmit ted raclia.t ion will be classi­
fied according to energy and direcLion.6 L eL R ik 

deno te the average number of pllO Lons pel' incident 
photon thaL are reflected from the face z= o with 
energies in the ith in ter val and directions in the kth 
interval. Similarly, le t T ik denote Lhe average num­
ber of pho tons transmitted Lhrough th e fac z= t. 
R ik and T ik are obtained by summations over the 
sample collision dens ity as follows: 

(10) 

The factors in this formula h ave the following 
meaning: 

(a) Th e factor BnW takes into account th e bound­
ary e~:)]?-ditions. It is eq ual to uni ty wheD Lhe in­
equahtlOs O:::; zm(.j):::;t are satisfi ed for m=O,l, ... n, 
and zero otherWIse. In other words, a con trIbulion 
Lo the l:efi ected radialion is obtained only if the 
photon III th e state uncleI' consideration has not 
previously gone out of Lhe barrier. 

(b) The factor 

IS the probability that the photon has noL been 
abs~rb ed in. th e jth histo.ry prior to reaching state 
8 nCJ) . ( J.1.A IS the absorptIOn coeffi cient. ) 

(c) The quantity Q,,(.i,z') denotes the probabili ty 
tha t a photon starting from state 8 ,, (j ) will cross the 
plane Z= z' without furth er scattering or absorption. 
It is defined as follows: 

Qn~j,z ' ) .vanish es excep t when sec On(j) [z' -z,,(j )] 
;::: 0, III whICh case 

Q ( . ') . { sec 011 (j) [ , ( . } 
__ ~,z exp -M[En(j)] Z -Zn J)] (1 2) 

, 'I'he method described in tbis section is closely related to surrgmtions by 
B . Kahn, [3] . ' 

632 energy intervals and 10 angular inten"als have been used. 
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C!.J.= J.l.A -t J.I.! i~ the total linear attenuation coefficient). 
(d) j'n (J) IS tl~e energy -angle classification fac tor. 

!t IS equal to un~ty: when E nW is in the ith energy 
mterval and On(J) m the kth angular interval and 
zero otherwise. ' 

TraI~s~itted radiation T ik is calculated by a for­
mul~ sImIlar to eq (10) but with ()n(j,O) replaced by 
() n(J,t). 

vy e shall use the collision density also for the eval­
uatlOn of the flux in an infinite medium in which a 
plane s~)Urce is embedded in the plane z= O. By 
companng ~he results for this problem with those 
for the barner, the nature of the boundary effect can 
be established. :Moreover the Monte Carlo results 
for t~e infinite mediu~n ca~ be checked against those 
obtamed by systematlC moment-method calculations. 
? uch a comparison is of use in establishing the valid­
Ity and accuracy of the random-sampling approach 
Let 'f! ik(Z' ) denote the average number of photon~ 
cro~s~g the pla~le Z= z' from both directions (our 
mam mterest WIll be in the planes that form the 
b arrier ~oundaries: z' = ° and z' = t) . The necessary 
summatlOn over the collision density is similar to 
formula (10), except that the boundary factor 
BnCi) is omitted. 
. When the sampled. coll~sion density is used for the 

SImultaneous determI.natlOn of R ik' T ik' E ik(O), and 
E ik(t ), all states S n(J) make a contribution to the 
final s.core except. those for which zn( j) < O and 
cos On(J) < O, or zn(J»t and cos On(j»O. This is in 
co~trast to a direct stochastic analogue method, 
whICh would allow only those sections of the random 
walks cOJ?-taining an actual crossing of the boundaries 
to contnbute to the score. The more elaborate 
scoring procedure gives proper credit for "near 
misses," i. e., c?llisions taking place close to a 
boun~ary, for WhICh the factor Qn(j, z') is very close 
to uIl#ty. 

3 .2. Fluxes and Buildup Factors 

Th~ ?EAC calculation is designed to yield the 
quantItIes R ik' T ik' and E ik' which represent the 
average number ?f photons crossing the planes Z= ° 
a~d z=t per umt area (the number flux). Radi­
atlOn detectors often do not measure the number 
fluX; directly, so that it is desirable to calculate 
val'l~us related types of flux. These can all be 
o~tall~ed from . the n~ber flux through multi­
plIcatIOn by SUItable WeIght factors depending on 
the energy and direction of the 'photons. For 
example, multiplicatioJ?- of the number flux by the 
average energy, (E i) , YIelds the energy flux, division 
by the average value, ~bsolute value !(cos Ok)!, 
YIelds fluxes through a umt area whose normal is in 
the direction of motion of the radiation. This is 
the flux that a nondirectional detector would 
measure. Some inaccmacy is introduced into these 
flux-conversions because the averages (Ei) and 
(cos Ok) are to some extent arbitrary. Arithmetic 
means have been used. 

Accor.ding to the usage common in shielding 
calculatlO~s th~ results for the total flux (integrated 
over-all. dIrectIOns and spectral energies) are pre­
sented .m the form of buildup factors, defined as 
the ratIO of. the total to the unscattered flux [5] . 
Fo~ the varIOUS types of flux described above, the 
bmldup factors for an infinite homogenous medium 
have the following form: 

Nu mber buildup factors 

E ' = "'5.2 E ik / exp (-paz/cos a) 
N iii' !(cos Ok)! COS a 

(13) 

Energy buildup factors 

E ' ""' (E \ E ik / Eo E= -4--J {i! !( 0 \! - exp (- J.l.O z/cos a), (14) 
Ik cos k ( cos a 

where J.l.o is the total attenuation coefficient of the 
source radiation, and z is the distance between the 
source plane and the plane of observation. In 
order to obtain the corresponding buildup factors 
TN, T~, T E , and T~, one replaces E ik in eq (13) 
and (14) by T ik' and z by the barrier thickness, t. 
The refl~ction bui~dup factors RN , I?'~, R E , and R~ 
are obtamed by usmg R ik and settin2; z=O. 

4. Results7 

4. 1. Energy Spectra 

In fi&,ures. 1, a, b, c, and d, energy spectra are 
shown m hIstogram form for the number flux of 
photons reflected !1~d ~ransmi~ted by barriers, 
reflected by a seml-lnfimte medIUm and for the 
flux in an infinite mediLlll1 through planes that 
c?rrespond to th~ barrier boundary planes. The 
hIstograms pertam to scattered radiation only.s 
Spectra aI:e s~ow:n for normal incidences (a=OO) 
a,nd fo~ obhqu~ ll1Cldence (a=6 00). The oblique bar­
ner thIckness IS the same for both cases: (J.l.ot/cos a) = 2. 
The shaded areas between the "finite slab" and the 
"infinite medium" histograms are a measure of the 
boundary effect. It can be seen that the boundaries 
greatly reduce the amount of soft radiation below 
200 kev. The reason for this is that in an infinite 
medium soft radiation is mainly due to photons that 
have overshot the boundary plane and have been 
turned around in a collision in the close vicinity of 
the boundary, making their second passage through 
the boundary with resultant low energy. 

7 Based 0':' the analysis of 400 random walks for each problem. n! '[o obtam the scattered flux only, one must begin the SUlll in eq (10) with 
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FIGURE l. Energy spectra of photons reflected and transmitted by water ban'ius and of photons in an infinite homogenous medium 
crossing planes corresponding to the barrier boundaries. 

The spectra pertain to a monodirectional beam or O.66-Mev photons incident on the barrier (or released within a semi-infinite medium) with obliquity a. 
a, Reflection: obliquity a=O° (normal incidence): b, Refl ection: obliquity a =60o; c, Transmission: obliquity a=O° (normal incidence): d, Transmission: obliquity 

a=60°. 

4.2. Angular Distributions 

Figure 2, a, shows the angular distribution of the 
reflected number flux from a barrier with oblique 
thickness /-L ot = 1, and from a semi-infinite medium 
for obliquity angles of incidence a=O° and a=60°. 
Figure 2, b , shows the angular spectra of transmitted 
scattered photons for normal incidence and barrier 
thickness /-Lot = 1 and fJ-ot = 4. 

4.3 . Buildup Factors 

The various buildup factors for transmission, 
reflection, and an infinite medium (as defined in 
section 3.1 and 3.2) are listed in table 1 for the 
number flux, and in table 2 for the energy flux for 
0.66-Mev radiation in water. E stimated standard 
deviations are indicated, which were obtained by 
dividing the 400 photon histories into groups of 50 
each and computing the dispersion of the buildup 
factors obtained for the various groups. 
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F I e U RE 2. Angular distributions of photons reflected and transmitted by water barrie1"~. 
The distributions pertain to a monodlrectional beam ofO.66-~ rcv photons incident on the barrier with obli quity a . 
a, Reflection; obliq uities a = Oo and 60°: b, Transmission; obli.quity a=Oo (normal incidence) . 

TABLE 1. .Vwnber build1lp factors fo r O.66-JJev radiation in 
water 

TABLE 2. EneTgy buildup fa ctors f 01' O.66-lJl ev radiation in 
water 

I i I p.oI 
a -- RN R ' T N T~r Ry E' N N 

I cos a 
1----- ---------------------------

I °0 ! 0 - --- - - -- - - -- --- --- .. ____ 1 51 2 30 
±O 09 ±O 16 

0 1 1. 18 1 36 209 2.73 3.69 5.24 
I ± 0.03 ± 0.05 ± 0.16 ±0.18 ±0. 26 ±0.35 

0 2 I. 29 I. 55 3.94 6.02 i . II 12.3 
± 0.03 ±0. 05 ± 0.45 ± 0.55 ± 0.f>4 ±1.3 

0 4 1.31 1. 59 8.21 13.5 13.3 24.3 
± 0.05 ± 0.07 ± 1. 75 ± 2. 2 ± 2. 8 ± 4.2 

0 00 1. 31 I.M --- --- ------ --- - -- --- ---
± 0.05 ± 0.07 

I p.rJ 

TE T~ I HE R~ 
a 1- R" 

R' 
E 

cos a 

- - --- ------ ------------ ------
0 

I 0 0 ------ ------ - ----- - ----- J. JO 1. 23 
± 0.02 ± 0.04 

0 1 1. 05 1. 10 J. 62 1. 89 1. 87 2. 48 
±0. 01 ± 0. 02 ± 0.06 ± 0.09 ± 0.07 ±0.1O 

0 2 1. 07 1. 14 2.50 3.21 2.97 4. 07 
± 0.02 ± 0.03 ± 0. 20 ± 0.30 ±0.22 ±0.31 

0 4 I. 07 1.15 3.62 5.64 4.33 5.98 
± 0. 02 ± 0. 03 ± 0.39 ± 0.55 ± 0.39 ±0. 72 

0 0) 1. 07 1.15 ------ --.--- --- --- - -----
± 0.02 ± 0.03 

60 0 - ----- -- - --- --- --- --- --- 1. 85 1. 97 50 0 ------ ---- -- -- .--- -- - --- 1. 19 1. 23 
± O. ll ±0.13 

60 1 1. 27 1. 30 2.00 2.17 4.13 4.4 1 

I 
± 0.05 ± 0.05 ± 0. 13 ± 0. 13 ± 0.25 ± 0. 28 

50 2 1. 41 1.48 4.13 3.90 8. 89 8.2 1 
± O.06 ± 0.07 ± 0.45 ± 0.50 ±0.95 ±0.98 

50 4 I. 47 1. 53 15. 4 14.2 29.3 30.2 

I 

± 0.06 ± 0. 07 ±2.0 ±2.5 or4.9 ±5.3 

I 
60 00 1. 48 1.53 ------ ------ -- - --- -- ----

± 0.05 ± 0.O7 
I 

±0.03 ± 0.04 
GO 1 1.10 1.11 I. 57 1. 65 J. 98 2. 15 

± 0.03 ± 0.05 ± 0. 07 ± 0.09 ±0.09 ±0. 1O 
50 2 1. J3 1. 17 2.43 2.37 3.24 3.48 

± 0.03 ± 0.05 ±0.22 ±0.20 ± 0.25 ±0.29 
60 4 1. 14 1. 18 5.92 5.40 7.51 6.21 

± 0.03 ± 0.O5 ± 0.58 ±0. 73 ± 0. 91 ± 1. 05 
60 co 1.14 1.18 .----- ---- -- .--- -- ----- -

± 0.03 ±0.05 
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5 . Discussion 

The results presented have a preliminary charac­
ter. Greater sample sizes arc desirable, as well as 
the exten sion of the calculation to other en ergies 
and m edia . :Moreover, the scoring m ethod used is 
not expected to be very successful for penetrations 
of depth ,uot>4 b ecause excessively large sample 
sizes would be r equired. Prior to extending the 
calculations b~- the collision-density method, other 
:\10nte Carlo approaches have been explored, in­
duding a semianalytic method designed for dealing 
with deep as well as shallow penetrations [6]. Table 
:3 gives a comparison of the buildup factors obtained 
in this investigation (a) with those found by the semi­
analytical Monte Carlo method, (b ) with th e Monte 
Carlo results of a group at the Naval Research 
Laboratory [7], and (c), for an infinite m edium, with 
calculations carried ou t according 10 th e momen t 
method of Spencer and F ano [1, 8]. The agreement 
is generally good, indicating that the shallow 
penetration of gamma radia tion, in the presen ce of 
boundaries, can be calcula ted accmately by the 

TABLB 3. Comparison of buildup factors obtained in various 
calc ilLations for O.66-1V ev mdiation in water 

Column 1. this paper; 2, se mianalyiic Monte Carlo method [6]; a, i\'l onte 
Carlo, XR L [7); 4, Npenccr·Fano moment method [8]. 
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1. 53 I. 59 

2.73 2. 74 
6.02 6.60 

13.5 la.o 

6.24 6.0 
12.3 12. a 
24.3 25.0 

1. 15 I. 15 I. 14 
I. 89 1. 90 I. 92 
3.21 3. or. 3.30 
5.64 5.99 5.55 

1. 2a 1. 30 
248 2.44 2. 43 2.43 
4.07 4.02 3. 75 3.89 
6.98 7.15 6.55 7.37 

1. 23 1. 27 
2. 15 2.05 
3. 48 3.28 
6. 21 7.82 

( PIP2 

Po P:TI 

(PO- PI) (PO - P2) 

PI -(PI + P2) 
PIJ (PO- PI) (PO-P2) 

P2 p~ 
1 

l (PO-PI)(PO - P2) 

Monte Carlo method. The resul ts fo r RN and BE 
at 0.66 M ev are con sistent \vi th th e resul ts of a 
:\I[onte Carlo calculation at 1 1\11 ev by H ayward and 
Hubbell [9]. 

6 . References 

[11 L . V. Spencer and U. Fano, J . R esear ch , )rBS 46, 4-16 
(1951) RP2213 . 

[2] H . A. Meyer, L . S. Gephart, and )r. L. Ras mu sse n, On 
the generatio n an d testing of rando m digits, WADC 
Technical R eport 54- 55 (1954) . 

[3] R . Latter and H . Kahn, Rand R ep ort R- 170 (1949). 
[4] Monte Carlo M ethods, N BS Appli ed Math. Series (1951) 

AMSI2. 
[5] H . Goldstein and J . E. Wilkins, Jr., AEC R eport ::\1"0-

3075, (June 1954). 
[6] M . J . Berger and J . D oggett, J . R esearch NBS (publica­

t ion pending). 
[71 L . A. Beach, R. B. Theus, J. D. Plawchall , and \Y. R. 

Faust, ~RL R eport 4412 (1954). 
[8] M . J . Berger, J . R esearch N BS (publication pending). 
[91 E. H ayward a nd J . Hubbell , Phys. R ev. 93, 955 ( 1954). 

[10] A. C. Aitken, D eterminants and matrices, p. 118, (Inl er­
science P ublishers , Inc., New York, N. Y. , 1951) . 

7 . Appendix. A Method of Bivariate Inter­
p olation 

Suppose we knO ll" a bivariaLe function f (p ,q) at 
(.Al+ 1)(N + 1) gl' iclpoin ts (p s,qt) (8= 0,1, . . .. JJ; 
t= O,l , .. . , N). The p roblem is to usc this knowl­
edge foJ' determining the expansio n cocfficien Ls in a 
polynomial expansion 

(I 7) 

Let F = f (Ps,qt ) be the kn ow ll matr ix of functional 
values, and A = (A ij) the desired coefficient mal rix. 
From th e variables p a nd q we form the mat rices 
p = (Ps)i and Q= (qt)i. In mat ri x form, eq (17) 
becomes 

F'= PAQ' , (18) 

where Q' is th e transpose of Q. H ence 

P a nd Q are so-calleel al ternant matrices whose in­
verse is well known [1 0]. T he prescription for ob­
taining th e inve rse is simplest to describe by meall s of 
an example. IYhen P has rank 3 

POP 3 POPI 
(PI - PO)(PI- PZ) (P2-PO)(PZ-, PI) 

(Po + pz) -(PO+ PI) 
(20) 

(PI- PO) (PI - P2) (Pz-PO)(PZ-PI ) 

1 1 

(PI - PO)(PI- P2) (P2-PO)(P2-PI)) 

349 

, 



~r--~----------------~------~----------~~---~~~~----~'---~--- --

The numerators of of the elements in the respective 
columns are elementary symmetric functions in the 
arguments po, PI, and P2, with one argument omitted 
each time . The arrangement of the denominators 
is obvious. 

liVhen the grid points are equidistant, one can, 
without loss of generali ty, set p.=s. The inverses 
P - I for this case are listed below for the first few 
alternant matrices: 

1 r - 1: 

0 

1 r : 0 

:J (-: :) 
18 

4 
2 L-l 6l 6 - 15 

- 2 
- J 3 

0 

The sum of the elements in the first row of each 
inverse matrix is 1, and the sum of the elements in 
each other row is zero. This is also true for the case 
of nonequidistant grid points, and provides a useful 
arithmetical check. 

The author thanks Frank Stockmal for his help in 
coding the problem for SEAC, and ;,1ary Orr and 
John Doggett for their assistance with the hand 
computations. 

r 24 
0 0 0 0 

0 :l ~l-:: 
96 - 72 32 - 6 

- 9 
- 104 114 - 56 11 

12 

-:J 
24 

- 10 36 - 48 28 - 6 
- 3 

1 - 4 6 - 4 

0 0 0 r 120 
- 274 600 - 600 400 - 150 _::l 

__ 1_1 225 - 770 1070 - 780 305 

120 l-85 355 - 590 490 - 205 

35J 15 - 70 130 - 120 55 - 1~ 
5 - 10 10 - 5 

W ASHI:\TGTOX, ;,Iay 10, 1955. 
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