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Reflection and Transmission of Gamma Radiation by

Barriers:
Density Method **

Monte Carlo Calculation by a Collision-

Martin J. Berger

The collision density of photons in an infinite Compton-scattering medium was calcu-

lated by random sampling.

The intensity, spectral composition, and angular distribution

were then determined for radiation reflected and transmitted by plane-parallel barriers by
carrying out appropriate integrations over the collision density, taking into account the

absorbing properties of the medium and the effect of boundaries.
done on the National Bureau of Standards automatic computer (SEAC).

All numerical work was
Sample results

are presented for 0.66-Mev radiation incident on water barriers of various thicknesses.

1. Introduction

The Problem. 'The results of an investigation of
the following boundary problem in gamma-ray
diffusion are presented: A beam of monoenergetic
gamma rays is incident at a given angle on a plane-
parallel barrier that has a finite thickness in one
dimension but is infinite in the other two dimensions.
What are the intensities and spectral compositions
of the reflected and transmitted beam?

Method of Solution. An analytical attack on this
problem by the solution of the relevant transport
equation leads to great mathematical difficulty.
So far such an approach has been successfully carried
out for homogenous infinitely extended media [1]}
but boundary problems remain unsolved. In order
to bypass these difficulties, explore the problem, and
obtain at least an approximate solution, this investi-
gation employed the Monte Carlo (random sampling)
method. All numerical work was carried out on the
automatic computer of the National Bureau of Stand-
ards (SEAC).

The calculation was divided, in regard to both
method and execution, into two rather distinet parts:
(1) a stochastic part, in which photon random walks
are generated by random sampling in an infinite
nonabsorbing scatterer, whereby a collision density
is obtained, and (2) a calculation of the reflected
and transmitted radiation obtained by summations
over collision densities, taking into account boundary
conditions and absorption characteristics of the
barrier. There were a number of reasons for this
division. For one thing, it reduced the required
computer memory capacity. More importantly,
the random walks have a “universal” character,
i. e., they can be used for the calculation of different
boundary problems involving different geometries
as well as different scattering and absorbing media.
Not only will the repeated use of the same set of

1 This work was supported by the Office of Naval Research and the Atomic
Energy Commission Reactor Division.
2 Some of the results of this paper were presented at a symposium on Monte

Carlo methods at the University of Florida in March 1954.
‘Figures in brackets indicate the literature references at the end of this paper.

random walks often lead to computing economy,
but it may also increase the accuracy of a calculation.
Suppose, for example, that we wish to determine the
difference in transmission for two beams incident on
a barrier at different angles but otherwise identical.
It will then be to our advantage to base the compari-
son on the same set of random walks because
irrelevant differences resulting from statistical fluc-
tuations will thereby be largely eliminated.

2. Gamma-Ray Random Walks in an In-
finite Compton Scatterer

2.1. Definitions

The state S of a photon can be specified by a set
of six quantities:

S=(£,0,¢,2,y,2),

where £ is the photon energy, 6 and ¢ are angular
coordinates describing the direction of motion (in a
spherical coordinate system with the z-axis as polar
axis), and z, ¥, and z are Cartesian coordinates of
position. Let the state of the photon immediately
after the nth scattering event occurring in a given
random walk be denoted by S,(n=1,2,--.), and
let Sy denote the state in which it was introduced
into the scattering medium. A random walk is
then described by a sequence

Ag’(), qu, LS’g, ARy AgL,

each term (except S;) depending stochastically on
its immediate predecessor only (Markov process).
The length, L, of ‘such a sequence would be infinite,
but in the present work the random walks are ter-
minated when the energy, /2, drops below 30 kev.
This arbitrary cutoff* results in an average value
(Ly=18 for an initial energy ZXFo=660 kev. A

4 The cutoff is justified on physical grounds because radiation at energies below

30 kev is always so heavily absorbed that it makes only a negligible contribution
to the emergent radiation flux.
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set of random walks constitutes a Monte Carlo
estimate of the collision density resulting from the
diffusion of radiation in an infinite homogenous
Compton scatterer.

[t will be observed that for the problem of trans-
mission and reflection by plane-parallel barriers,
only the variables £, 6 and one space variable, say z,
are required. Nevertheless, it is worthwhile to
calculate the other three variables also. The ran-
dom walks are thus made applicable to other
boundary problems with different geometrical condi-
tions. Moreover, we can use the same set of
random walks for barrier problems with different
angles of incidence. We always set ;=0 and rotate
the boundaries as required by using, instead of cos
6 and z,

cos 0'=cos 0 cos a+sin 6 sin « cos ¢
2= sin a2z cos «,
where a=16; is the angle of incidence.
2.2. Random Sampling

Next the sampling scheme is described, by which
successive states S, are selected, the initial state
being specified as Sy= (£%,0,0,0,0,0). Calculations of
a set of random walks with this initial condition will
serve for the solution of problems involving mono-
energetic beams of energy Fy and arbitrary direction
of incidence «. Because of the linearity of the
gamma-ray diffusion equation, it is possible to
obtain solutions for incident beams of specified
energetic and angular composition by superposition
of the results obtained with different £,’s and o’s.

Prior to the discussion of the detailed steps in the
sampling process, some comment is in order concern-
ing the required random numbers. With a high-
speed computer the use of tables of random numbers
is clearly impractical. Instead, so-called pseudo-
random numbers 7, (0<r,<1) were used, and which
were generated as required in the course of the
computation by a method developed by O. Taussky-
Todd [2]. They are defined by the relations

=T (2)

R =5 0qULo2e =l
It may be shown that the period of 7, is 2%, i. e,
that a sequence of 2 different numbers will be
obtained before repetition occurs. Extensive test-
mg carried out at the National Bureau of Standards
has shown that these pseudorandom numbers
satisfy the various accepted statistical criteria of
randomness. It is an advantageous feature of this
method that identical random walks may be re-
created repeatedly for checking purposes, provided
the initial random number used for the walk is
recorded.

The various steps in the calculation of S,
given S, follow.

a. Energy Change

The energy £7,; after a scattering is determined by
E,
I: k(E,, L)(lEf k(E ,,,E)(IL]“/’ (3)
Fn+1

where 7 is a random number, and k(£ E) is the
Klein-Nishina differential coefficient (per unit path
length) for Compton scattering with energy change
from £, to E.

It was found convenient to carry out the random
sampling for the wavelength N\=m¢?/E, where me? is
the electron rest mass, rather than for the energy
directly. If we make this change of variable, sub-
stitute the explicit formula for the Klein-Nishina
differential coefficient, and carry out the indicated
integrations, eq (3) is transformed into

{“*2** .+1] log ”“+>\ QT
x71+1
2
O ”Jx‘z *)\"§§[1—2)\,1()\,L+1)] log §~,t2 2
n +1

a1
2oy~ @

To use this equation to find \,,;, given X\, and 7,
would be intolerably cumbersome, even when an
automatic computer is used. Latter and Kahn [3]
evaluated eq (4) numerically and presented a table
of Nyr1=N,1(\,,7) for a grid of values in the range
0<r<1, 0.05<),<10. The tabulation has been
extended to N\,=16 and used to obtain a polynomial
representation

nH_ZZAIJ()‘ (5)

This required extensive bivariate interpolation,
which was carried out by a convenient matrix tech-
nique. This technique 1s described in the appendix
because it does not appear in the standard literature
on numerical analysis.

The following coefficient-matrices, A,;, were found
to give representations of N, ; accurate to 1 percent:

‘ 0.05<X,<0.5
Y Jj
1
|
0 1 | 2 3 ' 4 | 5
A 1 ‘ }
0ol 0 0.1180 | —0.9844 468 | —6.896 | 5.079
1|10 07930 | 20,57 —69. 56 117.2 | —68.29
2 |0 2124 | —63.66 209.7 —342.3 | 19041
3AIL0 e| g a8 [ 001 -8 | w0 ’ —198.3
0.5<A<10.0
j
i
0 ‘ 1 ; 2 3 4 5
T e \
olo 0.0410Q 2.851 —8. 346 13.37 —5.916
1|10]| 4779 —1. 502 4863 | —5.168 1,330
2 [0 | — 05409 0.0759 | —0.1713 | —0.02945 0.1789
310 (002153 | .0008490 |  —.0077 102359 —. 01891
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10<X, <16 ‘

; J
D st A, L A P DR NS N e e i N (o |
‘ ‘
0 1 ‘ > 3 }
R e \
00 | 27.4205 | —96.6375 71. 2080 i
1 (10| —6173625 | —17.17
210 0.4584375 | —1.763 1.304
3 0. 04342 0.03233

0 } —. 01106
|

b. Change of Direction

Deflection and wavelength shift are related by the
Compton equation

CcOs wnzlﬁ)‘n+l+)\m (6>

where w, 1s the angle between the directions of motion
immediately before and after the n-4-1st scattering.

The direction of the scattered photon depends on
w, and on an azimuth angle x,, which is a random
quantity distributed uniformly between 0 and 2.
We need the sine and cosine of x, rather than x,
itself. Hence we take advantage of the following
convenient computational scheme suggested by Von
Neumann [4]. Choose random numbers @ and b
satisfying the condition a*+456><1, and let ¢ be a
random number that is equal to 41 with probability
1/2. Then

o

a’*—b L
d_‘_bz (‘)

2abe
oS X,=-- e and sin x,=

+

From the deflections w, and x,, the new angular
coordinates are then determined by the following
trigonometric relationships:

cos 0,,.,=c0s 0, coS w,+sin , sin w, cos X,

qm L2 smw,l

s (¢n+1 n) Sln 0n+1 } (8)

€0S w,—¢cOos 8, cos 0,4
sin 6, sin 6,4 )

d)n):

coSs (¢n+1_

c. Displacement

The position of the (n-1)st scattering is defined by

qu cos ]

©n
T — 0 = log »
SEEE G N

sin 6, sin ¢,

] =Yy— logr 9
L /-'Ls(En) 2 ( )
e cos 0, log
g :US(E") A

where 7 is a random number, and

E.
A L (B, E)dE.

3. The Transmission-Reflection Boundary
Problem

3.1. Summation Over the Collision Density *

The information obtained by sampling / photon
random walks is contained in the set of state vectors
Sp(7)(n=0,1,- - - L;; j=1,2,- - - J), which describe the
state of the jth photon immediately after its nth
scattering. We consider these vectors to form a
set of representative points (a sample collision
density) in a six-dimensional collision-density space.
The solution of boundary problems can be obtained
by performing appropriate sums over the collision
density.

In the reflection-transmission problem, one con-
siders a plane-parallel barrier between the planes
z=0 and z=¢. A beam of photons is assumed to be
incident on the face z=0.

Reflected and transmitted radiation will be classi-
fied according to energy and direction.® Let Ry
denote the average number of photons per incident
photon that are reflected from the face z=0 with
energies in the 7th interval and directions in the kth
interval. Similarly, let 7"; denote the average num-
ber of photons transmitted through the face z=t.
R, and 7T are obtained by summations over the
sample collision density as follows:

htk—jz Z Bn(])l)n 7) Qn (j:o)f (.7)

=1 n=0

(10)

The factors in this formula have the following
meaning:

(a) The factor B,(7) takes into account the bound-
ary conditions. It 1s equal to unity when the in-
equalities 0<z,(7) <t are satisfied for m=0,1,
and zero otherwise. In other words, a contribution
to the reflected radiation is obtained only if the
photon in the state under consideration has not
previously gone out of the barrier.

(b) The factor

n,

sec 0 () . Rtk }
/,L4[E (.])] ["m+1(]) an(,})] (11)

is the probability that the photon has not been
absorbed in the jth history prior to reaching state
S,(7).  (ua4 is the absorption coefficient.)

(¢) The quantity ©,(j,2’) denotes the probability
that a photon starting from state S,(7) will cross the
plane z=2z" without further scattering or absorption.
It is defined as follows:

.(j,2") vanishes except when sec 6,(7)[2"—z.(7)]
>0, in which case

i geelalt)ioe ik
%;Z ) exp { _;[Eni(]ﬂ [z Zn(])]}

5 The method described in this section is closely related to suggestions by
H. Kahn, [3]
6 32 energy intervals and 10 angular intervals have been used.

n—1
PMFHew{
m=0

(12)
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(u= s+ ps 1s the total linear attenuation coefficient).

(d) fi(y) is the energy-angle classification factor.
It is equal to unity when £,(j) is in the ith energy
interval and 6,(7) in the kth angular interval, and
zero otherwise.

Transmitted radiation 7 is calculated by a for-
mula similar to eq (10) but with ,(7,0) replaced by
0(g,t).

We shall use the collision density also for the eval-
uation of the flux in an infinite medium in which a
plane source is embedded in the plane z=0. By
comparing the results for this problem with those
for the barrier, the nature of the boundary effect can
be established. Moreover, the Monte Carlo results
for the infinite medium can be checked against those
obtained by systematic moment-method calculations.
Such a comparison is of use in establishing the valid-
ity and accuracy of the random-sampling approach.
Let By (2’) denote the average number of photons
crossing the plane z=2z" from both directions (our
main interest will be in the planes that form the
barrier boundaries: z/=0 and z’=¢). The necessary
summation over the collision density is similar to
formula (10), except that the boundary factor
B, (7) 1s omitted.

When the sampled collision density is used for the
simultaneous determination of R, T, Bi(0), and
Bi(t), all states S,(7) make a contribution to the
final score except those for which z,(7)<0 and
cos 0,(7)<0, or z,(7) >t and cos 0,(7) >0. This is in
contrast to a direct stochastic analogue method,
which would allow only those sections of the random
walks containing an actual crossing of the boundaries
to contribute to the score. The more elaborate
scormg procedure gives proper credit for ‘“near
misses,” 1. e., collisions taking place close to a
boundary, for which the factor @,(7,2”) is very close
to unity.

3.2. Fluxes and Buildup Factors

The SEAC calculation is designed to yield the
quantities Ry, T, and By, which represent the
average number of photons crossing the planes z=0
and z=¢ per unit area (the number flux). Radi-
ation detectors often do not measure the number
flux directly, so that it is desirable to calculate
various related types of flux. These can all be
obtained from the number flux through multi-
plication by suitable weight factors, depending on
the energy and direction of the photons For
example, multiplication of the number flux by the
average energy, (), yvields the energy flux, division
by the average value, absolute value |/cos )],
yields fluxes through a unit area whose normal is in
the direction of motion of the radiation. This is
the flux that a nondirectional detector would
measure. Some inaccuracy is introduced into these
flux-conversions because the averages (K, and
(cos 6;) are to some extent arbitrary. Arithmetic
means have been used.

According to the usage common in shielding
calculations the results for the total flux (integrated
over-all directions and spectral energies) are pre-
sented in the form of buildup factors, defined as
the ratio of the total to the unscattered flux [5].
For the various types of flux described above, the
buildup factors for an infinite homogenous medium
have the following form:

Number buildup factors
B‘V:ZBM/exp (—moz/cos @)

exp (—woz/cos a)

By =2 Ttcos GM/ cos a )
Energy buildup factors
:(Xk)<Ei>Bik/E0 exp (—moz/cos a)
B‘Lk EO i e
BL—ZU% lm/ws exp (—umoz/cos @), (14)

where uo is the total attenuation coefficient of the
source radiation, and z is the distance between the
source plane and the plane of observation. In
order to obtain the corresponding buildup factors
Ty, Ty, Tz, and T3, one replaces B in eq (13)
and (14) by 74, and z by the barrier thl(lmess t.
The reflection bulldup factors Ry, Ry, Rz, and RE
are obtained by using R and setting z=0.

4. Results’

4.1. Energy Spectra

In figures 1, a, b, ¢, and d, energy spectra are
shown 1n histogram form for the number flux of
photons reflected and transmitted by barriers,
reflected by a semi-infinite medium, and for the
flux in an infinite medium through planes that
correspond to the barrier boundary planes. The
histograms pertain to scattered radiation only.®
Spectra are shown for normal incidences (a=0°)
and for oblique incidence («=60°). The oblique bar-
rier thicknessis the samefor both cases: (uot/cos a)=2.
The shaded areas between the “finite slab’” and the
“infinite medium’’ histograms are a measure of the
boundary effect. It can be seen that the boundaries
greatly reduce the amount of soft radiation below
200 kev. The reason for this is that in an infinite
medium soft radiation is mainly due to photons that
have overshot the boundary plane and have been
turned around in a collision in the close vicinity of
the boundary, making their second passage through
the boundary with resultant low energy.

7 Based on the analysis of 400 random walks for each problem.

8 To obtain the scattered flux only, one must begin the sum in eq (10) with
n=l.
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Ficure 1. Energy spectra of photons reflected and transmitted by water barriers and of photons in an infinite homogenous medium

crossing planes corresponding to the barrier boundaries.

The spectra pertain to a monodirectional beam of 0.66-Mev photons incident on the barrier (or released within a semi-infinite medium) with obliquity .

a=60

4.2. Angular Distributions

Figure 2, a, shows the angular distribution of the
reflected number flux from a barrier with oblique
thickness wot=1, and from a semi-infinite medium
for obliquity angles of incidence a=0° and a=60°.
Figure 2, b, shows the angular spectra of transmitted
scattered photons for normal incidence and barrier
thickness pot=1 and ui=4.

a, Reflection; obliquity e=0° (normal incidence); b, Reflection; obliquity e=60°; ¢, Transmission: obliquity e=0° (normal incidence); d, Transmission; obliquity

4.3. Buildup Factors

The various buildup factors for transmission,
reflection, and an infinite medium (as defined in
section 3.1 and 3.2) are listed in table 1 for the
number flux, and in table 2 for the energy flux for
0.66-Mev radiation in water. Estimated standard
deviations are indicated, which were obtained by
dividing the 400 photon histories into groups of 50
each and computing the dispersion of the buildup
factors obtained for the various groups.
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5. Discussion

The results presented have a preliminary charac-
ter. Greater sample sizes are desirable, as well as
the extension of the calculation to other energies
and media. Moreover, the scoring method used is
not expected to be very successful for penetrations
of depth uit >4 because excessively large sample
sizes would be required. Prior to extending the
calculations by the collision-density method, other
Monte Carlo approaches have been explored, in-
cluding a semianalytic method designed for dealing
with deep as well as shallow penetrations [6]. Table
3 gives a comparison of the buildup factors obtained
in this investigation (a) with those found by the semi-
analytical Monte Carlo method, (b) with the Monte
Carlo results of a group at the Naval Research
Laboratory [7], and (¢), for an infinite medium, with
calculations carried out according to the moment
method of Spencer and Fano [1, 8]. The agreement
is generally good, indicating that the shallow
penetration of gamma radiation, in the presence of
boundaries, can be calculated accurately by the

Tavrz 3. Comparison of buildup factors oblained in various

calculations for 0.66-Mev radiation in water

Column 1, this paper; 2, semianalytic Monte Carlo method [6]; 3, Monte
Carlo, NRL [7]; 4, Spencer-Fano moment method [8].

Monte Carlo method. The results for Ry and £
at 0.66 Mev are consistent with the results of a
Monte Carlo calculation at 1 Mev by Hayward and
Hubbell [9].
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A Method of Bivariate Inter-
polation

7. Appendix.

Suppose we know a bivariate function f(p,q) at
(M+1)(N+1) gridpoints (ps,q.) (s=0,1, - - -, M;

SR ‘ - t=0,1, . . ., N). The problem is to use this knowl-
P i e X edge for determining the expansion coefficients in a
5 0s @ . . e ; ~ | polynomial expansion
e B R s A K WA L s R e B B T M N i L
R 0 © 1.53 T 1o, (1):;) ]-;0 Aup'd (17)
1 2.73 2.74
Ty { | B Rkt oy Let F=f(ps,q:) be the known matrix of functional
‘ ‘ | values, and A= (A;;) the desired coeflicient matrix.
| 1 6. 24 6.0 . :
B, 3 123 12.3 From the variables p and ¢ we form the matrices
‘ ‘l | i B Rl e ard SO = SN m atrisRt orimy e g (1)
(3| EB | ag | | | becomes |
T | s | &% | sk | 8% | oo | F=PAQ, (18)
1 4 5.64 5.99 ] A
| ? P A e e Y ( )
- e 128 | | 130 | where Q' is the transpose of ¢.  Hence
£ | 2 4.07 402 | 875 380 ,
‘ 4 6. 98 Tk 1 Ul 6L B 7.37 ‘ ‘4:])“1]4'(Q—1)/. (19)
Fekato g b Pl s 127
B, 60° { : T it Mok e P and @ are so-called alternant matrices whose in-
‘ S R e 7.82 verse is well known [10]. The prescription for ob-
i g taining the inverse is simplest to describe by means of
an example. When /” hasrank 3
4 Pip2 Pops Py Ty
N1 | Po=P)Do—p2)  (Pr—p0)(P1—D2)  (P2—P0)(P2—P1)
L po p5
T f :(pHrpi) _(po+pz)_ :(po+pi) (20)
(Po—=pP)@o—p2)  (P1—P)(P1—D2) (P2—Po)(P2—D1)
2
e 1 1 1
N (Po=p)(Po—D2) (Pr—p)(P1—P2)  (Po—po)(P2—P1)
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The numerators of of the elements in the respective
columns are elementary symmetric functions in the
arguments pg, p1, and p,, with one argument omitted
each time. The arrangement of the denominators
is obvious.

When the grid points are equidistant, one can,
without loss of generality, set p;=s. The inverses
P~1 for this case are listed below for the first few
alternant matrices:

The sum of the elements in the first row of each
inverse matrix is 1, and the sum of the elements in
each other row is zero. This is also true for the case
of nonequidistant grid points, and provides a useful
arithmetical check.

The author thanks Frank Stockmal for his help in
coding the problem for SEAC, and Mary Orr and
John Doggett for their assistance with the hand
computations.

24 0 0 0 0
6 m O 0
2 0 0 —50 05 =7 8 =G
Ty 1 1|-11 18 —9 2 1
e b = T | () ) - S
el ZL 6 PRI s ol et 24
el —10 95 =i 28—
) S ]
ik oy G|
r 120 0 0 0 0 07
—274 600 —600 400 —150 24
1 D25 M7 (R (7SS (R ()5 SR ()
120} —85 355 —590 490 —205 35
0 = ISD —i 55 —10
R 5 —10 10 =5 1)

WasuiNnaron, May 10, 1955.
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