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Data on the Atomic Form Factor: Computation and Survey 
Ann T. Nelms and Irwin Oppenheim 

This paper prese nts the results of ca lculations of atomic form factors , based on tables of 
electron charge distribu tions compu ted from Hartree wave functions, for a wide range of 
atomic numbers. Co mpu tations of t he form factors for fi ve elements- carbon , oxygen , iron , 
arsenic, and mercury- are presented and a method of interpolation for other atoms is indi
cated. A survey of previous results is given and the relativistic t heory of Rayleigh scattering 
is reviewed. Comparisons of the present results with previous compu tations and with some 
sparse experi mental data are made. 

1. Introduction 

The atomic form factor is of interest in the calcu
lation of Rayleigh scattering of r adiation and coher
en t scattering of charged par ticles from atoms in the 
region wherc relativist.ic effects can be n eglected . 
The coheren t scattering of radiation from an atom 
consists of Rayleigh scattering from the electrons, 
re onant electron scattering, nuclear scattering, and 
D elbrucl- scattering. When the frequency of the 
incident photon approaches a resonant frequency of 
the atom, large regions of anomalous dispersion occur 
in which the form factor calculations are not sufficient 
to describe th e coherent scattering. 

The cross section for Rayleigh scattering from the 
bound electrons of an atom with a deflection cp/ per 
teradian dQ, is 

(1) 

where ro=e2/mc2= 2.82 X 10- 13 cm is the classical 

electron radius, 1(0 is the atomic form factor, q is 
th e change of momentum of the photon, and 

'ql= (hll/c) 2 sin (cp/2), where 1I is the frequency of the 
inciden t photon. Terms of order vic, where v is the 
initial velocity of the bound electron , are neglected 
in the derivation of (1). 

The cross section for the coherent scattering of 
charged particles with a deflection ¢, per steradian 
dQ, is, in Born approximation : 

(2) 

where E is the charge of the scattered particle, NI is 
its mass, and v its velocity. Z is the atomic number 
of th e atom from which th e particle is scattered. 
Equation (2) is a good approximation for all angles 
if the kinetic ener~y of the incident particle is large 
a nd Z is no t very large. For lower kinetic energies, 
eq (2) is valid for small-angle scattering. 

I In more usual notatIon <1>=28, where 8 is the Bragg angle. 

The form factor for an atom of atomic number Z 
is defined as the matrix: element: 

where 0 denotes the ground state of the atom , and 
~ is the vector distance of the jth clectron from the 
nucleus. For a spherically symmetric atom 
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fC0= 1'" p(r)si~rkr dr, (4) 

where k = 47r(lI/c) sin (cp/2) = q/h 

and p(r) is the charge distribution of electron . 
The basic data for th e form-factor calculations of 

this paper were the effective charge distribution in 
atoms recently tabulated by Freeman and others . 
The effective charge, Z p(r), may be defined in terms 
of the electron charge distribution 

(5) 

Because of the oscillatory nature of the integrand in 
eq (4), the calculation of the form factor must be 
done in a careful manner. 

2 . Historic-al Survey 

The initial attempt to evaluate p(r) nwnerically 
was made by H artree [I] ,2 using th e Bohr model of 
the atom. Atomic fields for a few elemen ts were 
obtained from a numerical analysis of optical and 
X-ray spectra from which core orbits were calcu
lated. The results were generalized so that the form 
factor for an arbi trary ion could be calculated . 
Importan t data for the analysis of crystal structures 
were obtained in this manner, but the calculated 
form factors were, in gen eral, larger than the ob
served values. 

2 Figures in brackets Indicate the literature references at the end of this l)aper. 



The advent of the wave mechanical theory of 
scattering by Wentzel and Waller [2] confirmed the 
general formulations (1) and (2) of the scattering 
process. Charge distributions were now to be de
termined from solutions of the appropriate Schrod
inger equations. An exact solution is obtainable for 
the hydrogen atom but not for many-electron atoms. 
For a one-electron system 

p(r) = 471r2if;* (r) if; (r) , (6) 

where if; (r) is the Schrodinger wave function. Some 
of the approximations used for many-electron atoms 
will be discussed below. 

2.1. Pauling and Sherman Model 

Pauling and Sherman [3] obtained form factors 
for all atoms and some ions from hydrogen-like 
eigenfunctions with screening constants character
istic of each subshell. Very good results for small
angle scattering in all materials and for inter
mediate angles in low-Z materials are obtained. 
The method tends to overemphasize the shell 
structure of atoms, and one would expect more 
accurate results to lie between the Pauling-Sherman 
curves and the Fermi-Thomas curves. 

2 .2 . Hartree Self-Consistent Field Model 

The most accurate extensive computations of 
wave functions of many-electron atoms are based 
on Hartree's [4] self-consistent field method . This 
is an independent particle model in which each 
electron is assumed to be in the field of the nucleus 
and an average field due to the other electrons. 
Thus the charge distribution can be considered as 
being a sum of one-electron charge distributions 

where if; j(r ) is the wave function for the jth electron. 
This treatment is applicable to ions, as well as 
atoms. Fock [5] has generalized the Hartree scheme 
by including the effects of exchange, but few com
putations of Hartree-Fock wave. functions are 
available. Slater [6] has shown that the Hartree 
and Hartree-Fock wave functions arise out of 
variational treatments in which the wave function of 
the many-electron atom is assumed to be a product of 
individual electron wave func tions. 

James and Brindley [7] have utilized Hartree 
wave functions in the calculation of atomic form 
factors. They tabulate results for I:::;Z :::;37 and 
O:::;(sin cf>/2) /":::;1.I, using an interpolation method 
for elements not given by Hartree. Their results 
are presented in tables of form factors for subshells 
of electrons versus [1 / (Z - s)][(sin cf>/2) /,,], where 
s is a screening parameter determined empirically 
as a function of Z and the subsh ell of electrons 
considered. The atomic form factor is obtained by 
swnming the form factors for ~he various groups of 

electrons. The method provides a suitable means of 
interpolation. The calculation of the form factor 
involves the numerical integration of a product of an 
oscillating function and the charge distribution for 
each subshell . Computational errors are inherent 
in this procedure and when the results are summed 
to give atomic form factors appreciable errors may 
occur. 

2.3. Fermi-Thomas Model 

Fermi [8] and Thomas [9] treated the electronic 
cloud of an atom by Fermi-Dirac statistics and ob
tained a spherically symmetric electron atmosphere 
having a density 

where j.t = 0.47 X I0- 8 X Z - 1/ 3 cm, X = r/ !1-, and 
cf>(X)/X = (j.t/Z e) V(r ) , where 

V (r)= Ze -eJ p(;J) d3;J 
r -+-+ 

Ir - r' l 

(8) 

is the potential at r due to the nuclear charge Z and 
the electron charge distribution p(r) . 

Form-factor calculations have been made as a 
function of the universal variable 

u = 41r,u. sin (cf>/2)/" , 

where" is the wavelength of the incident radiation. 
The calculations have been applied to neutral atoms 
and positive ions and give smooth electron distribu
tions that average the effects from each electron. 
This approximation is fairly good for high-Z materials 
over most of the electron distribution but leads to 
large discrepancies with experiment at small and 
large angle scattering. The inherent limitations of 
the statistical method are the following: 

(a) The effects of atomic shell structure are 
smoothed out. 

(b) A poor distribution is obtained where the 
potential is small (at large distances from the 
nucleus) and where it changes rapidly (close to the 
nucleus) . 
A discussion of the inadequacies of this model for 
incoherent scattering is given by White [10]. 

Gaspar [11] has noted that reduced atomic form 
factors determined by the self-consistent field method, 
can be regarded as almost universal functions of the 
Fermi-Thomas variable 

0.8853 
u=~ aok= 0.8853 U, (9) 

where k= 47r(sin cf>/2)/ "A= q/h, and ao is the Bohr 
radius. As is evident from figures 1 and 2, this is true 
only for values of U< 3. There are appreciable 
differences at higher values of U due to the shell 
structure of the atoms. 

S4 
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FIGURE 2. Formjactor per electronjor U~3. 

3 . Relativistic Effects 

Relativistic effects are of importance for heavy 
atoms where the inner electrons have relativistic 
velocities and for scatterings in which the momen
tum change of the photon is of the order of or greater 
than me. Calculations in this report have been 
carried up to momentum changes less than or equal 
to mcJ2. 

Franz [12) has shown that the relativistic expres
sion for scattering of a high-energy photon by a bound 
electron reduces to the form-factor calculation when 
q«mc and the velocity of the electron is non
relativistic, i. e., (VJC) 2rov (aZJn)2«1, where a is the 
fine-structure constant, and n is the principal quan
tum number of the electron.3 His method of cal
culation utilizes plane waves for the electron wave 
functions in the intermediate states. (The Dirac 
perturbation theory describes scattering as a two
step process, absorption followed by reemission or 
emission followed by absorption; thus one must 
consider the state of the electron between the two 
teps.) The effect of electron binding in the inter

mediate state is thus neglected. For his computation 
of the form factor, Franz uses a Fermi-Thomas 
dis tribution. 

3 Note tbat Franz's equation [12] , wbicb is valid for scattering of bigb energy 
pbotons only, is in error by a factor of 2 due to a mistake in transforming variables 
of integration over tbe angle of scattering. Tbus we have for the total cross section 
"cob=20'"FraDJI . 
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Levinger [13) has considered corrections to the 
form factor calculation in the near relativistic region 
but has neglected the effect of binding in the inter
mediate states. Bethe [14) has confirmed Franz's 
result and has shown that for values of q larger than 
the characteristic momentum of a K electron 
mcZJ137, Dirac wave functions should be used for the 
computation for K electrons. Rohrlich and Rosen
zweig [15) have extended Bethe's results to a treat
ment of L electrons. 

Brown and Woodward [16) have investigated the 
effect of binding in the intermediate states and find 
further corrections to the form-factor calculations 
of the same order of magnitude as Levinger's. An 
extensive project by Brown et al at Birmingham in 
the exact calculation of Rayleigh cross sections for 
selected atoms and energies is now under way. 
Results for the scattering of 0.32 mc2 gamma rays 
from the K electrons of mercury [17] indicate that 
the form factor results are a reasonably valid descrip
tion of the dispersive scattering but not of the total 
scattering which includes contributions from absorp
tive scattering. Under the conditions of the calcula
tion, the absorptive scattering is approximately % 
of the dispersive contribution. 

4. Form-Factor Calculations 

The form-factor calculations of this report are 
based on the published numerical data of Freeman 
[18] and others [19), who calculated the effective 
charge distribution in atoms, Zp (r) , from the Hartree 
self-consistent field mode1.4 Hartree-Fock data were 
not used because they were unavailable in quantity. 
It is well to note that, although the radial charge 
distributions of the Hartree and Hartree-Fock 
models differ considerably, the corresponding form 
factors may not. Brindley and Ridley [20) have 
computed form factors for K +, Cl-, and Cu+, using 
both Hal'tree and Hartree-Fock wave functions. 
Their computations, which cover the range from 
k = O to k = 27r, indicate that the form factors with 
exchange are higher than those without exchange. 
The maximum difference in the form factors is of 
the order of 3 percent in this small-angle region . 
A trial calculation in the present work for Cu+ at 
k = 10 indicates a difference in the form factors of 
0.6 percent between the Hartree and Hartree-Fock 
results. 

The effective charge distribution Zp (r) is defined 
by the relation (5) 

(1')=(_1 ) d2Zk), 
p 47rr dr2 

where p(1') is the charge density of electrons in the 
atom. Equation (4) may be rewritten, by means of 
partial integration to give 

j(k)=Z-l'" Zp(r) sin (kr)d(k1'), (10) 

----
'An upper limit of k= 70 (q=mcj2) was establisbed for tbis calculation so that 

relativistic effects could be neglected witbout serious error. 



where k = q/Ii. In the tables of [18], I' is given in 
units of the Bohr radius, and k must be expressed in 
the reciprocal units 

kao = (4'1f'/ X) sin (¢/2)ao= 6.635 sin (¢/2) /X. 

The numerical data, Zp (r) , for each atom were 
fitted empirically by an expansion of the form 

n 
e-ar 2:;ajri. 

i=O 
(11 ) 

Fun ctions of this form were chosen so that direct 
comparison could b e made with th e effective charge 
of hydrogen type atoms 

(12) 

The fitting procedme for nonequidistan t values of l' 

is described in detail in (21]. The Z p(r) data were 
fitted in several intervals separately. This was done 
to obtain a higher degree of accuracy without using 
expansions involving large numbers of terms. In 
this way, six-term expansions (n=5), at most, were 
necessary to fi t the data. Values of the coefficients 
for each interval for the five atoms considered- C, 
0 , F e, As, Hg- are listed in table 1. It is, perhaps , 
only in th e first interval tha t one can make a signifi
cant comparison with the effective charge of hydro
gen-type atoms. The accuracy of the tabulated 
Z p(r) and of the fitting is noted also in table 1. In 
all cases effort was expended to make the fit as accu
rate as the data. 

Substitution of (11) into (10) results in 

oj I Tm (l. ~ e- a m r sm (kr) dr, 
u a Tm-l 

(13) 

where the sum over m denotes a sum over th e various 
intervals for which Zp(r) was fi tted , 1'0= 0 and 
rmmax = <Xl, and the superscript (m) on the coefficients 
a, and a denote the values for the appropriate 
intervals. An analytic integration was obtained 
in this way for 0.5 ~ k ~ 20 (fig . 3 and table 2). 
The maximum errol' introduced by the fitting 
procedure in the calculation can be easily estimated 
by assuming that the deviation of the fit from the 
tabulated value is in phase with the oscillating 
sin (kr). An error of 3 percent is estimated in this 
way. However, it is improbable that th e actual 
errol' is of this magnitude. A more realistic value 
would be of the order of 1 percen t. Although this 
calculation procedure is straightforward, the length 
of the calculation and inability to make general 
checks make it a tedious operation.5 

TABLE 2. Form factor, f l Z , tabulated from eq (13) 

Z 

k 

6 8 26 33 80 

0.0 1.0 1.0 1.0 1.0 1.0 
0.5 0.912 0.944 0.942 0.944 0. 960 
1.0 . 721 .809 .759 . 842 . 900 
2.0 . 415 .508 .582 .675 . 700 
3.0 . 296 .308 .461 .540 .616 
4.0 . 251 .249 .360 .426 .530 
5.0 . 226 .202 . 306 .338 .460 
6.0 . 204 . 181 . 266 .277 . 400 
8.0 . 160 . 150 .217 .211 .314 

10.0 .104 . 118 .182 .178 .250 
20.0 .0217 . 0386 . 0785 .0890 .109 

The behavior of th e form factor for small k, k < 
0.5, was determined by expanding sin kr in powers 
of kr: 

'" (_k)2n 1'" j(k) = Z+ L2 Z p (r)r2n- 1dr. 
n=1 (2n-l)! 0 

(14) 

• Note that a graphical procedure would not have bcen suitable In this range 
because of the oscillating nature of the inte~rand. 

TABLE 1. Coefficients in the expansion Z~m)(r) =e-a(mlrl:a/mlri 
i 

Maxi· Maxi· 
mum mum 

7 Interval, m a, at '12 a, a, a, error of error in 
calcu la· reference 

tions [18] 
--·--1-----1·---- ------1--------- -------------------------r toO. 1 2. 475 6 ------------ -- ---------- - - - ---------- - 0.01 } C ...... . . . .. .1 to. 725 2 6. 04511 -4.98448 18.66594 - 11.06320 -- - ------ - - -- - --- --------- .01 0.01 

.725 to a> 1.5 4. 84325 1. 90496 - 1.23017 0. 158 -------- ------ -- ----- - --- - . 01 

tl toO. 1 2. 77 8 ------------ --------- -- --- --- ---- ---- - . 02 } 0 ..... ... .. . to .8 2 7. 673 -3.622 13. 42 - 10.34 ----- ----- --- - -- ----- --- -- . 01 0. 02 
.8 to a> 1. 91 7. 764 0. 917 -1.884 0.395 ---------- ---- -- ---------- . 003 r to O. 081 3.7283 26 -20.3322 256.0535 - 61.5426 -------- -- ---- --- - - - - - - --- .02 

} Fe . .. . .. .... .0 1to .735 2.35866 24. 68559 -15. 43486 -62.94642 548.52436 - 1032. 86606 610. 402956 . 11 0. 03 .735 t02.0 1. 3966 24. 11512 -24. 18032 14. 23867 - 2. 27092 -------- -- ---- --- --------- . 0001 
2. 0 to a> 1. 07624 5.45076 1. 28879 - 0.07209 -0.00950 -------------- ---- ---- ---- .003 

r toO.l 4.5 33 -20.55955 671. 12959 - 2603. 64918 -------------- --- --------- .01 

} As ..... ...•• . 1 to .7 2.6 34. 28291 -89. 42302 464.62137 - 1124. 45247 1292. 72860 -551. 52777 .03 0.03 .7 to 1.8 1. 27713 39. 90909 -94.09721 122. 21415 - 79. 41765 26. 37782 -3.56417 . 002 
1.8 to a> 1.14162 9. 79098 -0. 14061 0. 24590 -0. 038708 -------------- ------------ . 003 r to 0. 106 5. 14277 80 -59. 11228 -2524. 2223 1 124272. 83758 - 1566263. 92891 6462387.83717 .03 

} Hg ... _ ..... . 106 to .478 3.21425 45.99829 637.7033 - 6844. 95947 31986.00973 -67636. 26526 52950. 76587 . 01 0. 025 . 478 to 1.96 1.68832 - 14. 19283 242. 09358 - 469.93545 420. 91024 - 178.44611 29. 20347 .04 
1. 96 to a> 1.09654 31. 56632 -23.61074 9.58349 -1. 72085 0. 13744 -0.00386 . 01 
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FIGURE 3. Form factor in the range O.5'5,k'5, 70. 

At the origin, one obtains: 1.0 

~ 
}(O)=Z and (0}(k) ) = 0. 

dk k= O 

N ear the origin: 

} (k)=z + pl'" Zp(r)rdr. (15) 

The integral in eq (15) was evaluated graphically 
with the tabulated Zp(r) (see fig. 4). 

I t is of interest to no te the connection of the form 
factor for small-angle scattering with the expression 
for the gram-atomic diamagnetic suscep tibili t ies. 
The expression for th e susceptibility, Xdla, is 

Xrlla = - (8 X 1O- 7)ao -2(012.:ITjI21 0), 
j 

(16) 

where ao is the Bohr radius. For spherically 
symmetric atorr s, we have 

(012?h I210) = 6 1'" Z p(r)rdr (17) 

and from (15) 

}(k) = Z+ ~ (1.25X I06)(- xdla)a~ . (18) 

The integral in (17) involves a precise knowledge of 
th e effective charge, or the wave function at large 
radii and is th erefore strongly dependen t on th e 
ch emical binding of the atom. Since the tabulated 
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FIG U RE 4. Small-angle approximation of the form factor per 
electron. 

Z p(r) are for free atoms , and since the experimental 
Xdla , as well as most data on the form factor from 
X-ray and electron small-angle diffraction, is meas
ured for atoms either bound in molecules or crystals, 
a comparison between th e computation and experi
ment is not quite direct . Brindley and Hoare [22] 
h ave discussed the difficul ty in evaluat ing sus
ceptibilities from experimen tal data. Nevertheless, 
the diamagnetic susceptibilities computed from the 



value of Zp used in this p aper agree with the experi- where 
mental values obtained for th e atom in chemical 
combination to within 3 to 10 percent (see table 3). G( )= .!.. dZ p(r) d G(n) ( ) =~ G( ) 

l' Z dr an l' dr" r . 

TABLE 3. Gram-atomic susce ptibility, - X A X 106 

z Calculated I E xperimental 

c ..... ............... . 6.6 ".6.2 
0 ..... _ .............. . 5.08 • 4.6 
Fe .. . ... . . ... .. ....... . 
A s ••.• ••••.•••.••...•. 22.1 b 23.2 
H g ... . . .... . ......... . 40.0 b 38. 1 

• E. C. Stoner, Magnetism (Methu en and Co. Ltd. , 36 Essex Street, W. C., 
Lo ndo n, 1930). 

b H andbook or Chemistry and P hys ics, 30th cd. (C hemical Rubber Publishin g 
Co., Cleveland, Ohio). 

For k> 20, rough calculations were made because 
of the uncer tainty of erro rs due to rclativistie effect 
For large k a useful expansion of (l 0) is 

f rlk 
f (k) = - t J 0 G(r) ('os (kr) ell' 

r oo oo ( )n G(n) ( ) 
+! Jo ~ i nf cos (kr) ell' 

f 1flk 7r ( rlk 
= - t J 0 GCr) cos (kl') d1'+ 4k J 0 G(l) (1') cos (kr)dr 

1 (7r)3 ( "Ik - 4 k J 0 G(3) (1') cos (k1')dl' 

1 { oo '" (7r)n G ( n) (1') 
+8 J 0 ~ k ------nr- cos (kr)dr (19) 

N 

The coefficient of the G (2) integral is zero . The 
approximation used was 

1 { " Ik 7r ( 1f lk 
f(k)= -'i J o G(r) cos (kr) d1'+4k J o G(l)(r) cos (kr)d1' 

1 (7r)3 ( "Ik 
-48 k Jo G(3) (1') cos (kr)dr . (20) 

As is to be expected , only regions close to the nucleus 
contribu te to the form factor for large momen tum 
changes. These comp utations were compared with 
a hydrogen-like approximation, using Slater screen
ing constan ts for low-Z materials. F or high Z a 
comparison with a Thomas-Fermi calculation was 
made. The comparisons were informative for gen
eral trends only and could noL be used as a test of 
accuracy. 

An in terpolation scheme is given in figure 5 over 
the range for which calculaLions were m ade, 
0.5 ~k ~20. Tabulations of Lhe fo rm factor by 
J ames and Brindley, which are based on H ar tree 
wave functions, were used as a guide in r egions where 
we h ad little calculated data and as a general test 
of interpolation in other areas. The curves are 
plotLed with I-percen t accuracy, and in terpolation 
can yield results within 2 percenL. A more di rect 
test of the interpolation was made by comparing 
the form factor of Cu+(k= l O), ob tained graphically 
from publish ed data [23] of Z p(r) , (j= 5_26), with 
the in terpolated valu e for Cu (j= 5_23 ). 

F IGURE 5. Form Jactor as a Junction oj Z in the range O~k~ 2() , k =47r(ao/ A) sin (<1>/2). 
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50 5 . Comparisons With Other Calculations 
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Comparisons of the present results with the numer
ical results of the approximations discussed in section 
3 are given in figure 6 for C, 0 , Fe, As, and Hg. 
Figure 7 shows a comparison of the results for Sn and 
Al obtained from the interpolation curves, figure 5, 
with the calculations of section 3. 

As is to be expected , the data of Pauling and 
Sherman agree best for low Z with the present more 
exact calculations. In general , the oscillations in 
the Pauling-Sherman form-factor curves due to shell 
structure are larger than in the more exact 
calculations. 

The calculated curves oscillate about the Fermi
Thomas curves, which average out the shell structure. 

Comparison with the results of James and Brindley 
shows agreement over most of the range. The 
presen t form-fac tor computations are higher than the 
James and Brindley calculations for small and 
moderately large values of k , especially for C in the 
range O.655< k< 2. The results reported h ere show 
close agreement with the extensive computations by 
McWeeny [24] and others on the form factor of U. 

The present authors judge the results of this paper 
to be more accurate than those of James and Brindley 

FIGURE 7. Comparison of interpolated form factors with. 
results from other calculations. 



because the present computations utilize more recent 
charge-distribution data [18] and also avoid the 
errors inherent in the sum over subshell contributions. 

The ratio of the cross sections for coherent and 
incoherent scattering should be a smooth function of 
z. The value of this ratio for C obtained from 
McWeeny's calculations and from our own fits in 
well with the values for other light elements whereas 
the values obtained from James and Brindley's 
calculations do not. This anomaly of James and 
Brindley's data for C was apparent even in an anal
ysis of total absorption coefficients (scattering and 
photoelectric) and contributed to a stimulation of the 
present study. 

For high Z materials, Z> 26, comparisons are 
made with the F ermi-Thomas and Pauling and 
Sherman calculations. As was expected, the more 
exact calculations approach the Thomas-Fermi 
results as Z increases. Even for Hg, however, some 
effect of shell structure is apparent. A r ecent com
putation of the form factors for Hg++ by H enry [25] 
involving a num erical integration of H artree wave 
functions is plotted for comparison in figure 6. 

In figure 7, in terpolated form factors are compared 
with those of Pauling and Sherman for Sn and with 
those of Pauling and Sherman and of James and 
Brindley for AI. There are deviations of approxi
mately 17 percent from the data of Pauling and 
Sherman for k = 2.64. 

6. Comparison With Experiment 

In the range for which our results are valid, i . e., 
nonrclativistic momentum changes, and in which 
there are significan t differences in the resul ts of the 
various form factor calculation, U> 3, there are very 
few experimen tal data with which the calculations 
may be compared. The early X-ray data give 
information only for small momentum changes, 
U< 3 in figures 1 and 2, where the Har·tree and 
Pauling-Sherman approximations approach the " Lmi
versal" F ermi-Thomas form factor calculation very 
closely. Recen t experiments by Wilson [26] and 
Mann [27] were not used because the momentum 
changes were larger than mc/2, the limit established 
for the present calculation. 

Comparisons are made with the experiments of 
torruste [28] with 0.41l-Mev incident photons on 

Pb and Cu (fig . 8). The experimen tal error is 
indicated by the size of the experimental points. 
Satisfactory agreement is obtained throughout the 
range though the experimen tal points for momentum 
changes greater than mc/6 lie above the theoretical 
curve for Pb . 

The form factors that have been computed here 
are for R ayleigh scattering from the electrons of free, 
spherically symmetric atoms. M cWeeny [24] has 
made extensive studies of the effects of asymmetry 
on the form factor , particularly for C. Using 
analytic wave functions of the Duncanson and 
Coulson type [29], he finds effects of the order of 3 
percen t on low- and medium-angIe-scattering factors. 
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Experimental determinations of coherent scatter
ing are almos t always made wi th atoms bound ei ther 
in molecules or in solids. Interatomic binding will 
distort the electron cloud producing a modification 
in electron charge distribu tion and therefore in the 
form factor. This binding will affect the small 
angle scattering of photons whose wavelengths are 
of the order of atomic dimensions, (1 to 10 A). For 
higher energy photon scattering only the electron 
distribution near the nucleus, which is hardly in
fluenced by interatomic binding, is of importance . 
Brill [30] has discussed the effect of interatomic 
binding, particularly in crystals, and finds effects of 
the order of 4 to 5 percent for [sin ( cf>/2 ) ] / "A ~O_5. 
~i(c Weeny has found no significant difference between 
form factors computed for the valence states of free 
atoms and the form factors for these atoms bound in 
crystals. 

Furthermore, as mentioned above, coherent scat
tering from atoms consists of Rayleigh scattering, 
resonant electron scattering, D elbruck scattering, 
and nuclear scattering. Resonant electron scatter
ing produces large regions of anomalous dispersion 
when the frequency of the incident photons ap
proaches a resonant frequency of tbe atom. Parratt 
[31] has shown that within a large frequency range, 
near and below the J{ edge, e. g. , 0_1 A< "A < 100Afor 



eu, there is practically no region of normal disper
sion. The form-factor calculation is not sufficient to 
obtain the coherent scattering in this region. 

For a comparison with experimental results at 
higher frequencies, the cross sections for the Ray
leigh , Delbruck, and nuclear processes must be 
known, as well as the phase relationships between 
the scatterings by each process. Rayleigh and 
nuclear scattering will constructively interfere up to 
several million electron volts while Delbruck scatter
ing is out of phase with them in this range. 

The inapplicability of the Born approximation (2) 
to the scattering of electrons by heavy atoms has 
been considered by Glauber et al. [32]. Tabulations 
of form factors corrected for deviations from the 
Born approximation have been given by Ibers and 
Hoerni [33]. 

The authors thank U. Fano and G. R. White for 
many helpful disCllssions and 1. Hornstein for aid in 
the computations. 

7. References 

[1] D. R. Hartree, Phil. Mag. 50, 289 (1925) . 
[2] (a ) G. Wentzel, Z. Physik 43, 1 (1927); (b) 1. Waller , 

Phi l. Mag. 4, 1228 (1927); Nature 120, 155 (1927) ; 
Nature 15, 969 (1927); Z. Physik 51 , 213 (1928). 

[3] L. Pauling and J. Sherman, Z. Krist 81, 1 (1932). 
[4] D. R. Hartree, Proe. Cambridge Phil. Soc. 24, 89, 111 

(1928) . 
[5] V. Fock, Z. Physik 61, 126 (1930). 
[61 J. C . Slater, Phys. Rev. 35, 210 (1930). 
[7] R. W. James and G. ViTo Brindley , Phil. Mag. 12, 81 

(1931 ). 
[8] E. Fermi, Z. Physik 48, 73 (1928). 

.PC ,ua OS • q wc 

[9] 1,. H . Thomas, Froc. Cambr idge Phil. Soc. 23, 542 (1926). 
[10] G. R. White (unpublished NBS R eport). 

62 

[11] R. Gaspar, Acta Phys. Acad . Sci. Hung. 3, No.1, 59 
(1953). 

[12] W. Franz, Z. Physik 95,652 (1935); 98, 314 (1936). 
[13] J. S. Levinger, Phys. Rev. 87, 656 (1952). 
[14] H . A. Bethe, (private communication in r ef. 13). 
[15] F. Rohrlich and N. Rosenzweig (private communication 

in ref. 13). 
[16] G. Brown and J. Woodward, Proc. Phys. Soc. (London) 

[A] 65, 972 (1952) . 
[17] G. Brown et al., Proc. Royal Soc. 227-A, 51 , 59 (1954). 
[18] W. J. Freeman, Ph" s. Rev. 91 , 1410 (1953) . 
[19] (a) M. F . Manning and L. Goldberg, Phys. Rev. 53, 662 

(1938); (b) D. R. Hartree and W. Hartree, Proc Roy. 
Soc. (London) 149, 210 (1935). 

[20J G. W. Brindley and P. Ridley, Pmc. Phys. Soc. 50, 96 
(1938) . 

[21] A. C . Aitken, D eterminants and Matrices, 7th ed. 
(Oliver and Boyd Ltd. , Edinburgh, 1952). 

[22] G. W. Brindley and F . E. Hoare, Pmc Roy. Soc., 159A, 
395 (1937); Proc. Phys. Soc. 49, 619 (1937); Trans. 
Faraday Soc. 33, 268 (1937). 

[23] D . R . Hartree and W. Hartree, Proc. Roy. Soc. (London) 
A157, 490 (1936). 

[24] R. McWeen y, Acta Cry st. 4, 513 (1951); 5, 463 (1952); 
6, 631 (1953) and 7, 180 (1954) . W. Cochran, Acta 
Cryst. 6, 812 (1953). 

[25] W . G. Henry, Acta Cryst. 7, 138 (1954). 
[26] R. R. Wilson, PhJ's. R ev. 82, 295 (1951) . 
[27] A. Ie Mann (private communication) . 
[28] A. Storruste, PrOc. Phys. Soc. A53, 1197 (1950). 
[29] W. E. Duncanso n and C. A. Coulson, Proc. Roy. Soc. 

Edinburgh A62, 37 (1949) . 
[30] R. Brill, Acta Cryst. 3, 333 (1950). . 
[3 1] L. G. Parratt a nd C. F. H empstead, Phys. Rev. 94, 1593 

(1954). " 
[32] V. Schomaker and R. Glauber, Nature (Land.) 170, 290 

(1952); Phys. R ev. 89, 667 (1953). 
[33] J . A. Ibers and J . A. Hoerni, Acta Cryst. 7, 405 (1954). 

W ASHING'l' ON, December 23,1954. 

U. s. GOVERNMENT PRINTING OfFICE : 1955 


	jresv55n1p_53
	jresv55n1p_54
	jresv55n1p_55
	jresv55n1p_56
	jresv55n1p_57
	jresv55n1p_58
	jresv55n1p_59
	jresv55n1p_60
	jresv55n1p_61
	jresv55n1p_62

