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Stress-Strain Relationships in Yarns Subjected to 
Rapid Impact Loading: 3 . Effect of Wave 
Propagation 1 

Jack C. Smith, Frank 1. McCrackin, and Herbert F. Schiefer 

The tensile behavior of a Hookean mate rial , elongated by rapid impact at one end 
has been calculated , usin g a t heory in which wave propagat ion is conside red . As a resul t 
of these calcu lat ions, limi ts have been established on the appl icabi li ty of a simpler t heory, 
discussed in a preceding publicat ion , in which wave propagation was neglected. 

1. Introduction 

When a filamen t of uniform cross section is clamped at each end and rapidly elongated , 
data for a stress-strain curve can be obtained by measuring the force at one end and the elonga­
tion of the whole filament, both as fun ctions of the time. In this case the assumption is mad e 
that stresses and strains in the filament are uniform along the length and can be represented 
by the stresses measured at an end and by the average elongations. This assumption is no 
longer valid wh en the rate at whi ch the filament is lengthened approaches in order of magnitude 
tbe veloci ty of propagation of a tension wav e along the filament. 

In prev iou work 2 this effect of wave propagation was disregarded. It is the purpose 
here to dete rm ine how previously obtained results must be reinterpreted as a resu lt of the 
wave-propagat ion effect. 

2. Wave Theory 

Consider a filam ent lying along the negative x-axis, with one end aL the origin and having 
the other end fixed at tb e point x=-L. At time t= O and subsequently, the end at X= O is 
constrained to move wi th velocity Vo in the positive direction. Assume that the tensil e behavior 
is in accordance wi th Hooke's law. Th en, after impact, a strain pulse of magni tude ~o =vo/c 
is propagated down the fil ament with a velocity c. When the pulse is refl ected at the fixed 
end, the strain is increased to 2~o . A similar increase takes place at each re fl ection. 

Thi s behavior is shown in figure 1, in which the strains at several points along the filamenL 
arc plotted as fun ctions of the time. The strains are thus seen to vary discontinuoLlsly with 
time. These discontinLlOus increases in the strain become more pronounced as Vo is increased . 
If we require that ~o be less than 1 percen t, in order that wave-propagation effects in most 
textile fib er s may be safely disregarded, we must limi t Vo to values less than 0.01 c, which in the 
case of high-tenacity nylon is approximately 25 m /sec. 

In the present experimental method a filament is terminated at x=- L by a mass nw, 
where n is a number and w is the mass of the filament. At x=O the filament is terminated 
by a mass so large that its momentum will be practically unchanged by reaction forces from the 
filam ent and attached ma.ss. At time t= O the head mass is given a. velocityvo . The behavior 
of th e s'ystem is recorded photographically.3 The data of interest are the elongation of the 
fil ament and the react ion force applied to the filam ent at the tail mass, both as functions of 
time . From these data the experimental stress-strain curve is constru cted. 

I This work was sponsored by the omcc of ihe Quartcrmaster General, D epariment of t he Army, and was presented in part at the November 
1954 meetin g of t he Societ y of Rheology. 

, Frank L . M cC rackin , Herbert F . Schiefer, Jack C. Smith , and Walter K . Sione, Stress-strain relat ionships in yarns subjected to rapid 
impacL loading: 2. Brcaking veloci ties, strain energies, an d theory neglecting wave propagation , J. Research N BS 54, 277 (1955) RP2590. 

3 Waller K. S tone, II erberL F. Scbiefer , and George Fo .• , Stress-strain relationships in yarns subjected to rapid impact loading: 1. Equipment, 
tes tin g proced ure. and typical results, 1. Research NB S 54, 259 (1955) RP 2589. 
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o~ FIGURE 1. Local strain versus time for a filament 
clamped at x=- L and ra pidly elongated at X=O 
at velocity Vo . 
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The theoretical behavior of this system, when Hooke 's law applies,4 is most easily calculated 
by finding suitable solutions of the wave equation 

(1) 

In this equation, is the time variable, and x denotes the position of a cross section of the 
filament relative to fixed coordinates, when the filament is in the unstrained state; u(x,t) 
denotes the distance the cross section has moved from its original position at x, and c is the 
velocity of propagation of an elastic-tension wave along the filament. This velocity is given 
by c=.JE/ p, where E is Young's modulus of elasticity for the unstrained filament, and p is 
the density of the unstrained filament material. 

These solutions must satisfy the boundary condition at the head: 

u(O, t) =vot. (2) 

A suitable solution (for the unreflected wave) is given by 

u(x, t) =O (t+~~ O) 

=vo (t+D (t+~>O) 
ou (t+~~ O) t(x t)=-=O , ox 

Vo (t+~>O} c 
(3) 

where u represents a wave of velocity c traveling along the filament in the minns x-direction, 
and t is the local strain, or increase in length per unit length , set up in the filament in the wake 
of the wave. I t should be noted that both u and t are equal to zero for valu es of t< Ixl/c, i. e., 
no strain or displacement is present at a point in advance of the wave. 

When the wave arrives at the end of the filam ent it is reflected and travels back in the 
positive direction. The strain between the reflected wave front and the tail mass is represented 

• The stress-strain behavior of most textile fihers may be described by Hooke's law onl y lor small strains. At larger strains, the solutions 
derived here provide only rough approximations to the behavior 01 an actual textile fiber but are adequate for the purposes 01 this theory. 

In order to take into account the significant reduction in cross-sectional area 01 the filament for the fini te strains considered here, it is assumed 
that Hooke's law is obeyed in such a way that the product of Young's modulus and cross-sectional area remains constant . The small effect of mass 
motion associated with the lateral contraction has been neglected. 
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FlG URE 2. Strain-time curves fo r a filament loaded at 
the tail with a mass lOw and rapidly elongated at 
the head at velocity Vo. 

FlGURE 3. Stress-strain curves for a filament loaded 
with tai l mass lOw and rapidly elongated at the head 
at veloc-ity Vo. 

as the sum of the strains caused by the incid en t and reflected waves. If the tail end of the 
filament were fixed , this strain would be 2fo. However, as the tail mass can move, this strain , 
initially 2to at refl ection, will deer'ease with time. The rate of decrease depend s upon the tail 
mass and upon t he order of the reflection; i. C. , wh ether it is the firs t or a subsequ ent reflection. 
R eflections also occur at the head mass. A differen t solution of the wave equat ion is required 
to describe the state of the fi lament after each reflection. The first 10 of these solutions arc 
tabulated in appendix l. 

By using t hese solutions it is possible to calculate curves of average strain versus t ime, and 
local strain versus time. These curves arc given in figure 2 for the case where the tail has a 
mass of lOw (n = 10) . The curve of local strain , t(- L , t), versus time is jagged , t he decrease 
in t between successive refl ections becoming greater wi th each reflection. 

As the force at the tail, which is found experim entally from the acceleration of the t,ail mass, 
is proportional to the strain at the tail, it is possible to constru ct a t heoretical stress-strain 
curve of local tail stress (strain ) versus average strain . Such a curve is given in fi gure 3. 
Experimental curves are similar to th is curve in that they show dips in the vicinity of maximum 
stress. Th ere is also a delay in t he initial rise of stress by the time it takes for the tension wave 
to be propagated to the tail mass. 

3 . Theory, Neglecting Wave Propagation 

A solut ion , applicable at low testing speeds, can be obtained by disregarding wave propaga­
tion along the filament, and assuming the mass of the filament to be concen trated partly at the 
tail and partly at the head. The resulting solution , derived in appendix 2, is 

(4) 

[ ~ J c ,· () - = -yn sm-
to .In' (5) 

where () = (e IL )t, to=vole, n' = n+f, andf is the fraction of the filament mass assumed concen­
trated at the tail. 

It is helpful to think of () as time expressed in Lie units . Likewise, one can think of H~ol as 
strain expressed in to units . Here to and c have only formal significance in order to put the 
solu tion in a form analogous to that obtained when wave propagation is considered . 
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4. Comparison of Wave Theory With Theory Neglecting Wave Propagation 

Plots of [E/EO] versus 0 for values of n' = 10, 10 >~, and 11 are shown in figure 4_ Values of 
f /Eo have also been computed from the wave theory for the case n= 10, using the formula 

E _vot-u(-L , t) 
~- EoL 

c 
O-L- u(-L, t). 

Vo 
(6) 

These points are plotted as circles a,nd are seen to fit best to the curve drawn for n' = lOH. 
This indicates that for a mass ratio of 10, the nonwave theory results agree most closely with 
those for the wave theory when half the mass of the filament is assumed concentrated at each 
end (j= !). 

According to the nonwave theory, the maximum average strain that can be obtained in a 
filament is given by 

[~J = ,In+ f =~n+ !. 
eo max 

and this strain is obtained when Om= (c /L)tm= (7f' /2)~n+ t or 

7f'L 1-­t = - - ,n+ .! · 
"' 2 c 2 

(7) 

(8) 

This suggests that the maximum average strain 'i/Eo as computed by the wave theory is approxi­
mately equal to ~n+ t and occurs for a value of Om approximately equal to 7f'/2 ~n+! . That 
this is a good approximation is demonstrated in table 1. 

According to the nonwave theory (appendix 2) 

log v,,=-t log (n+!)+ log ~~ i" O'dE, (9) 

where Vn is the lowest impact velocity to cause rupture in a filamen t to which a tail mass, nw, 
is attached, rr is the tensile stress expressed as force divided by the cross-sectional area of the 
unstrained filament , and ET is the strain at which rupture occurs. 

TABLE 1. Values of maximum average strain and position of 
maximum average strain as computed by the wave theory 
and by the nonwave theory 

Maximum average strain Position 

n 
Wave theory Nonwave theory Wave theory Nonwa ve theory 

i /Eo .JnH Om "./2.Jn+t 

2 1.61 1. 58 2. 39 2. 48 
5 2.39 2,34 3. 59 3,68 

10 3. 2G 3. 24 5. 10 5.08 
25 5. 13 5.05 7. 90 7. 93 

If the values of ET and (J are independent of the rate of elongation, then log ~ (21 p) i " O'dE 

will be a constant, and the plot of log Vn versus log (n + t) will be a straight line of slope - V 
, At high rates of strainin g, t he value of E, for an actual text ile fiber is less than that obtained at can ventianal tes ting rates. Also the slope of 

t he stress-strain curve is greater at higher rates of straining. However, for rates of straining of the same order of magnitude, these changes are 
small, and tend to cancel each other out. Consequently, the area under t he stress-strain curve, Or rupture en ergy densi ty in t he fila ment, should 
be essen tially constan t for rates of straining corresponding to impact velocities near the limiting breakin g velocity. 
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When log (n+ j) is zero , we have the extrapolated velocity 

(10) 

When Hooke's law appli es, we have 

(ll) 

According to the wave theory, -J E/ p is the velocity of propagation, c, of an elastic tension wave 
along th e filament, and thus 

the velocity just sufficient to cau se immediate rupture a t x= O. 
We call the velocity defined by (10) the "limi ting breaking velocity". The concep t of a 

limiting breaking velocity has been discussed, in a prev ious paper (see foo tno te 2). 
As an exampl e, consider a Hookean material for which ET= 0.12, and c= 2,500 m /sec. 

,-- ,------,----, CET 

From (7), for the case of rup ture, we have ET= Eo'vn + ! = (v" /c),,n+ ! or vn= .. Jn + !" (13) 

In figure 5 are plo t ted values of Vn compu ted from these assumed values of ET and c. The 
resul t is a straight line giving an extrapolated value of 300 m /sec as the limi ting breaking 
velocity. 

The breaking velocities have also been calcul a ted on the basis of the more exac t theory in 
which wave mo tion is considered and Hooke's law is assumed . Average strains are calculated 
from (6), a nd the breaking velocities are then compu ted from the formula 

Vn = [E (n) ] . 
f O max 

(14) 

These resul ts ar e also plo tted in figure 5. I t is seen t ha t these breaking veloci ti es, for a 
Hookean ma terial of constan t ET , are lower (for small n's) than those predi cted by t he nonwave 
theory. 

In actuali ty the strain at a given poin t along the fil amen t does no t change continuously 
wi th time bu t increases suddenly by an amount EO wh en one of the strain pulses passes through 
the point. Rupture then occurs whenever the local strain exceeds the rupture strain. 

- AVERAGE STRA IN E FROM THE ORY NEGLECT I N G 

WAVE MOllON In'·IO . IO~.II) 
_ BREAKING VE LOCI TIES- NO N- WAVE T H EO R Y 

o AvERAGE STRAIN rRO" THEOR Y CONSIOERIN G 

WAV E MOT ION ( n - '0) 

TIME It UNITS 

FIGURE 4. Strain-time CU1"ve for filam ent loaded with 
tail mass l Ow, according to Ihe wave theory, and 
according to the theo1"Y n eglecting wave pro pagation. 
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FIG URE 6.- Local strain-time curves for a filament 
loaded with a tail-mass lOw. 

In figure 6 are plotted local strains at the head, tail, and midpoint for a filament loaded 
with a tail mass lOw (n = lO). Note here that maximum strain occurs at the head on the third 
reflection (1:1 = 6). This corresponds to a lowest breaking velocity of 68.6 m/sec. 

Increases in the local strain always occur first upon reflection at either the head or the tail. 
Increases in the local strain at an intervening point occur later, but these strains never exceed 
the head or tail strains in magnitude. For this reason, it is to be expected that a uniformly 
strong filament will break only at the ends . 

If the maximum values of local strain" [E/Eolmax are substituted into eq 14, the lowest 
breaking velocities, VI!, for head and tail breaks can be computed. These breaking velocities, 
also plotted in figure 5, are seen to be the lowest of all. 

The curves of local strains versus time for an actual material, having approximately the 
properties chosen for this example, would no t be as jagged as those shown in figure 6 for an 
ideal Hookean material. Thus, the velocities found experimentally for this actual material 
could be expected to lie between the bounds established in figure 5 by the curve of the velocities 
computed from average strains in the filament, and the curve of velocities computed from the 
extreme local strains at the head or tail of the filament. The breaking velocities computed by 
any of the methods considered are the same when n is greater than 50. It is thus possible, in 
this example, to determine a limiting breaking velocity by extrapolation of experimental data 
taken with n greater than 50, provided Er remains constant and Hooke's law applies. This 
criterion also applies , provided the energy density at rupture for the material remains nearly 
constant at the impact velocities used for determination of the limiting breaking velocity. 

In the example just considered, the breaking velocity for n = 50 is 42 m /sec. A tensile 
impact at this velocity produces a strain pulse of EO = l.6 percent. This suggests a criterion 
applicable to any textile fiber, for which the energy density at rupture remains nearly constant 
at high strain rates. For such a fiber a limi ting breaking velocity may be found by extrapola­
tion of experimental data taken such that all Vn used are less than 0.02 c, where c is the velocity 
of propagation of the tensile strain pulse along the sample for the material tested. 

5. Summary and Conclusions 

When the stress-strain characteristics of a textile fiber are measured at longitudinal impact 
rates exceeding 10 m/sec the effects of tension-wave propagation along the fiber must be con­
sidered. These initial and reflected waves cause the local strains to vary with time in a step­
wise fashion. The average strain in the filament, which is the quantity measured experi­
mentally, does not adequately represent the state of strain under these conditions. As the 
measured stress is roughly proportional to the local strain at an end, experimental stress-time 
curves also vary in a stepwise fashion. Stress-strain curves likewise exhibit fluctuations. 

The tensile behavior of a Hookean material having a breaking elongation independent 
of testing speed has been calculated, using a t heory in which wave propagation is considered. 
The results of these calculations have been used to modify the predictions of a simpler theory 
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that neglects wave propagation. Thus, it has been shown that a filament weighted at the tail 
and pulled rapidly at the head at constant speed will attain a maximum average elongation 
proportional to .In+t after the tension wave has been reAected (-lr /2).Jn+ ~ times, wbere n is 
the ratio of the tail mass to the mass of the specimen. 

If logarithms of the lowest breaking velocities for each n are plotted versus log (n + t), tlte 
theory neglecting wave propagation predicts that a straight line of slope - t is obtained, 
provided that tbe rupture-energy density is nearly constant at high testing speeds. An extra­
polated velocity (for log(n+t) equals zero) is thus obtained, which is termed the "limiting 
breaking velocity" of the material; i. e., the velocity above which the sample will always 
rupture at the bead immediately upon impact. Both theories predict tbe same limiting break­
ing velocity, provided extrapolation is made from data taken at impact speeds less than 2 
percent of the velocity of propagation of a tension-wave pulse along the material. If this limita­
tion is observed, the theory neglecting wave propagation is valid , and extrapolation to the 
limiting breaking velocity may be made. 

6. Appendix 1. Wave-Theory Solutions 

In table 2, Uo gives the displacement due to the original incident wave, proceeding toward 
the tail mass. After reflection at the tail, the displacement, u, is comp u ted from tbe sum of 
uo, and UI, t he displacement of the reflected wave. Similarly, after the first head reflection, 
displacement is computed from the sum of Uo, UI , and U 2. Displacement due to each reflected 
wave is a function o( a z paramelcr, which in turn is a function of x and t. Only positivc values 
of these z parametcrs arc allowed. N egativc valucs represcnt position-time evcnts in advance 
of the wave, where u= O. 

Velocity functions obtained by differentiating the displacement functions with respect to 
time are tabulated in table 3. Local-strain functions , obtained by differentiating the displace­
ment functions with respect to the position coordinate along tbe filament, are gi ven in table 4. 

The method of obtaining these solutions is demonstrated in the following derivation for UI. 

The initial conditions that must be satisfied (or t he first rciiection at the tail are at 

x=-L, 
L t=-, 
c zo= O, 

Displacement at the tail just before reflection equals tbe displacement at the tail just after 
reflection , or uo(O) = uO(O) + UI(O). Hence u,(O) = O. Velocity at the tail just before reflection 
equals the velocity at t.he tail just after reflection, or O= vO(O) +VI(O). Hence VI (0)= -Vo. In 
addition, we have tbe boundary condition at x= - L , 

or 

02 Vo [ 0 ] nw "'t2 ul(z)=EA - +EA :;:- U, (Zl) 
u c uX x --L 

or 
(f2 Vo EA d 

nw -. - UI = EA -- - -. - UI 
dz2 C c rlz ' 

where z= t - L/c , and A is the cross-sectional area of the unstrained filament . If we let 

nwc npJ..c L 
T= - =--= n - , 

EA E c 
we obtain 
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The solution of this equation that satisfies the initial conditions is 

( L) [ _J... (t-!::) ] UI = VO t - c -2V07 l -e T C • 

If we replace (t-Lle) by z,= t-2(L/c)-xle, we obtain the required solu tion for UI. 

UO = VOZO 

TABLE 2. Displacement functions 

U= UO + UI + U2+ U3+ .... 

[ ( +2 z5+2 Z~) -~J u5=vozs- 6vor 1- 1 :3 -; :3-:;:Z e T 

[ ( z8+1 Z~) -~J U8 = vozs- 8vor 1- 1 +-; :3 7 3 e T 

[ ( 4 ZIO 4 zio 4 z~o 2 zto) -~J UIO = -VOZIO+ 10v07 1- 1 +- - +- 2 - - - -+- - e T' 5 7 5 7 15 7 3 15 7 4 

TABLE 3. Velocity functions 

= au = oUo+ OUI + oU2+ . . . = VO +Vl + t'2 + 
Vat at at at 

Vo=Vo (for zo> O) 

z, 
VI =Vo- 2voe-7" 

z, 
V2= - vo+ 2voe-7" 
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x 
zo=t+­e 

2L x 
Zl=t- - - ­

c e 

2L x 
Z2= t--+ -

e e 

6L x 
z,=t----

o e e 

8L x 
zs=t- - + ­

e e 

10L x 
Z9=t- - - -

e e 

10L x 
ZIO=t- - + -

e e 



TABLE 3. Velocity functions- Conti nued 

( 1 4 Z9 8 z~ 4 zg 2 Z~) _~ 
v9=vo- l0vo - - - - +- - - - - +- - e T 

5 5 7 5 7 2 5 7 3 15 7 4 

( 1 4 ZIO 8 zio 4 zro 2 Z10) -~ VlO= -Vo+ 10vo - - - - +- --- - +- - e T 

5 5 T 5 7 2 5 7 3 15 7 4 

T ABLE 4. Local stmin Junctions 

£= ou= ouo+Olt'+ ~ ox ox ox ... = ~o+ ~ , + . 

Vo f ~o=- ( or zo>O) 
c 

" ~, = - ~0+ 2~oe-' 

" ~2= - ~0+ 2~oe-' 

+ (1 2 Z5 2 Z~) _~ 
~ =- ~o 6~0 - - - - +- - e T 

5 33 7 3? 

( 1 2 Z6 2 Z~) -~ 
~6=- ~0+6 ~0 -- --+-- e T 

3 3 7 3 7 2 

( 1 4 Z9 8 z~ 4 zg 2 Z~) _~ 
~9= - ~o+ 1 O~o - - - - + - - - - - + - - e T 

5 5 7 5 7 2 5 7 3 15 7 4 

( 1 4 Z IO 8 zio 4 z~o 2 Z10) -~ 
~10= - ~o+ 1 O~o - - - - +- - - - - + - - e r 

5 5 T 5 7 2 5 7 3 15 7 4 
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Appendix 2. Solution, Neglecting Wave Propagation 

Consider a filament of length L, cross section A, and density p and having a mass n' pAL 
attached at the tail, where n ' is equal to n+f, n is the ratio of the tail mass to the mass of the 
filament , and f is the fraction of the mass of the filament assumed concentrated at the tail. It 
is shown in section 4 that the best value fori is !. 

At zero time and subsequently, let the head end of the filament be constrained to move with 
velocity Vo. The equation of motion is 

(15) 

where u is the displacement of the tail mass, and F is the accelerating force transmitted through 
the filament to the tail mass. 

The strain in the filament, ~ , is given by 

(16) 

Wh en Hooke's law applies, 

(17) F=AE~, 

where E is Young 's modulus for the filament material. 
we obtain 

Substituting (16) and (17) into (15) , 

(18) 

where 
e 1 

Wo=- ---=, 
L ...;n' 

(19) 

and 

(20) 

A solution of (18) satisfying the boundary conditions, u= o and duldt = O at t= O, is 

u = Vo [t- ~o sin wotJ (21) 

If we let t= (Lie) FJ , and ~o=vole, we obtain 

u= ~oL [0-8 sin In, ] (22) 

r" FJ 
~= ~o"n SIn c · 

-yn' 
(23) 

In a previous paper (see footnote 2) the following equation was derived: 

I 1 I (n + !)(m + ! ) I /2 J'" og Vn=-2 og n + m + l + og -Y P 0 (Jd~, (24) 

where Vn is the lowest impact velocity sufficient to cause rupture in a filament to which a tail 
mass n times that of the filamen t and a head mass m times that of the filament, are attached. 
For comparison with the work discussed here, we let m~ co, obtaining 

log vn=-! log (n+ !)+log ~~ i" (Jd~ . (25) 

WASHINGTON, D ecember 31, 1954. 
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