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Stress-Strain Relationships in Yarns Subjected to
Rapid Impact Loading: 3. Effect of Wave
Propagation’

Jack C. Smith, Frank L. McCrackin, and Herbert F. Schiefer

The tensile behavior of a Hookean material, elongated by rapid impact at one end
has been calculated, using a theory in which wave propagation is considered. As a result
of these calculations, limits have been established on the applicability of a simpler theory,
discussed in a preceding publication, in which wave propagation was neglected.

1. Introduction

When a filament of uniform cross section is clamped at each end and rapidly elongated,
data for a stress-strain curve can be obtained by measuring the force at one end and the elonga-
tion of the whole filament, both as functions of the time. In this case the assumption is made
that stresses and strains in the filament are uniform along the length and can be represented
by the stresses measured at an end and by the average elongations. This assumption is no
longer valid when the rate at which the filament is lengthened approaches in order of magnitude
the velocity of propagation of a tension wave along the filament.

In previous work ? this effect of wave propagation was disregarded. It is the purpose
here to determine how previously obtained results must be reinterpreted as a result of the
wave-propagation effect.

2. Wave Theory

Consider a filament lying along the negative z-axis, with one end at the origin and having
the other end fixed at the point x=—L. At time =0 and subsequently, the end at 2=0 is
constrained to move with velocity #,in the positive direction. Assume that the tensile behavior
is in accordance with Hooke’s law. Then, after impact, a strain pulse of magnitude e,=1vy/c
is propagated down the filament with a velocity ¢. When the pulse is reflected at the fixed
end, the strain is increased to 2¢,. A similar increase takes place at each reflection.

This behavior is shown in figure 1, in which the strains at several points along the filament
are plotted as functions of the time. The strains are thus seen to vary discontinuously with
time. These discontinuous increases in the strain become more pronounced as v, s increased.
If we require that € be less than 1 percent, in order that wave-propagation effects in most
textile fibers may be safely disregarded, we must limit », to values less than 0.01 ¢, which in the
:ase of high-tenacity nylon is approximately 25 m/sec.

In the present experimental method a filament is terminated at z=—/L by a mass nw,
where n is a number and w is the mass of the filament. At 2=0 the filament is terminated
by a mass so large that its momentum will be practically unchanged by reaction forces from the
filament and attached mass. At time t=0 the head mass is given a velocity »,. The behavior
of the system is recorded photographically.? The data of interest are the elongation of the
filament and the reaction force applied to the filament at the tail mass, both as functions of
time. Krom these data the experimental stress-strain curve is constructed.

I This work was sponsored by the Office of the Quartermaster General, Department of the Army, and was presented in part at the November
1954 meeting of the Society of Rheology.

2 Frank L. MeCrackin, Herbert F. Schiefer, Jack C. Smith, and Walter K. Stone, Stress-strain relationships in yarns subjected to rapid
impact loading: 2. Breaking velocities, strain energies, and theory neglecting wave propagation, J. Research NBS 54, 277 (1955) R P2590.

3 Walter K. Stone, Herbert F. Schiefer, and George Fox, Stress-strain relationships in yarns subjected to rapid impact loading: 1. Equipment,
testing procedure, and typical results, J. Research NBS 54, 269 (1955) RP2589.
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LOCAL STRAIN

Frcure 1. Local strain versus time for a filament
clamped at x=— L and rapidly elongated at x=0
at velocity vy.
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The theoretical behavior of this system, when Hooke’s law applies,* is most easily calculated
by finding suitable solutions of the wave equation

o'u_ , O*u
o o #

In this equation, ¢ is the time variable, and z denotes the position of a cross section of the
filament relative to fixed coordinates, when the filament is in the unstrained state; wu(x,t)
denotes the distance the cross section has moved from its original position at x, and ¢ is the
velocity of propagation of an elastic-tension wave along the filament. This velocity is given
by ¢=+/E/p, where E is Young’s modulus of elasticity for the unstrained filament, and p is
the density of the unstrained filament material.

These solutions must satisfy the boundary condition at the head:

(0, t)=uv,t. (2)

A suitable solution (for the unreflected wave) is given by

u(a, ) =0 <t+fgo>
—a(t+2)  (t+5>0)
«(z, t)=gi;=o <t+§go>
~t <t +2> 0), 3)

where u represents a wave of velocity ¢ traveling along the filament in the minus z-direction,
and e is the local strain, or increase in length per unit length, set up in the filament in the wake
of the wave. It should be noted that both u and e are equal to zero for values of t<|z|/¢, 1. e.,
no strain or displacement is present at a point in advance of the wave.
When the wave arrives at the end of the filament it is reflected and travels back in the
positive direction. The strain between the reflected wave front and the tail mass is represented
4 The stress-strain behavior of most textile fibers may be described by Hooke’s law only for small strains. At larger strains, the solutions
derived here provide only rough approsimations to the behavior of an actual textile fiber but are adequate for the purposes of this theory.
In order to take into account the significant reduction in cross-sectional area of the filament for the finite strains considered here, it is assumed

that Hooke’s law is obeyed in such a way that the product of Young’s modulus and cross-sectional area remains constant. The small effect of mass
motion associated with the lateral contraction has been neglected.
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Frcure 2. Strain-time curves for a filament loaded at Ficure 3. Stress-strain curves for a filament loaded
the tail with a mass 10w and rapidly elongated at with tail mass 10w and rapidly elongated at the head
the head at velocity v,. at velocity vg.

as the sum of the strains caused by the incident and reflected waves. If the tail end of the
filament were fixed, this strain would be 2¢). However, as the tail mass can move, this strain,
initially 2¢ at reflection, will decrease with time. The rate of decrease depends upon the tail
mass and upon the order of the reflection; i. e., whether it is the first or a subsequent reflection.
Reflections also occur at the head mass. A different solution of the wave equation is required
to describe the state of the filament after each reflection. The first 10 of these solutions are
tabulated in appendix 1.

By using these solutions it is possible to calculate curves of average strain versus time, and
local strain versus time. These curves are given in figure 2 for the case where the tail has a
mass of 10w (n=10). The curve of local strain, e(— L, ¢), versus time is jagged, the decrease
in e between successive reflections becoming greater with each reflection.

As the force at the tail, which is found experimentally from the acceleration of the tail mass,
is proportional to the strain at the tail, it is possible to construct a theoretical stress-strain
curve of local tail stress (strain) versus average strain. Such a curve is given in figure 3.
Experimental curves are similar to this curve in that they show dips in the vicinity of maximum
stress. There is also a delay in the initial rise of stress by the time it takes for the tension wave
to be propagated to the tail mass.

3. Theory, Neglecting Wave Propagation

A solution, applicable at low testing speeds, can be obtained by disregarding wave propaga-
tion along the filament, and assuming the mass of the filament to be concentrated partly at the
tail and partly at the head. The resulting solution, derived in appendix 2, is

u=¢oL | 6—+/n’ sin —i @
N

0 \Vn

where 6= (¢/L)t, ee=vo/c, n”=n-f, and f is the fraction of the filament mass assumed concen-
trated at the tail.

It is helpful to think of 6 as time expressed in /¢ units. Likewise, one can think of [e/e] as
strain expressed in ¢ units. Here ¢ and ¢ have only formal significance in order to put the
solution in a form analogous to that obtained when wave propagation is considered.
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4. Comparison of Wave Theory With Theory Neglecting Wave Propagation

Plots of [e/¢;] versus 6 for values of n”=10, 10%, and 11 are shown in figure 4. Values of
€/, have also been computed from the wave theory for the case n=10, using the formula
e _vt—u(—L,b)_ ¢
ST =0 Lo u(—L, t). (6)
These points are plotted as circles and are seen to fit best to the curve drawn for n’=10%.
This indicates that for a mass ratio of 10, the nonwave theory results agree most closely with
those for the wave theory when half the mass of the filament is assumed concentrated at each
end (f=3).
According to the nonwave theory, the maximum average strain that can be obtained in a
filament is given by

(<] —vaFi=yats: 0
and this strain is obtained when 6,,= (¢/L)t,,= (7/2)y/n+1 or
) A
tng ;v/n+ 3 @®)

This suggests that the maximum average strain ¢/e as computed by the wave theory is approxi-
mately equal to y/n+% and occurs for a value of 8,, approximately equal to 7/2 yn+3. That
this is a good approximation is demonstrated in table 1.

According to the nonwave theory (appendix 2)

log .= log (44 oz 42 [ o ©
0

where v, is the lowest impact velocity to cause rupture in a filament to which a tail mass, nw,
is attached, o is the tensile stress expressed as force divided by the cross-sectional area of the
unstrained filament, and e, is the strain at which rupture occurs.

TaBLe 1. Values of maximum average strain and position of
maximum average strain as computed by the wave theory
and by the nonwave theory

Maximum average strain Position

Wave theory | Nonwave theory | Wave theory | Nonwave theory

éleo | Vn+} Om | w2t}
2 1.61 1.58 2.39 2.48
5 2.39 2.34 3.59 3.68
10 3.2 | 3.24 5.10 5.08
25 5.13 | 5.05 7.90 7.93

If the values of ¢, and ¢ are independent of the rate of elongation, then log \/(2/p) férade
0

will be a constant, and the plot of log », versus log (n+43%) will be a straight line of slope —3.°

5 At high rates of straining, the value of e, for an actual textile fiber is less than that obtained at conventional testing rates. Also the slope of
the stress-strain curve is greater at higher rates of straining. However, for rates of straining of the same order of magnitude, these changes are
small, and tend to cancel each other out. Consequently, the area under the stress-strain curve, or rupture energy density in the filament, should
be essentially constant for rates of straining corresponding to impact velocities near the limiting breaking velocity.

22



When log (n43%) is zero, we have the extrapolated velocity

2 (e
V= 4 /2 de. 1
b \/pj; ade (10)

When Hooke’s law applies, we have
ol
Ub:—\/g 63. (1 1)
p

According to the wave theory, 4/ £/p is the velocity of propagation, ¢, of an elastic tension wave
along the filament, and thus

ry=Cé€,,

the velocity just sufficient to cause immediate rupture at 2=0.

We call the velocity defined by (10) the “limiting breaking velocity”. The concept of a
limiting breaking velocity has been discussed, in a previous paper (see footnote 2).

As an example, consider a Hookean material for which €,=0.12, and ¢=2,500 m/sec.

Cér

From (7), for the case of rupture, we have e, =e/n-+1=,/c)vn+ % or v,= ~ vy
VRT3

(13)
In figure 5 are plotted values of », computed from these assumed values of ¢, and ¢. The
result 1s a straight line giving an extrapolated value of 300 m/sec as the limiting breaking
velocity.
The breaking velocities have also been calculated on the basis of the more exact theory in
which wave motion is considered and Hooke’s law is assumed. Average strains are calculated
from (6), and the breaking velocities are then computed from the formula

Vn= T (14)

"_[z(m] o
€ max

These results are also plotted in figure 5. It is seen that these breaking velocities, for a
Hookean material of constant e, are lower (for small »’s) than those predicted by the nonwave
theory.

In actuality the strain at a given point along the filament does not change continuously

with time but increases suddenly by an amount ¢ when one of the strain pulses passes through
the point. Rupture then occurs whenever the local strain exceeds the rupture strain.
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Frcure 4. Strain-time curve for filament loaded with Ficure 5. Breaking velocities for a hypothetical spec-
tazl mass 10w, according to the wave theory, and imen, as computed by the wave theory, and by the
according to the theory meglecting wave propagation. nonwave theory.
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Ficure 6.—Local strain-time curves for a filament
loaded with a tail-mass 10w.
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In figure 6 are plotted local strains at the head, tail, and midpoint for a filament loaded
with a tail mass 10w (n=10). Note here that maximum strain occurs at the head on the third
reflection (§=6). This corresponds to a lowest breaking velocity of 68.6 m/sec.

Increases in the local strain always occur first upon reflection at either the head or the tail.
Increases in the local strain at an intervening point occur later, but these strains never exceed
the head or tail strains in magnitude. For this reason, it is to be expected that a uniformly
strong filament will break only at the ends.

If the maximum values of local strains [¢/e]max are substituted into eq 14, the lowest
breaking velocities, v,, for head and tail breaks can be computed. These breaking velocities,
also plotted in figure 5, are seen to be the lowest of all.

The curves of local strains versus time for an actual material, having approximately the
properties chosen for this example, would not be as jagged as those shown in figure 6 for an
ideal Hookean material. Thus, the velocities found experimentally for this actual material
could be expected to lie between the bounds established in figure 5 by the curve of the velocities
computed from average strains in the filament, and the curve of velocities computed from the
extreme local strains at the head or tail of the filament. The breaking velocities computed by
any of the methods considered are the same when 7 is greater than 50. It is thus possible, in
this example, to determine a limiting breaking velocity by extrapolation of experimental data
taken with n greater than 50, provided e remains constant and Hooke’s law applies. This
criterion also applies, provided the energy density at rupture for the material remains nearly
constant at the impact velocities used for determination of the limiting breaking velocity.

In- the example just considered, the breaking velocity for n=50 is 42 m/sec. A tensile
impact at this velocity produces a strain pulse of ¢e=1.6 percent. This suggests a criterion
applicable to any textile fiber, for which the energy density at rupture remains nearly constant
at high strain rates. For such a fiber a limiting breaking velocity may be found by extrapola-
tion of experimental data taken such that all », used are less than 0.02 ¢, where ¢ is the velocity
of propagation of the tensile strain pulse along the sample for the material tested.

5. Summary and Conclusions

When the stress-strain characteristics of a textile fiber are measured at longitudinal impact
rates exceeding 10 m/sec the effects of tension-wave propagation along the fiber must be con-
sidered. These initial and reflected waves cause the local strains to vary with time in a step-
wise fashion. The average strain in the filament, which is the quantity measured experi-
mentally, does not adequately represent the state of strain under these conditions. As the
measured stress is roughly proportional to the local strain at an end, experimental stress-time
curves also vary in a stepwise fashion. Stress-strain curves likewise exhibit fluctuations.

The tensile behavior of a Hookean material having a breaking elongation independent
of testing speed has been calculated, using a theory in which wave propagation is considered.
The results of these calculations have been used to modify the predictions of a simpler theory
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that neglects wave propagation. Thus, it has been shown that a filament weighted at the tail
and pulled rapidly at the head at constant speed will attain a maximum average elongation
proportional to yn+3% after the tension wave has been reflected (7/2)yn+% times, where n is
the ratio of the tail mass to the mass of the specimen.

If logarithms of the lowest breaking velocities for each n are plotted versus log(n-3%), the
theory neglecting wave propagation predicts that a straight line of slope —3% is obtained,
provided that the rupture-energy density is nearly constant at high testing speeds. An extra-
polated velocity (for log(n-3%) equals zero) is thus obtained, which is termed the “limiting
breaking velocity’”” of the material; i. e., the velocity above which the sample will always
rupture at the head immediately upon impact. Both theories predict the same limiting break-
ing velocity, provided extrapolation is made from data taken at impact speeds less than 2
percent of the velocity of propagation of a tension-wave pulse along the material.  If this limita-
tion is observed, the theory neglecting wave propagation is valid, and extrapolation to the
limiting breaking velocity may be made.

6. Appendix 1. Wave-Theory Solutions

In table 2, u, gives the displacement due to the original incident wave, proceeding toward
the tail mass. After reflection at the tail, the displacement, u, 1s computed from the sum of
ug, and u;, the displacement of the reflected wave. Similarly, after the first head reflection,
displacement is computed from the sum of wu,, u;, and u,. Displacement due to each reflected
wave is a function of a z parameter, which in turn is a function of z and . Only positive values
of these z parameters are allowed. Negative values represent position-time events in advance
of the wave, where u=9.

Velocity functions obtained by differentiating the displacement functions with respect to
time are tabulated in table 3. Local-strain functions, obtained by differentiating the displace-
ment functions with respect to the position coordinate along the filament, are given in table 4

The method of obtaining these solutions is demonstrated in the following derivation for u,.

The initial conditions that must be satisfied for the first reflection at the tail are at
z=—L, t=— 2z=0, 2z=0.
Displacement at the tail just before reflection equals the displacement at the tail just after

reflection, or u(0)=wu,(0)+%,(0). Hence %,(0)=0. Velocity at the tail just before reflection
equals the velocity at the tail just after reflection, or 0=1v,(0)+42,(0). Hence »,(0)=—2, In

addition, we have the boundary condition at 2= —L,
o° L o} B
nw btl [U()(ao)—i"ul(zl)]zﬁ _ 7 A a [?1/0(20)—‘“71/1(41)],_-7 — s
or
o’ Vo l:
W s W(2)=FEA—+FEA U
n atz 1( ) L + O l(‘l)]z: .
or
2 w EA
nw -(713 w=EA%®— AL "
dz ¢ ¢ dz
where z=t¢— L/e, and A is the cross-sectional area of the unstrained filament. If we let

nwe_nple L
TEAT E "¢
we obtain
d U 1 du, _ Vo
l rdz 1



The solution of this equation that satisfies the initial conditions is

w(i=E)-zn 1 (D]

If we replace (t—L/e) by z,=t—2(L/¢)—x/c, we obtain the required solution for u;.

TaBLE 2.  Displacement functions
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TasrLe 3. Velocity functions—Continued
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Appendix 2. Solution, Neglecting Wave Propagation

Consider a filament of length L, cross section A, and density p and having a mass n’pAL
attached at the tail, where n” is equal to nf, n is the ratio of the tail mass to the mass of the
filament, and f is the fraction of the mass of the filament assumed concentrated at the tail. It
is shown in section 4 that the best value for fis %.

At zero time and subsequently, let the head end of the filament be constrained to move with
velocity v. 'The equation of motion is

d*u
n' pAL —— ar S (15)
where u is the displacement of the tail mass, and F'is the accelerating force transmitted through
the filament to the tail mass.
The strain in the filament, €, is given by

e:votzu- (16)
When Hooke’s law applies,
F=AEke, (17)

where /7 is Young’s modulus for the filament material. Substituting (16) and (17) into (15),
we obtain
d*u
a2 + wiu = wivel, (18)

where
1

Wo—F —

L _\/n/’

— J% (20)

A solution of (18) satisfying the boundary conditions, u=0 and du/dt=0 at t=0, is

(19)

and

=1 I:t~i sin wot]' (21)
wo
If we let t=(LJc)8, and ey=uwo/c, we obtain
el [a—VW st @22)
v/
5. 8 ‘
e=¢eyn sin —- (23)
v/

In a previous paper (see footnote 2) the following equation was derived:

log v,=—1% log (n}++7;7r—b}_%1—2) \/ J ade, (24)

where v, is the lowest impact velocity sufficient to cause rupture in a filament to which a tail
mass n times that of the filament and a head mass m times that of the filament, are attached.
For comparison with the work discussed here, we let m— «, obtaining

log .=—1} log (n4-1)+log \/% J “ ode. (25)
0

WasuiNGgTON, December 31, 1954.
28



	jresv55n1p_19
	jresv55n1p_20
	jresv55n1p_21
	jresv55n1p_22
	jresv55n1p_23
	jresv55n1p_24
	jresv55n1p_25
	jresv55n1p_26
	jresv55n1p_27
	jresv55n1p_28

